
Software Testing
Prof. Meenakshi D’Souza

Department of Computer Science and Engineering
International Institute of Information Technology, Bangalore

Lecture - 28
Logic Coverage Criteria: Applied to test specifications

Hello everyone. We are in week 6 and today I am going to do the fourth lecture of week

6, as always we will continue with logic, what I will do today after we saw 2 lectures on

how to apply logic coverage criteria for source code for a change we will look at

specifications we will see what is the role that logical plays us for a specification is

concerned.

(Refer Slide Time: 00:39)

And we will see how to apply the coverage criteria that we learnt over specification. So,

this is same slide I have been showing for the past few lectures just to help you recap

logic coverage criteria at the bases we have clause and predicate coverage the whole

predicate becomes true once, false once and predicate coverage. Each clause is made true

once, false once and predicate coverage combinatorial coverage tests for the entire truth

table. Then we have active clause coverage criteria three of them the most popular is

correlated active clause coverage here in the center then we have inactive clause

coverage criteria 2 of them and when a predicate has only one clause all these coverage

criteria basically boil down to just predicate coverage criteria.

(Refer Slide Time: 01:29)

What we will do today is we look at specifications of requirements it could be a part of

requirement specification document it could be a part of a design or an architecture

document we will see where do logic come into play in these kind of documents and how

to apply the logical coverage criteria that we have learnt to generate test cases for

specifications. So, typically where the specifications stay you might have heard

documents like software requirements specification a system requirement specifications

they usually abbreviated as SRS. Similarly you have functional requirements

specifications FRS hardware requirement specifications hrs. So, and these are always

documents that are typically written in English somebody will write saying the server

will respond to the client request within three milliseconds the server will acknowledge

every request by a client and. So, on and or people use semi formal notations like use

cases and so on.

To write these requirements and typically lot of these requirements include logical

specifications like for example, they might write a specification which says that if the

value of pin code is entered then it must be exactly a 6 digit number right. So, this can be

thought of as a formula or a condition that can be written in logic basically specifications

involve conditions which talk about if this happens this will happen for this to happen

something else must have happened. So, these conditions are basically nothing, but

logical predicates and if they are not given in the formal language of logic or in

programming notation as testers is our duty to be able to read the English specification

and derive logical predicates from them.

So, in today’s example, we will look at English specifications and see how logical

predicates can be derived from them and where do these kind of specifications come

these kind of specifications come typically as pre conditions post conditions invariants;

invariants. For example, it could be a property which says that at no point in time will if

there is a critical region in a particular database or access to a database and in variant

could say things like at no point in time 2 different processes have access to the critical

regions. So, this can be thought of as an invariant describing the safety property of

mutual exclusion.

Similarly, very common for programmers to write assertions to be able to debug their

design or code; so you can find specifications there also what we will do is we will take

one of these examples we will take either preconditions or post conditions in this lecture

I will take precondition as an example. And I will show you how logic specifications are

used to write these pre conditions and the coverage criteria that we learnt.

(Refer Slide Time: 04:19)

How can we used to test that these pre conditions indeed hold. So, where do

preconditions occur in programs; typically programmers include pre conditions for their

methods in Java or if you writing in C you include pre conditions for your functions for

the entire program. Before you begin the text of the program preconditions could be

loosely documented they could just mean comments say you do this you do that and its

assumed that the programmer would have written code that will take care of the input

satisfying these preconditions these specific conditions on what the input look like these

specify conditions on what they output should be and so on. So, here is a small example

this is an example of a precondition let say we are working with the program that deals

with some kind of addresses. So, it says that in the address assuming that it is a record

containing fields like name street name house number locality state and pin code you

might want certain preconditions saying that the name should not be an empty stream

nobody should enter in address where the name is empty.

So, that is the first comment the second comment says state must be valid like for

example, if it is India then you cannot write any garbage name that you think as a state it

must be one of this so many states that we have in India it must be one of the valid states

and let say for an address the containing a pin-code in India, pin code cannot have a

arbitrary number of digits pin code cannot just be written as a one digit number or as a 5

digit number it should always be a 6 digit number. So, in any program that deals with a

database that contains address you might want to validate the data base by using the

these three as example preconditions they say name is not empty state must be one of the

predefined state because otherwise people might make spelling mistakes while entering.

