
Software Testing
Prof. Meenakshi D’Souza

Department of Computer Science and Engineering
International Institute of Information Technology, Bangalore

Lecture - 26
Logic Coverage Criteria: Applied to test code

Hello again, welcome to the second lecture of week 6.

(Refer Slide Time: 00:26)

So, what are we going to do today in this lecture we are going to look at logic coverage

criteria again to test code. So, if you remember last time I told you that logic coverage

criteria when it comes to testing code is very important.

(Refer Slide Time: 00:29)

And to be able to understand the problems related to reachability and controllability well

I will walk you through 2 examples that illustrate the use of logical coverage criteria over

source code. In the last lecture, we did the example of thermostat there was one large

predicate with the 4 clauses in that example, we showed how to solve for that predicate

that predicate had the clause with an internal variable, how to reach that predicate how to

solve for it, and how to write test cases for predicate coverage we also saw how to write

test cases for code related active clause coverage for that predicate.

In today’s lecture, we will take another program which is a very popular program that

you will find in a few other text books in software and testing to test for decision

coverage or logic coverage.

(Refer Slide Time: 01:27)

And I will tell you how to apply the predicate coverage criteria that we have learnt to be

able to do testing for that program that program is about detecting the types of the

triangle OS, again this is a program that I have taken from the textbook first edition of

(Refer Time: 01:32) Mahanand (Refer Time: 01:33), the authors wrote this program in

other books you might find the control flow graph corresponding to a program and this

program basically is called TriTyp been short for type of a triangle and it detects these 3

types of triangle or it says that it is not a valid triangle.

So, in the triangle could be scale in triangle in which case all the 3 sides are not are of

different length in a scalene triangle in an isosceles triangle 2 of the 3 sides have the

same length in an equilateral triangle all the 3 sides have a same length let say one of the

sides that is entered is a negative number then this program will output say in that the

triangle that you are trying to give us input in 3 sides is not a valid triangle, here is the

program.

So, what it does is that it has 3 integer variables A, B and C represented to be taken as

inputs for the 3 sides of a triangle and then it has an integer T we will see what this does

T is for giving the output T returns the output which is a type of triangle, so, the 3 sides

of a triangle that taken as input here. So, the first sight is taken as input in a the second

side is taken as a input in B the third side is taken as a input in C and then this main

program calls this method called triang with inputs A, B and C as the 3 sides this triang

runs its code I have given you the code for triang in the next few slides and returns a

number to be stored in T and then the system outputs in the result is T. So, T is a number

that represents one of these 3 types of a triangle or T could be a number that says that it

is not a valid triangle. So, here is the main triangle classification method.

(Refer Slide Time: 03:27)

This one triang as I told you code will be presented over several slides please read it as a

contiguous fragment of code and from end to end the code may not be executable we are

concentrating only on the fragment as its relevant for us to be able to understand test case

design.

So, this is the second slide containing a continuation of the same code it has triang

method. So, here is what it outputs it has an internally variable within this method called

triOut; triOut is the output from that method. So, if what is it output it outputs one if the

triangle is a scalene triangle it outputs the number 2 if the triangle is isosceles it outputs

the number 3 if the triangle is equilateral it outputs 4 if 3 sides constituted that were

entered do not constituted a valid triangle. So, what we first do here in this method is we

first check if the triangle is valid or not why will it not be a valid triangle we it will not

be a valid triangle if one of the sides is a negative length. So, that is what this if checks

for it says if side one is less than or equal to 0 or side 2 is less than or equal to 0 or side 3

is less than or equal to 0 then you set triOut to be 4 what us triOut to be 4 mean if you go

above and see triOut 4 mean that it is not a triangle.

So, you set triOut to be 4 and return triOut. So, here basically after taking the 3 sides as

inputs in A, B and C they get pass to the triang method A, B and C triang method takes

them as inputs side one side 2 side 3 first thing that it checks is if any of the sides is less

than or equal to 0 that is this if statement in line number 18 if any of the 3 sides is less

than or equal to 0 it out sets triOut to 4 which we interpret in the code to mean as it is not

a valid triangle returns it and comes out now it. Now after this its ruled out the fact that it

is not a valid invalid triangle.

