
Software Testing
Prof. Meenakshi D’Souza

Department of Computer Science and Engineering
International Institute of Information Technology, Bangalore

Lecture - 27
Logic Coverage Criteria: Issues in applying to test code

Hello again. Welcome to the third lecture of the sixth week, we are in logic coverage

criteria, last 2 classes, I told you about how logic coverage applies to source code.

(Refer Slide Time: 00:26)

This is a recap slide we have seen. So, many logic coverage criteria and using examples

of 2 kinds of programs thermostat and detecting the type of a triangle using those

example we saw how to practically apply predicate coverage clause coverage and

correlated active clause coverage these 3 are considered to be the most useful amongst

the various logic coverage criteria.

You would have hopefully realized through the examples that we had to do a good

amount of work for even a fairly reasonably sized program like triangle type which had a

good number of predicates to be able to reach the inner predicates, and solve for the

internal variables rewrite the predicates purely in terms of inputs then they looked very

big and then the tables getting the tables for active clause coverage criteria was a bit of

an effort.

(Refer Slide Time: 01:27)

So, imagine few thousand lines of code which is what a standard program is all about

and applying logic coverage criteria to that it is going to be pretty non trivial. So, there is

always been a bit of a debate you know when predicates come from these kinds of

statements and predicates have less than 4 clauses. And if a predicate has more than one

clause then we said in the last class in the slide that active clause coverage criteria is very

useful, but we saw through examples that its usually a little difficult task right it needs a

lot of human intervention and explicit knowledge about the code to be able to apply

active clause coverage criteria and derive the test requirements for these criteria.

(Refer Slide Time: 01:59)

So, there is been a lot of debates in the programming community. In fact, there is been a

fairly large school of thought which says that why do we consider active clause coverage

criteria because predicates has more than one clause right; at least in those 2 examples

we saw that predicate had several clauses sometimes up to 4 clauses and then solving for

the variables in that clause substituting back to them taking each clause in turn be a

major clause filling up the truth table for correlated active clause coverage took a bit of

time. So, there is been this school of thought that why not to rewrite the program to

eliminate these many clauses in the predicate rewrite it to make sure that each predicate

has one clause I will show you some examples of what it means to rewrite a program.

So, lot of people have been thinking and. In fact, at some point in time there was a

conjunction going around that if you take a program which has a predicate with let say 2

3 or 4 clauses then using the semantics of operators like and nor which connect the

clauses you will be able to rewrite the program by breaking the if statements into smaller

statements and it was believed that the resulting program if I apply predicate coverage it

will be the same as applying active clause coverage in the given program very soon it

was proved that this is not correct I will show you a examples.

(Refer Slide Time: 03:38)

That illustrates that predicate coverage in the transform program is not the same as the

desired active clause coverage it could be correlated it could be general either cases it

may not be the same we will sit through examples another reason why people believed

that predicate transformation is necessary is remember I told you what how to do source

code classical testing for source code write in the third week of or something like that.

So, there we saw this notion of cyclomatic complexity which determined the number of

independent paths in the program one of the basic conditions in the cyclomatic

complexity is when I consider control flow graph of the program all the predicates in that

should be what are called simple predicates which means now in terms of logic coverage

criteria that we have seen they should have exactly one clause.

So, it was recommended that you rewrite the program to be able to do that right. So,

there are lots of schools of thoughts which keep recommending that if there is a predicate

which has 3 or 4 clauses make it simpler rewrite it what I want to do in today’s lecture is

using examples show you that it may not always be a good idea to rewrite the program to

break down the several clauses in the predicate it usually does not work all the time will

see 2 examples try to rewrite the predicate which come in this examples and see what are

the issues that we will get, right.

(Refer Slide Time: 04:48)

So, what is the notion of predicate transformation the process of predicate transformation

deals with rewriting the predicates in the program? So, that they have on in the resulting

transformed program each predicate has only one clause this; obviously, involves change

in the control structure of the program for like for example, if I have if a and b which has

2 clauses a and b I break it up I have to put nested statements first test for f a, if a is true

then you test for f b if b is true then it means both a and b are true then you write the then

part of the original predicate here.