So, you typically give a drop down menu where you let them choose the states or pin and

pin code must be exactly having 6 digits. So, typically they leave it at this somewhere in

the code you will find parts that checks for these kind of things and give an exception

when these things are not satisfied, but my goal is to be able to specify these

preconditions as logical predicates and see if we can test them using the coverage criteria

that we have learnt.

So, what do I write I write it like this in logic I say name as a variable name should not

be equal to read this exclamation mark equal to as not equal to an empty string and state

must be one in a list of states which I keep let us say in a list called state lists and pin

code as a number should be greater than or equal to 0, 6 different digits you could even

view it as a string because in some programming languages that could be treated as a

number 0.

So, you will view it as a string containing 000000 and this order will be the lexicographic

order and pin code should not be greater than or equal to this 999999. So, it is a number

that has exactly 6 digits or the string that has exactly 6 digits where the preceding 0s do

mat.

(Refer Slide Time: 07:21)

When we talk about pre conditions in specifications, if you say this example that we saw

what is the connecting and operator in this precondition. If I view this as a predicate I

can say that this predicate has four clauses this is the first clause which says name as non

empty this is the second clause which says state should be in the list of state 3rd clause is

pin code is greater or equal to this number fourth clause says pin code is less than or

equal to this number. And these four clauses are connected by one operator which is the

operator. Typically you will realize that most of these pre conditions post conditions

typically are always connected by an and operator or by a or operator.

So, special kinds of predicates there are normal forms which describe these kinds of

predicates. So, a predicate is said to be in conjunctive normal form the precondition that

we saw here is in conjunctive normal form f it consists of clauses that are connected by

an outermost conjunction operator or an and operator in conjunctive normal form.

These clauses could be disjuncts themselves in the sense that one particular clause within

itself could contain or operator of course, for going back out condition of logic coverage

criteria we would distinguish its 2 different clauses, because for us a clause cannot

contain an or operator, but in disinconjunctive normal form that is allowed. So, here are 2

examples of formulae and conjunctive normal form the first one a and b and c has three a

disjuncts or clauses as we call it in this course a b and c and the outermost operator that

connects these three disjuncts is an and operator in this case.

The second example I have a or b and c or d for us it has four clauses, but if you see the

outermost operator is still an and operator inside the clauses could be connected by an or

so, if the clauses are connected by or this entire thing a or b in the jargon of logic is what

is called a disjunct in the sense that these clauses individual clauses inside could be

connected by a disjunction operator or an or operator, but the outermost operator

connecting them is an and we also implicitly assume that inside there are no ands for

example.

I should not have a and b and c and d if I have that then I say a is one clause disjunct and

b is another disjunct I separated out the outer most operator in a conjunctive normal form

should be an and. So, it is a conjunct of disjuncts that is how you call a conjunctive

normal form formula as. Now, remember we want to be able to work with logic coverage

criteria always it is easy to do predicate coverage and clause coverage, but to be able to

do active clause coverage if a predicate is in conjunctive normal form its fairly easy what

you will have to do s the following major clause that you want to focus and make the

make it determine the predicate you make that active by making all other clauses true.

Let us take this example a and b and c if suppose I want to make a as y major clause and

I want a to determine the predicate p. So, I will make b and c completely true right which

are the minor clauses I will make them true if b and c are true then the truth or falsity of

the predicate is completely influenced by a, because when a becomes true the predicate

will be true and a becomes false the predicate will be false b and c are true anyway. So,

they will not influence the predicate at all.