From now on it is working with the valid triangle it just has to find its type. So, what are

the 3 types that the code can output the 3 types that the code can output are whether it is

a scalene triangle isosceles triangle or an equilateral triangle if it is a scalene triangle it

outputs one if its isosceles it outputs 2 if its equilateral it outputs 3 this is how the code is

written.

(Refer Slide Time: 05:50)

So, here is the rest of the code which determines which of the 3 types the triangle is and

outputs the corresponding number. So, another thing that I would like to tell you is that

the style in which this particular code is written is slightly long drawn and complicated

you could directly may be write a simpler code that will directly detect the trype type of

the triangle to be one of the 3 types by no means is this code shortest code shortest length

code. And the simplest code to detect the type of a triangle its written in a slightly

roundabout way with lots of predicates labeling various statements just to illustrate the

richness of the logic coverage remember we are using this example to understand logic

coverage criteria better.

So, this code is written in a slightly long way it started with lot of the predicates one after

the other. So, that we could use it to understand logic coverage better, but it is a same

thing still correctly computes which is the type of the triangle. So, if it is not 4 which

means if it is not a valid triangle the code continuous here it sets triOut to be 0 and then

what it does it takes one side after the other and compares to see if its equal. So, let us

say if side one is equal to side 2 it increment triOut makes it one if side one is equal to

side 3 it increments triOut makes it 2 if side 2 is equal to side 3 it increments triOut and

adds 3.

So, by then it would have correctly computed if all 3 sides are equal then the all 3 if

conditions would have passed and the value of the variable triOut would be 3 correctly if

triOut is 0 then what it does here is it checks again. So, it says if side one plus side 2 is

less than or equal to side 3 side 2 plus side 3 is less than or equal to side one or side one

plus side 3 is less than or equal 2 sides 2 there is a problem right it cannot be the case

because this violates the property of a triangle. So, it out, but saying it is not a valid

triangle else it says yes it is a scalene triangle. So, this comment says that basically

confirms that it is a valid triangle before declaring it to be scalene if triOut is 0 and it

returns once it computes.

Now in this part it is trying to compute weather trying to figure out whether triangle is

isosceles or scalene.

(Refer Slide Time: 08:02)

So, let say triOut value turns out to be greater than 3 a says if is equal to 3 then you

directly set it to be 3 an output otherwise now you check if its equilateral or not which

means you check if sum of 2 sides is greater than one side these are the 3 ways in which

sum of the 2 of the sides could be greater than the third side those are the 3 conditions

here and the corresponding values of triOut are given here in all the cases it sets triOut to

be 2 because that is what it has to output to if the triangle is scalene and it returns that

otherwise it says if any of these conditions are violated then it says is not a valid triangle

and returns it. So, that brings us to an end to the codes.

(Refer Slide Time: 08:51)

So, in summary what is this program have a program has 3 input variables a B and C in

the main program method the 3 inputs are passed as formal parameters to the triangle

method as side one side 2 side 3 triangle method has an internal variable called triOut

which is set to the value T to be returned back to the main method; so all these

predicates. If you see there are so many predicates this triang method the first predicate

that you encounter is here at line number 18 which is this and then we have 3 more

predicates here are at lines 22, 24, 26 and 28, fourth one each of these 4 predicates have

exactly one clause each in line number 29 there is one more predicate which 3 with 3

clauses and here again in lines 33, 35, 37 and 39; there are 4 more predicates.

(Refer Slide Time: 09:47)

So, here is where we have listed all the predicates as they come in the code at line 18

there was this predicate we checked weather the triangle was valid or not and then this

was the part where it starts building towards checking if the triangle is isosceles or

equilateral and if it versus scalene triangle it outputs this now it does to check if it is a

valid triangle in line 29 and then these are the parts where it checks whether it is a

isosceles or equilateral triangle.