So obviously, means adding more control structure to the program lot of nested if

statements lot of else statements right the resulting program becomes very difficult to

read it has too many if statements too many nested if else statements then you do not

know what is happening where what is going where and usually because of this people

do not like predicator transformation also programs large programs are written and

supposed to be maintained for several years right. So, for maintainability which means a

third programmer or a developer or a maintenance engineer who is going to be able to

locate your program and analyze it we will find it very cumbersome if you had written

these complicated nested if then else to be able to just simplify for the sake of avoiding

predicates with multiple clauses, it does not work I will show you why using 2 examples

here.

(Refer Slide Time: 06:14)

It is a small program fragment it is only a program fragment not the entire program

meant to illustrate issues with predicate transformation.

So, this program fragment has 2 clauses a and b there is a predicate here in the if

statement which says if a and b then you do statement or set of statements S1 S1 could

be any statement single statement a block of statements could have if again inside that

could have other decision statements like while could have function calls we do not care

about it we just abstract it out call it S1. So, this clause says if a and b do S1 otherwise

you do S2 this is just a small fragment now the predicate under consideration is this one

a and b as you can see it has 2 clauses.

So, I want to let say be make apply correlated active clause coverage criteria to this

predicate I want to apply CACC criteria for this predicate now what you have to do you

have to do the same old exercise a be the major clause work out pa that is when a

determines p and then consider b to be the major clause workout p b which says when b

determines p put them together to obtain correlated active clause coverage criteria where

a becomes true false once b becomes true false once we worked up the same example p

is equal to a and b when we did this in the slides and inferring from those slides that we

did for CACC for a and b here is the t r I am not re doing it you can refer back to those

slides.

The final test requirement for CACC for a and b will be this how do you read this the

first pair says make a and b true second pair says make a true b false third pair says make

a false b true between these 3 correlated active clause coverage is completely satisfied

for the predicate p which is a and b in our case. Now the goal is we will looking at

program transformation this predicate has this 2 clauses for some reason I do not like it I

do not want to do this CACC criteria I want to break this 2 clauses and make rewrite this

program into a program that has predicates that contain exactly one clause.

(Refer Slide Time: 08:35)

So, here is an attempted rewriting this program in this slide if a and b do a, S1 else do S2

is rewritten like this how do we understand what this is. So, if you read this program it

says if a then you go here then you test for if b.

So, let say both these fs pass then what is it mean it means a is true and b is true or going

back by the semantics of the given program a and b are true then what do I do? I do S1 it

is a same thing that I do here if a is true and then b is true I do S1 else this else is for this

f which means a is true and b is false. So, a and b is false then I do S2 what is this one

say this one is the else for the first f here it says if a is false then you do S2. So, what I

have achieved here I have taken the program in this slide which says if a and b are both

true do S1 else do S2 and I have broken it up like this I said if a is true and b is true do

S1 else which means if a is true and b is false do S2 if a itself is false do not bother about

checking b because a and b is going to be false directly do S2. So, this captures exactly

the same semantics as this program, but it is rewritten to ensure that each predicate here

has exactly one clauses.

So, there are 2 predicates one just has clause a one just has clause b and I have

eliminated the predicates containing 2 clauses here and this is the new control structure

that I have arrived at now this does not look too bad typical experienced programmers

will not like this control structure there are several disadvantages to it one is people do

not like the fact that this entire code segment S2 gets repeated here that is not considered

good programming practice at all and we cannot avoid it here, because we had our goal

was to remove and that was there in the previous predicate and that process we ended up

creating another copy of the code for S2 it is not consider a good programming practice.

And the other thing is now let us consider predicate coverage for this transformed

program remember the conjecture was this is the transformed program I have removed

predicates with multiple clauses. If I achieve predicate coverage in this it will mean that

achieving a appropriate active clause coverage in this original program what we will

show is that predicates coverage in this transformed program will not satisfy CACC

criteria for the original program what is predicate coverage for this transformed program

predicate coverage for this transformed program will need 3 test cases first one is a is

true b is true that will reach this statement S1.

