
Software Testing
Prof. Meenakshi D’Souza

Department of Computer Science and Engineering
International Institute of Information Technology, Bangalore

Lecture - 25
Logic Coverage Criteria: Applied to test code

Welcome to week 6, this is the first lecture of week 6, we will continue with logic

coverage criteria the whole of this week last week we introduced logic coverage criteria I

introduced you to the basics of logic. So, all the coverage criteria the active clause

inactive clause coverage criteria elementary ones, like predicate clause coverage and

then I showed you; what was this subsumption relation.

(Refer Slide Time: 00:32)

So, this slide is a recap from last week where we saw all these coverage criteria to begin

with predicate coverage, clause coverage then we saw three categories in active clause

coverage 2 categories in inactive clause coverage. Then we saw this for the sake of

completeness all combinations coverage which is not going to be useful practically at all.

What we will see today is take source code see how these coverage criteria that we saw

can be used to test for source code.

So, in today’s lecture I will show you one example of testing using logic coverage

criteria for source code, in the next lecture I am showing you another example of testing

using logic coverage criteria for source code. I decided to do 2 examples of source code

unlike graphs because logic coverage criteria is quite predominant and popularly used.

So, it needs some amount of practice to be able to understand how to put the coverage

criteria that we learnt to practical use.

We will do 2 examples of source code this lecture and next lecture after that I will tell

you how to look at logic coverage criteria for things like design constraints exactly like

we saw for graph coverage criteria, we will look at pre conditions examples and see how

logic coverage criteria applies to them finally, we will take specifications as modeled as

finite state machines with guards and apply logic coverage criteria to guard so then to see

how it works. So, that is the plan for this week.

(Refer Slide Time: 02:06)

So, today we begin with source code we can consider source code where do logical

predicates comes from they come from every kind of decision statement and the source

code which leads to branching in the source code.

For example they could come from if then else statement, it is labeled by predicate every

switch case statement is labeled by a predicate statements like while do, while do until

repeat until all of them are labeled by predicates for statements have predicates right. So,

programs are started with the decision statements and every decision statement has a

predicate in it. So, when I have a predicate corresponding to a decision statement I can

apply all the logic coverage criteria that we have learnt to be able to test the program

typically most programs will have less than 4 clauses.

In fact, we look at this is the number of clauses in the program and how it matters and

then how to apply logical coverage criteria in detail in the third lecture, but typically its

consider a good practice or empirical studies in software engineering we have shown that

most programs have 4 clauses. But typically in many programs have predicate where the

whole predicate itself is just one clause it may not may or may not have and ors or other

Boolean combinations in which case all the various coverage criteria that we learnt here

all of them basically boil down to only predicate coverage right which means clause

coverage, combinatorial coverage, active clause coverage, inactive clause coverage

everything is the same as the predicate coverage because the whole predicate is just one

clause.

(Refer Slide Time: 03:40)

Now, to be able to do logical predicate coverage where do I find predicates as I told you

here you find them all in decision statements the same more problem comes again in the

problem of RIPR criteria or reachability and controllability right. So, when I have a

predicate that is deep down in my program that let say labels in if statement it could be

that the variables involved in the predicate are all internal variables there could be no

inputs there could be no outputs, but how do we give test cases we give test cases in

terms of inputs and then we say what is the expected output. But let us say predicate has

no inputs it has only internal variables then you have to be able to make sure that the test

case in terms of inputs can be re written in such a way that the predicate can be reached

right you are guaranteed to reach the statement corresponding to the predicate that is the

condition of reachability.

We have to be able to get to that statement meanings we have to be able to give input

values that reach make the program reach the statement by executing all the statements

that come primer to the next is controllability or what is called infection and propagation

in controllability we have to be able to again give input values in test cases. But in some

sense indirectly assign values to the variables that are present in the predicate let say

there is a particular predicate inside a program that uses all internal variables and I want

to test that predicate for predicate coverage that is make it true once make it false once,

but please remember this predicate has all internal variables.