So, that is what this point here says it says major clause is made active means active

means made it made to determine the predicate by making all other clauses true then

what is true truth what is a table containing he test requirements for active clause

coverage look like it look like this it will have a row of all true’s and then it will have a

diagonal of false values. So, what do we mean by diagonal of false values in this case I

am making the major clause. So, a is true once false once the rest of the minor clauses

are all true with that is what I wanted to be for a to be determining p in this case I am

making the major clause b determine p. So, b is false once true once and the rest of the

clauses will be true and so, on. So, this is how ACC test requirement looks like when the

predicate is given in conjunctive normal form there is another popular normal form in

logic called disjunctive normal form it is the opposite of somewhat the opposite of

conjunctive normal form.

Here the outermost connective is an; or inside various clauses could be connected by and

its reverse the role of and an or are reversed in disjunctive normal form from conjunctive

normal form. So, we say a predicate is in disjunctive normal form if it consists of clauses

or conjuncts that are connected by a or operator. So, here are 2 examples a or b or c there

are three clauses connected by an or operator. So, we say this predicate is in disjunctive

normal form here again there are four clauses a and b is one clause c and d is one clause

this I mean sorry a and b is one conjunct c and d is one conjunct together there are four

clauses these conjuncts inside can have ands, but in disjunctive normal form the

outermost operator is an or.

So, when do you say a formula is in disjunctive normal form we say a formula is in

disjunctive normal form if it is an or of and so, for this to satisfy various logic coverage

criteria in particular to satisfy active coverage criteria what do you do you make the

major clause active or determine predicate by making all other minor clauses false. So, in

this example suppose you make a, b and c both false then the close value a will

completely influence the truth or falsity of the predicate a face false predicate will be

false if a is true because b and c are false the predicate will become true just because of

a. So, here again for active clause coverage the TR is quite easy it has a row of all false

and then a diagonal of true values true values go along the diagonal by making each

clause take true in turn the rest of the table is typically filled with false values and you

would realize that in this case nicely happens that each clause takes turns to be the major

clause and does determine the predicate.

So, these two are two standard normal forms in which many preconditions and post

conditions are written and when we do logic coverage criteria for these preconditions and

post conditions we will apply these truth tables to be able to determine ACC test

requirements for them.

(Refer Slide Time: 14:21)

So, here is an example this is an example of a calendar program a simple program that

calculates the number of days between the 2 given days in a year let say one day is let us

say second of February the other day is let say 3rd of April it says how many days are

there between second February and 3rd April the only condition is this the 2 dates second

February and 3rd April should be within this same year.

So, this program will obviously be manipulating data like a date right because it will ask

you to enter 2 dates within the same year, and then it will calculate the number of days in

between of course, it has to take smaller things like is the year a leap year you know if it

is a leap year then you know if February is included in the range of days to be calculated

then it has to adjust the number of days and so, on. So, this program has several

preconditions they are all listed to start with this comments here. So, it says day 1 and

day 2 must be in the same year because that is what the program is meant to calculate if

given across years this is not the program that will calculate.

The second pre condition says that the number that you enter for month it should be a

number between 1 and 12 both month 1 and month 2; the two months that told you right

February and April, both these months should be numbers between 1 and 12 and it says

both the days should be between 1 and 31 and it says in addition month 1 should be less

than or equal to month 2. In the sense that I do not ask for the number of days from let

say 25th of May to 28th of February because its within the same year the first date that I

gave should be before the second date that I give. So, a simple way of enforcing that is to

say that I enter month 1 which is the part of date one and that should be less than or

equal to month 2 which is a part of date 2 and then it says the range for year should be

between one and ten thousand this is just another precondition.

Now, these are what are called preconditions I hope it make sense why they are needed

because otherwise you could expect any kind of garbage as a input which we do not

want. So, we write a whole set of pre conditions which says that please accept inputs

only of these kinds if the input is not of these kinds then you write appropriate exception

handling statements which will make the program alert the user about the range or details

being wrong. Now, 1 is to write these preconditions and the other is to check whether

these preconditions themselves are complete it is not very difficult to see that for this

example that we have considered the pre conditions are not complete. In fact, they are

reasonably inaccurate why is that? So, because here for example, it says for every day 1

as how is the date given date is given is day month and year and the condition for day 1

says that it is a number between 1 and 31.