(Refer Slide Time: 11:07)

Second one is a is true b is false that will reach this statement S2 the third one which is a

is false as I told you, but b could be either false or true which means a false and b false or

a false and b true both these test cases will reach this S2 right. So, the first test case for

predicate coverage is both a and b are true reach S1 second test case is a is true b is false.

So, reach this S2 the third test case which needs to reach this copy of S2 can be achieved

in 2 ways when is both a and b could be false or a could be false and b could be true both

of them will reach this second copy of S2.

So, that is what is given here, but let say I have a choice here in the third case right for

either taking both of them to be false or a to be false and b to be true, but let us say I take

both of them to be false. So, the final set of test cases that I choose for predicate

coverage are true; true to reach S1 true false from the second item to reach S2 the first

occurrence of S2 and from the third one I choose false; false you to reach this second

occurrence of S2. So, this satisfies predicate coverage for the transformed program, but it

does not satisfy CACC for the original program CACC for the original program as we

have discussed had needed 3 test cases a true b true a true b false and a false b true this

was the only option left where as in predicate coverage I had the choice between

choosing this or this and I decided to choose both to be false because of that I do not

satisfy CACC, but I satisfy predicate coverage.

So, clearly the conjecture that you transform the program breakup predicates with more

than one clauses into predicates with single clause and try to do predicate coverage on

the transformed program that will be equivalent to CACC or GACC on the given

program that is not true for this example also the transformed program has this not. So,

welcome feature of the code fragment S2 being copied ditto twice that is usually not

accepted.

(Refer Slide Time: 13:32)

So, I show you one more example to understand the same issue, but we will look at it

from a slightly different prospective here is an example that has a predicate with 3

clauses that are connected like this a and b or d with c if a and b or c is true then you do

S1 else you do S2, right. So, this is easy to read if you notice because I just can read this

directly any programmer will understand what is happening here it says if e a and b is

true or c is true then you do S1 if it the case that both of them are false in which case the

whole thing is false then you do S2. Now let us attempt to rewrite this program you can

attempt in several different ways whatever ways you attempt, we will realize that you

will get a very long program with several occurrences of S1 and S2 repeated and it will

have a very ugly looking control structure.

(Refer Slide Time: 14:26)

So, here is an attempt one attempted rewriting the program. So, if you look at this itself

you will realize that this looks very complicated right and quite difficult to understand

unlike this, this is neat the only thing that you had here was you had a predicate with 3

clauses, but otherwise its quite neat and simple you want do is for some reason you

wanted to eliminate this predicate with 3 clauses, but you wanted to retain a new

program where each predicate as a single clause with exactly the same meaning and here

is an one attempt to rewrite it how do I read this I read this as follows I say if a is true

then you check if b is true b is also true. Then you check c is true if which means if I am

here if c becomes true, then what it is; it means all 3 a, b and c are true then what do you

do you do S1 if c is not true, but a and b both true then you still do S1 that correctly fix

to the semantics of this program right if a and b are both true and c is either true or false

then this whole thing will be true all the cases I do S1.

So, I have simulated till here. Now let us look at this part this part has an else that

corresponds to this b. So, we are in a situation where if a is true, but b is false which is

this else then you can still do S1 if c is true because that is what the semantics of this

predicate is. So, you check if c is true then you do S1 if c is false and b is false which

means his whole predicate is going to be false then you have to do S2. So, then you S2 is

that clear. So, now, let us go continue we have not finished all the cases. So, now, let us

look at this else if you go straight up corresponds to this first if which checks if a is true.

So, it means if you reach this else it means that a is false. So, I check if b is still true a

and b will be false, but if c is true then the or statement f the predicate n this slide

becomes true. So, I can still do S1, but if c is false then I do S2 and again I check if b is

false if c is true then I do S1, but if c is also false then I do S2 after this long drawn effort

I have finally, achieved to rewrite the program to capture the exactly the same meaning

as this predicate.

But look at this program you would agree with me that it looks completely ugly and

unreadable just because I did not want this predicate I try to attempt a transformation and

that resulted in this by the way this is not the only transformed program there are several

other ways of transforming it I just wrote this longest transformation in some sense to

illustrate how ugly a transformed program can get.