So, total predicate coverage I should be able to reach this predicate and using input

values I should be able to give values to the internal variables such that the predicate is

made true once and false once that is the problem of infection of prop propagation put

together and called as controllability. So, what are internal variables they are variables in

the predicates that do not occur as inputs to the program. So, sometimes to be able to

assign values to the internal variables I need extra predicates where I can add say in the

these are the things conditions that have to be satisfied to achieve reachability and

controllability and it is the same as adding the conditions as predict as clauses to the

original predicate that needs to be tested because one is to test the predicate I have to be

able to reach the predicate and control the predicate. So, I add these as extra conditions.

So, we will see all this through the example the of thermostat in today’s lecture and then

we will see one more example in the next lecture what is reachability what is

controllability what do we mean by appending extra predicates to the original predicate

that corresponds to reachability and controllability we will see it through we using

examples.

(Refer Slide Time: 06:25)

So, as I told you logic coverage criteria is probably one of the most important testing

criteria very powerful used across board in all kinds of software such important to get

that correct right. So, I will do source code for logic coverage criteria and illustrate the

problems of reachability and controllability through 2 examples the first example we will

be doing is a program for a thermostat what is the thermostat; thermostat is a device that

controls the heating of a particular entity.

So, there is a small piece of java program that is written for a thermostat I will show you

the program we look at the predicates in the program and see how to apply logic

coverage criteria. In the next lecture for this week I will take you through another

program which is an elementary high school program which basically takes the inputs as

three sides of a triangle and tells you what that what is the type of the triangle is that an

equilateral triangle isosceles triangle and so, on is a very good old program that not only

in this book in this lecture you will find it in several lectures in testing. So, it is a nice

thing most tangent thing to be able to go through that program once again. So, what we

will do today is we will begin with the thermostat program.

(Refer Slide Time: 07:31)

So, here is the code for the thermostat program that is taken from the textbook that we

are following the book on introduction to software testing I have taken the code as it is

the authors of the code or the authors of the book as its acknowledged here, right. So,

there is a class called thermostat what do these lines twelve to twenty one give you they

give you all the variables that this program handles right. So, there is an integer variable

called current temp here right hand side the comment tells you what it represents it

represents the reading of the current temperature it could be the temperature of a

particular room right. And then next variable is called threshold difference abbreviated as

threshold diff it tells you what is a temperature difference until the heater gets switched

on and then the third integer variables says time since last run which means what was the

time since the heater stopped last time.

So, what is the thermostat trying to do maybe its controlling a room in a building in a

very cold region it is trying to keep the room heated in a particular ambient temperature.

So, this program tells you when to switch it on when to switch it off and what will be the

basic functionality of a thermostat. So, the fourth variable is a Boolean variable called

override; override means the user switches off the automatic control in the thermostat

and he is trying to configure the temperature setting himself then there is one more

integer variable called overriding temperature which means when thermostat is in the

over written mode what is the temperature that it is been configured for. And there is

another integer variable called runtime which is when to run the heater on when to turn

the heater on and how long to run it and then there is something called period.

 which tells you whether its morning day evening or night maybe it implicitly influences

a temperature in which the thermostat will be running and then there is another type

enumerated data type called day which is of the type weekday or weekend day. So, here

is the main code corresponding to the thermostat. So, the method that is called is called

turn heater on which takes program settings input test ptest to the program. So, there is a

pre programmed setting for the thermostat that is turned that is used to be able to turn the

heater on.

(Refer Slide Time: 09:43)

So, here is the code corresponding to the thermostat please remember I had in all these

slides when I show a piece of code I showed across several slides. So, that it becomes

visible, but you should when you read it read it as a piece of code that is meant for

continuous execution and as I told you when needed graphs it might be the case that the

code as it is may not be taken in readily executable it could be a fragment of a code.