So, let us say the month is a month of November we really do not have something like

31st November where as these preconditions will let you enter something like 31st

November, they do not specify that of course, in the program will take care of the fact

that does not happen, but these preconditions per se do not rule out that. Similarly, for a

day in month like February you can merrily go ahead and enter 29 February for a year

that is not a leap year or for that matter you can enter 30th February and 31st February

these pre conditions let you do that the other thing is the condition that we have asked is

that both the days should be in the same year.

So, if this range for year is not really necessary data at all, but it is given just as a

precautionary thing on one side pre conditions are useful to rule out junk inputs, but on

the other side preconditions can get ready cumbersome if you have to get every detail

right. So, pre conditions can be inaccurate they need not be complete. So, this is how the

cal program starts.

(Refer Slide Time: 18:37)

So, it takes input as month 1, day 1, month 2, day 2 and year. So, it says in this year this

is the range from day 1 and month 1 to day 2 and month 2 you calculate the number of

days how does the program work here is how the program works it call this thing method

called cal it has an internal variable called number of days which is the variable that is

returned back to the main program what it first says is the if it is in the same month if the

2 days are in the same month that is if months 2 is equal to month 1 the number of days

is easy to calculate you just do day 2 minus day 1 then you get the number of days

otherwise what it tries to do is to first tries to populate the calendar of how many days

are there in a month.

So, this is the calendar that it populates. So, it says month skip month 0 means skip this

entry 0 then goes on as January February March April May June July and so on. So,

January has 31 days for February it is just initially put it a 0 based on a whether it is a

leap year or not we will populate it as 28 or 29 march has 31 days, April 30 days, may 31

days, June 30 days, and so, on till December.

Now, the next piece of the code contains is to populate the date for February. So, it says

first checks whether are we in a leap year. So, year is already entered here as input year

is already entered here as input. So, it tries to divide a year by 4 by 100 and then by 4

100 and it computes the standard check for leap year right if m does not m 4 which is the

year divided by 4 is not equal to 0 or m 100 which is the year divided by 100 equal to 0

and m 100 is not equal to 0 then it is not a leap year. So, the February which is this

second 0 1 2 the second the 3rd entry, but the second index entry in the list day days in is

set to 28 if this condition is violated then it is indeed a leap year. So, you set the number

of days in that month in the entry for February to be 29th. So, after this you have

populated this full array with the correct days for each month.

Now, what you do is you calculate the number of days in between the 2 days that was

entered first you calculate the days within the 2 months start with the days within the 2

months. So, you do number of days is day 2 plus days in month minus day 1 to this you

add the days in the inter meaning intervening months right. So, let say I am asked to find

out the number of days from second February to let say 25th may I have first start with

the days in February and days in the month of may then add to that I add the number of

days that I have in march and April that is what this segment of code is doing and for

adding the number of days in the intervening month I start from the months after the

month that I began and end in the month before the month that I ended and keep adding

once you finally finish this you return number of days which tells you the number of

days that exists in a month.

So, this is the total program for calculating the number of days in a month this program

had all these preconditions these preconditions have to be brought into the program.

(Refer Slide Time: 21:41)

So, we will continue writing the code we will write a main program that takes us all the

inputs and calls the program for cal. So, this is a driver program that calls this method

cal. So, what does the main program do it initializes these things it initializes a variable

called t then it gets the data enter month 1 d one month 2 d 2 year it gets all this data.

(Refer Slide Time: 22:05)

Now it has checks for these preconditions I have just repeated the preconditions here

just. So, that it is easy to refer to what are the pre conditions they say that the day 1 and

the day 2 must be in the same year month should month 1 and month 2 should be

numbers between 1 and 12 day, 1 and day 2 should be numbers between 1 and 31 month

1 should be less than or equal to month 2 and year should be a number between 1 and

10,000.

So, I write if statement for all these conditions I say if month 1 is less than 1 or if month

1 is greater than 12 you throw an error. Similarly for month 2 if month 2 is less than 1 or

if month 2 is greater than 12 you throw another error.