So, this line what I have done is we have gone through the code here pulled out all the

predicates from the code with their numbers I just listed it here right. So, if you are you

find it a little fast you could move back and forth between the code and this and check if

the predicate and a corresponding to each line has been currently listed in this code after

this what we want to do.

So, this is the set of full predicates that we want to work with. So, you can be ambitious

and you can say that I will attempt each of the logic coverage criteria that we learnt for

each of the predicates here right you could do that if you try to do that you will realize

that for these predicates to the predicates in line 22, 24, 26, 28 and the one line 33, how

many clauses do each of these predicates have they have only one clause right because

they have no Boolean operators in between them and each of these predicates the whole

predicate is just one clause.

So, if you remember for predicates with one clause just predicate coverage is enough

because you really cannot do anything much for other kinds of coverage criteria you

need more than one clause of the predicate. So, for each of these predicates you could

directly write test cases that will test the predicate to be true once and false once. In fact,

please try and do that as a small exercise for these predicates the predicates in lines 22,

24 and 26, because you just have to give 3 values of sides such that here for 22 side, one

is the same as side 2 and for 24 side 2 is the same as side 3 and for 26 side 3 is the same

as side one and then you are done, but for predicates in lines 28 and 33 you have to be

able to give a value of triOut where does triOut come let us go back and look at the code

triOut is an internal variable that belongs to this method triang which is the main triangle

classification method.

So, these predicates in lines 28 and 33 which have only one clause which deals with

triOut deal with an internal variable, but what are main inputs to the program 3 sides of a

triangle. So, to be able to test this predicate let say triOut is equal to 0 I need to be able to

give values for the 3 sides such that triOut is equal to 0 becomes true when the predicate

should be true and I should be able to give values for the 3 sides side one side 2 and side

3 such that triOut is a value not equal to 0 for this predicate to be false.

Similarly, here for line 33 I should give values for inputs sides one 2 and 3 such that

triOut becomes any value greater than 0 which means it could take 1, 2, 3 or 4 could

even be an invalid triangle or to make this predicates false I must make triOut to be

precisely equal to 0 which means I have to be able to give values in terms of inputs

which are sides 1, 2 and 3.

(Refer Slide Time: 13:18)

So, what we have to first do is we have to be able to find out reachability of the various

predicates. So, from these slides onwards, so, this is the exhaustive list of all the

predicates in the program from these slides onwards I have illustrated this subsequent

concept reachability solving for the internal variable computing coverage criteria I have

illustrated it only for a subset of the predicates, mainly because it is a repeat exercise if I

want to be able to do it for all the predicates and for you to be able to learn it will be

good if you can work it out for one or 2 predicates on your own in particular I have not

done for these predicates in lines 35, 37 and 39.

So, feel free to work them out as a small exercise that you could do for yourself. So,

what is the reachability of predicate in line 18 the predicate in line 18. If you go back to

the program happens to be the first predicate? So, it will always be reached because that

is right the first statement in the method. So, the reachability for that is true means it will

always be reached there is nothing else you need to do.

Now let us look at the next predicate. Predicate in line 22 as I told you to be able to reach

here you have to be able to give any values side one side 2 side 3 such that the predicate

in line 18 skipped this if statement does not come and does not exist the method from

here if you do not want the method to exit from here you should be able to give values

for side one side 2 and side 3 such that this if condition is false once that becomes false

you come here and you start executing the other predicates that is what is written here it

says in line 22 for we to be able to reach I must give side one to be greater than 0 I have

abbreviated as side one S I D E one as S one just to make it fit neatly into a slide

similarly side 2 is abbreviated as S 2 side 3 is also abbreviated as 3 and this whole thing

we have gone ahead and called it as P 1 this is a new notation that I am introducing now

so, that I could write P 1 here for reachability of predicates in lines 24, 26 and 28.