But we will focus on the things that we need in the code. So, I may not give you the

complete code and the code will run through several slides. So, here is the second slide

where the code continues this is the code corresponding to this method that begins in line

in twenty four. So, what is this say this method has another internal integer variable

called dTemp which basically tells you some it ask you to input the setting which is the

period which is day through this right pSet and then it has this codes. So, it says there is

an; if statement which has several conditions here. So, it says if current temperature is

less than d temperature minus threshold difference or read this thing as or override is true

and current temperature is less than over a temperature minus threshold difference and

time since last run is greater than minimum lag.

So, what it says is basically current temperature is the room is become cold right that is

what the first one says second one says that the override is on Boolean variable overhead

is on which means users trying to make over and run the thermostat and the temperature

in the override mode is still minus a threshold current temperature is still less than that.

So, the room is again cold even in the override mode and heat has been off for some

time. So, what do I have to do I have to turn on the heater right when I say I have to turn

on the heater we also have to specify for how long to turn on and assume that the heater

heats at the rate of per degree of heat per degree Fahrenheit of heating it takes one

minutes to heat, right. So, using this gradation in the temperature of increase in the

temperature of heater is specify how long to keep the heater on to keep it on for too long

maybe the room will become too hot. So, you need to be able to set it. So, that the room

temperatures just optimal and comfortable.

So, this is the code that does that. So, it first computes the time needed to heat it the turn

the heater on which is the difference between the temperature in the room and the desired

temperature dTemp and then it says if override is on hen the diff time needed o turn the

heater on is the difference between the current temperature. And the overridden

temperature and then it says set run time to be time needed set heater on to be true and

then you return true this is the method that returns a Boolean variable right otherwise you

said set heater on is false then you return false.

So, is it clear please what the simple code does its the code corresponding to a thermostat

tries to keep the temperature in a room in a building into optimal setting it uses all these

variable which basically tell you what is the current temperature for how long is the

heater been on or off. And whether the heater is been overridden the override mode being

taken by user in which case what do I do and this is and what sort of it day it is morning

day evening night or is it a week day weekend maybe weekdays where all the people in

the house occupants in the house are away. So, you do not have to turn the heater on

maybe in weekends you have to keep it on for longer all these things matter then it uses

one Boolean method called turn heater on which basically decides whether to turn the

heater on or not. So, that Boolean method has an internal variable dTemp and then it has

if temperature decides how long to turn on the heater on and does this a setting and turns

sets the heater on variable to be true otherwise it keeps the heater off and returns false.

So, now our goal is to be able to do this program test this program by applying the logic

coverage criteria that we have learnt. So, the first thing to look for when we apply logic

coverage criteria is; what are the predicates in the statement the program and where are

they. So, you go back and look at the code in this program the first part of the program is

just declarations no predicates here obvious second part of the program has this long

statement here this one if statement which is this between lines 28 twenty nine 30 and

then there is one more if statement here at line 34 if override.

(Refer Slide Time: 14:12)

So, what I have done in the next slide is that I tell told you what the 2 thermostat

predicates are. So, there is a predicates in line 28 to 30 I have just copied the predicate

that occurs as label of the if statement here and there is one more predicate called

override at line 34. So, this is a pretty long thing right and may be difficult to read. So,

let us simplify it we call a as this current temperatures less than d temperature minus

threshold difference we call b as override we call c as this clause current temperature is

less than override temperature minus threshold difference and we called d as time since

last run greater than minLag. So, there are 4 clauses a which is the first one b overrides c

which is the third one and d which is the fourth one now the predicates looks readable in

the notation that we have used to understanding it.

What is a predicate basically it is a or b and c and d right where a is this first part b is this

override c is this third part and d is the fourth part and then next predicate override is just

one clause predicate b. So, this predicate first predicate p which occurs at lines 28 to 30

is interesting for us to test because it has got 4 classes a b c and d and it is called

combination of ors and ands.