(Refer Slide Time: 22:43)

And go on with this right conditions for day if day 1 is less than 1 or day 1 is greater than

31 throw an error if day 2 is less than 1 or day 2 is greater than 31 throw an error if

month 1 is greater than month 2 ask them to enter correct details that is not acceptable I

like this you go on building program snippets.

(Refer Slide Time: 23:04)

That begin to check for each of the pre conditions this checks for years and finally, it

calls the method calendar with all these inputs that have been validated and runs the

method calendar whatever data calendar returns it will print that data. So, this is how are

typical program looks like and pre conditions come as specifications that talk about what

are the specifications the conditions related to inputs in the program it is up to the

programmer to be able to add these kind of conditions apart from the main functionality

of the program to make sure that the inputs are well taken care of. Now if you go and see

this program we have so many predicates here this one, here this if statement there is this

if statement here in which are another predicate for month there are 2 predicates for days

there is one more predicate for months there is one more predicate for year.

So, all these predicate mean that we can apply logic coverage criteria. So, what do we do

we collect them all.

(Refer Slide Time: 24:03)

And we say these are all the constituent preconditions for this program. So, there is one

large predicate that specifies the complete set of pre conditions for calendar program that

is what I have written out here as taken from the code its again very easy to read it says

month 1 should be a number between 1 and 12 month 2 should be a number between 1

and 12 month 1 should be less than or equal to month 2 day 1 should be a number

between 1 and 31 day 2 should be a number between 1 and 31 year should be within this

range.

If you now look at these predicate it is very easy to see that it s a formula in conjunctive

normal form and this is what I told you earlier right these predicates has pre conditions

still are not complete that is a different problem we will worry about it later. For

example, 31 is not the upper limit for the day of all months this particular bit is taken

care of in the code, but it need not be the goal for us is not to check inaccuracy or

incompleteness of predicates the goal for us to check is that the predicative that is written

does it make sense.

(Refer Slide Time: 25:08)

So, here is a predicate in conjunctive normal form I told you how to generate test cases

TRs for predicate in conjunctive normal form for the various active clause kite criteria.

So, let us before we move on to active clause coverage criteria let is look at a predicate

coverage criteria predicate coverage criteria for such a predicate is quite easy make all

clauses true once then the whole predicate will be true m 3 clause has to be true, because

this is an. And even if one clause is false the predicate will not be true and to make the

predicate false you make any one arbitrary clause at least one clause false the whole

predicate will become false you could make more than one clause false also.

So, predicate coverage is easy to do what about clause coverage clause coverage is a

simple tr as per definition says that each clause should be made true once and false once,

but there is a catch here some clauses are dependent on each other. So, I cannot make

each clause true once and false once. In fact, when we look at logical formulae

corresponding to specifications will realize that while achieving clause coverage or while

achieving active clause coverage will always have this condition this problem the in

several cases there will be interdependency between the clauses it could be the case that

2 clauses simultaneously cannot be true 2 clauses simultaneously cannot be false.

So, given all these extra conditions on the clauses it could be very well the case that the

test requirement can become infeasible or the fact that its infeasible could indicate an

error in the specifications both are valuable information like for example, in this case

suppose I want to achieve clause coverage then some clauses are related as I told you and

they cannot be false at the same time for example, month 1 cannot be less than 1 and

greater than 12 at the same time.

So, we have to be careful when we deal with clause coverage in this case it does not

mean that the pre precondition has an error, but in certain other cases it could mean to the

precondition has an error. So, we when we want to do clause coverage base testing for

such predicates we always exercise a bit of caution because sometimes it may not be

practically possible to get test cases for clause coverage for ACC criteria I told you how

to generate right for conjunctive normal form you have a first row of all true then you

have a diagonal of false values as many as the number of clauses that you have so that is

the test requirement for ACC criteria very easy to get.

So that hopefully would have given you a good idea of how to work with specifications

that come as preconditions and how to test for logical predicates based on that. Similarly,

you can do for post conditions for invariants for assertions and wherever they are not

available or given in English as a tester it is up to us to be able to derive write the logical

specifications for them and generate test cases.

Thank you.