(Refer Slide Time: 17:06)

But the point that I wanted to illustrate is that whatever is the transformed program its

not unique this is not the only transform program you could try to do it and you could

probably get a simpler one the transformed program is usually much harder to

understand than the given one you would agree with me because just by seeing his

example and going back to our logical coverage criteria conjecture which said that

predicate coverage on this transformed program should be the same as CACC on the

given program that is also false for this program as it would illustrate.

(Refer Slide Time: 17:39)

So, here in this slide I have given you details of correlated active clause coverage for the

predicate which was this I have written it in terms of logical notation and an or, but it is

the same predicate a and b or c that was here a and b or c here its written in programming

notation here is written in logical notation, but it is a same predicate this part the first

five columns illustrates the truth table for the predicate; predicate had 3 clauses a b and c

each clause can take true false values and turns and this is the entire truth table that

assigns true false values to a b and c and this is how the predicate evaluates it evaluates

to true and all of them are true it evaluates to false when b and c are false resulting in the

whole thing being false it also evaluates to false when a and c are false or all 3 are false.

So, they tells you what the predicate evaluates to please do not get confused to this

capital t and small t they both mean true I have written it as capital t just to illustrate

what the resulting truth false values of the predicate is now if you see to achieve

predicate coverage on the on the resulting program I can choose rows 1 3 4 5 and 8 that

will completely achieve predicate coverage why is that. So, because if you see row 8

corresponds to predicate being false 5 3 and 1 respond to predicate being true row 4 also

corresponds to predicate being false.

So, predicate coverage is achieved on the transformed program where each clause takes

turns to be true and false resulting in the predicate to be true and false, but correlated

active clause coverage on the original program if you work out all the details by

computing each clause to be the major clause do p a, p b, p c write out the truth table and

do that exercise which I have not given here because we have done it for enough

examples if you do that and do the final marking the TR for CACC will happen to be

rows 2 3 4 and 6. So, if you compare the last 2 columns you will realize there is

immediately a miss match right because row one satisfies predicate coverage is not

needed for correlated active clause coverage row 2 satisfies correlated active clause

coverage, but does not achieve dedicate coverage.

Similarly, row 6 satisfies correlated clause coverage does not achieve predicate coverage

and row 5 satisfies predicate coverage rows 5 and 8 satisfy predicate coverage, but are

not needed for CACC. So, there is a lot of mismatch between these 2 columns which

means that the TR for CACC and for predicate coverage do not match for this example.

(Refer Slide Time: 20:26)

So, what I want you to illustrate to you using these 2 examples is that predicate

transformation is not a good solution to avoid using active clause coverage criteria active

clause coverage criteria is mandatory for testing safety critical software and is to be

prove an effective for finding lot of errors especially for predicates that have 3 or 4

clauses.

So, it is a good idea to be able to go ahead and use it and transforming a program to

remove those extra clauses in the predicate with the aim of avoiding active clause

coverage criteria will not work they are useful they mandatory and it will be good to get

used to it.

(Refer Slide Time: 21:08)

In fact, to help you get some more practice I encourage you to look at this book website

the most of the material as we have seen is derived from this text book called

introduction to software testing the book has a very good web page by now you all

should know the webpage in that way webpage there is a page that contains web apps.

So, there is a web app for logic coverage criteria here is the URL for that app.

So, here you can input a predicate and get values for the various active clause coverage

criteria and the various inactive clause coverage criteria I do not think they do predicate

in clause coverage because they are easier coverage criteria to meet, but they have this

app that works well for acc and for various ICC also and try use it for a some predicate

of your choice with 3 clauses or 4 classes work out the solution manually then use the

app to see if your answer matches with the answer given by the app the app slows down

a bit for predicate with larger clauses because they underline problems that it tries to do

to get these coverage criteria of each clause determining a predicate a non trivial

problems.

So, try and use it for predicate with 3 or 4 clauses that way you can work out the solution

on your own and try and see if the solution that you have got is the same as the solution

that the web app provides and feel free to ask me if you have any doubts in the forum.

Thank you.