So, lines 24, 26 and 28 each of these predicates can be reached provided the values of all

the 3 sides of the triangle is greater than 0 that is what it says now for line 29 I should get

values of all the 3 sides greater than 0 and in addition the internal variable triOut must be

equal to 0 now line 29 was an if part with an else part which I dint give a line number for

let us go back to the program if you see this if part has this else part which I dint give a

line number for. So, the reachability for that is the negation of the reachability for line

predicate in line one.

(Refer Slide Time: 15:58)

So, which means that it is this and these things are true. So, now, I continue and list

reachability conditions for each of the other predicates in each of these conditions I must

be able to skip pass line number 18 which is P 1 and then write appropriate conditions if

you see all this appropriate conditions deal with an internal variable triOut and it there is

a condition on trout condition this one says triOut should not be equal to 0 this one says

triOut should be less than or equal to 3 this one says triOut should not be equal to 3 this

one says triOut should not be equal to 1 and so on.

So, we need to be able to solve each of these predicates for the internal variable triOut in

particular we need to be able to give values for the 3 sides A B C or 1 2 3 such that here

in line 33 triOut turns out to be not equal to 0 in line 37 triOut turns out to be less than or

equal to 3 and so on.

(Refer Slide Time: 16:53)

So, how do I solve this is the table that tells you how to solve for the 3 predicates. So, if

you go back look at the program and see when will the variable triOut B where take the

values 0 it will take the value 0 if all the 3 sides are not equal to each other. So, that is

what is this condition say triOut will be 0 if side one is not equal to side 2 and side one is

not equal to side 3 and side 2 is not equal to side.

(Refer Slide Time: 17:34)

So, similarly triOut will be one if one side a one set of sides are equal let us say side one

is equal to side 2 and the other 2 are different similarly for 2, 3, 4, 5 and 6 right these are

the values that triOut will take now what I do is I go back and take this predicate in line

number 29 it says P 1 and triOut is equal to 0. So, for triOut 0 to be 0 this is the condition

that I have written out this is the condition for reachability and controllability for triOut

to be 0.

So, I will take that and substitute it back here now what I have achieved I have

achieved in rewriting predicate that comes in line number 29 purely in terms of inputs to

the program the predicate P 1 was in terms of the 3 sides and the fact the triOut was 0 I

have removed that and rewritten it as another predicate that exactly will map to triOut

being 0.

So, this is the predicate that I take and test for predicate coverage or clause coverage or

correlated active clause coverage or whatever coverage criteria that I want to apply

whatever logic coverage criteria that I want to apply this is the predicate that I will test it

for what I have achieved in this predicate what I have achieved is that I have achieved in

completely eliminating the internal variable triOut from this program I have rewritten the

predicate to be purely in terms of inputs and outputs.

So, whatever coverage criteria I want to be able to do this in predicate now it becomes

easier for me because I can directly give values to the 3 sides such that each of this

clauses have true false values to achieve my desired coverage criteria similarly the

second item here for the else statement of line 29 I have gone ahead and replaced the

value of triOut to be 0 with this only in the table. So, I have directly gone ahead and

substituted that gives me the long looking predicate and I had go on doing this for each

of this predicates right each of the predicates of in this side line 39; 37, 39 else 39 all of

them have specific values for triOut.

So, I go on removing those triOut not equal to 0 triOut less than or equal to 3 and replace

it with appropriate values and finish I have not given them, but you can complete that by

substituting it now what I have done the set of predicates that I have here that I complete

that set fully is all the predicates in the program with no internal variable in it the

predicates directly talk about the conditions of 3 sides and what are the values that each

of this conditions will represent I am ready to apply all my logic coverage criteria on

these predicates.

(Refer Slide Time: 20:02)

Now, so, what are the various logic coverage criteria that I have to apply? So, for

example, I have taken predicate in line 18 which was like this and this is the table that

tests for predicate coverage for each of these predicates I have given you again only a

subset of the predicates you can write test cases for other predicates also.

How do you read this table this first column here gives you the line number in which the

predicate comes in the program the second column actually lists what the predicate is

and these represent test case values for predicate coverage the first set of values here test

when the predicate is true the second set of values here test when the predicate is false.

So, you give inputs A, B and C, I am sorry this is small error here read this B that I am

pointing to C and then what is EO represents? EO represents expected output. So, it says

if the inputs to the 3 sides of a triangle A B and C are these 3 then the expected output

should be 3 and if the expected output is 3; then predicate coverage is tested for being

false.

So, similarly predicate coverage is tested for being true all the 3 triangles have been put 0

the expected output is 4 which it means it is a not a valid triangle. Similarly for predicate

in line 22 which S 1 is equal to S 2, I have given some value here and the output here

should be correctly if you see all the 3 values here are the same output is an equilateral

triangle here the output is false.

So, it is only 2 sides are equal similarly for here it is predicate is true again predicate is

false correct because side one is different from side 3 now in line 29 we had this

predicate S 1 plus S 2 is less than or equal to S 3 or S 2 plus S 3 is less than or equal to S

1 or S 1 plus S 3 is less than or equal to S 2 and these are the test case values that will

test for the predicate being true this is the expected output and for the predicate being

false these are the test case values and this is the expected output, so, here for some of

the predicates in my triangle program.

I have written test cases for achieving predicate coverage for both true and false.

(Refer Slide Time: 22:16)

So, similarly we can do clause coverage we dint do clause coverage for the thermostat

example in the last lecture that predicate also had 4 clauses there just for re lustrated

purposes I have done clause coverage here for some of the predicates please remember

one point that we discussed little while ago in this lecture before predicate has only one

clause then that does not make sense to do clause coverage. So, a predicate should have

more than one clause to be able to do clause coverage.

So, I have taken 2 example predicates that have more than one clause the first one is the

predicate in line number 18 that had 3 clauses S 1 less than or equal to 0 first clause S 2

less than or equal to 0 second clause S 3 less than or equal to 0 third clause again in the

same way. Read this whole thing these are 3 sides of the triangle expected output for the

clause coverage to be true this clause to be true these are 3 sides of the triangle expected

output for clause to be false.

Similarly, for the predicate in line number 29 there are 3 clauses and these are the test

cases that will test for each clause to be true in turn and each clause to be false in turn

similarly for all other predicates that have more than one clause you could go ahead and

write clause coverage.

(Refer Slide Time: 23:28)

Now, I have attempted correlated active clause coverage for the predicates here again to

be able to do consider a predicate like this in line 18 S 1 less than or equal to 0 or S 2 less

than or equal to 0 or S 3 less than or equal to 0 it has 3 clauses you have to make each

clause the major clause in turn make it determine the predicate that is making we are

assuming that this is a compute p subscript a and assuming that this is B compute PB and

assuming that this is C compute pc then you populate a table that looks like this which

makes the first clause true and false second clause true and false then you have to

eliminate duplicate rows.

And then finally, you will get this set of true false values I have skipped all those steps,

but I advise you to strongly try and do that it will be a good exercise and revising how to

make each clause a major clause and make it determine the predicate and prone the truths

table by removing the rows that occur as repetitions once you do that you will realize

that you will be reduced with just these 3 rows the first row makes clause a true; A is the

major clause; clause is B and C false here is the set of test case for that here is the

expected output second row makes clause a the major clause this time its false B and C

are false again here are the inputs here is the expected outputs.

Similarly, for this exercise these predicate also we have done this. So, hopefully this

second example would have helped you to understand how to do various logic coverage

criteria for the predicates in the fairly large program this program that detected the type

of triangle was a fairly large program, several predicates feel free to write to me on the

forum, if you want a have any doubts or if you are not able to complete some of the

coverage criteria try them out and write to me will be happy to answer any questions.

Thank you.