(Refer Slide Time: 15:25)

So, let us go ahead and test it for that predicate right. So, now, if you look at this

predicate this predicate has one internal variable called dTemp we will go back to the

code for a minute remember here dTemp is a internal variable that was local to the

method turn heater on the rest of the variables in these predicates are all inputs and

outputs. So, as I told you we have to be able to do reachability first which means we

have to be able to solve and make sure that a predicate occurring in these lines is actually

reached which means what in this case because it is a smaller program, it is easy to do

solving here means just getting appropriate values for dTemp give a value for period and

day for dTemp and let it assign let it get assign to that value and then you will be able to

reach this predicate there are no other conditions clause a as I told you has an internal

variable dTemp.

So, I have to be able to solve for dTemp. So, I just give some values. So, this is the line

that it has given in the program and look at it. So, it says this pSet is get setting period.

So, I give it some value as a period is morning day as a weekday and. So, that is it I have

assigned value to dTemp.

(Refer Slide Time: 16:39)

Now, what I do I take back and these are the 4 clauses a b c and d and please look at the

title of the slide it says I am testing for predicate coverage of this clause for the value of

the predicate p being true. So, what sort of a predicate is that that is a predicate that looks

like this; it has got 2 ands and an or so, one simple way of making the whole predicate

true is to make all the 4 clauses true which means I make a b c and d all of them true that

is what I have written here I say a which is current temperature less than desired

temperature minus threshold difference is true b is true c is true and d is true. So, to make

all these things true what should I give I should give values for current temperature such

that current temperature values indeed less than desired temperature minus threshold

difference.

Override is a Boolean variable I make it true directly similarly to make c true I should be

able to make current temperature true and make the overridden temperature minus

threshold difference to be a value greater than the current temperature and so on.

(Refer Slide Time: 17:42)

So, here are a set of values that I gave for the predicate being true right. So, I need this

object thermostat I need the object program settings and then I pass values to dTemp by

saying period is morning dayType is weekday and then I set let say current temperature

to be 63 threshold difference to be 5 set some value is it clear that current temperature

my this a will become true right. Because current temperature will be less than d

temperature minus threshold difference why because this is 69 no and then override has

to be true now I am working on clause c I have set overridden temperature to be 70. So,

that lag n makes c to be true because current temperature will be less than overridden

temperature minus threshold difference 65 is less than 63 is less than 65 and then to

make clause d to I set minLag and time since last run such that the difference is time

since last run is greater than minLag.

So, time since last run is twelve minLag is 10. So, it is greater than 10. So, fine, right, so,

if I; this slide what is it contain it contains the final set of test cases that will test which

predicate this predicate p occurring at lines 28 to 33 for predicate coverage being true.

So, similarly for predicate coverage being false I have to be able to give test cases that

will make a b c and d true or false appropriately. So, for the true for this predicate to be

false what could I do I should make d false because it is an once I make d false a b and

could e anything because anything anded with false becomes false or I could make this

whole thing false along the d being true or false. So, like added here I decide what I want

to do in terms of making each of the clauses true or false to make the predicate b false

and then I give values - such that they met I have not given them to you in my slides, but

I hope it is clear how to do it.

(Refer Slide Time: 19:47)

Now, for the same predicate in lines 28 to 33 I want to be able to let say I tempt co

related active clause coverage which was another coverage criteria that we saw you

could attempt any other coverage criteria you could do clause coverage you could do

generalized active clause coverage you could do inactive clause coverage, but I have put

the CACC is an example to tell you how correlated active clause coverage is done for p.

So, if you remember the lecture from last week the to be able to do correlated active

clause coverage we have to take each clause to be a major clause and first make the

major clause determine the predicate once the major clause determines the predicate. I

write one set of test cases that make the predicate true when the major clause is true and

one set of test cases that make the predicate false when the major clause is false or true,

right.

So, this predicate has 4 clauses a b c and d and each of these 4 clauses can take turns to

be the major clause and each of them can determine p. So, I will worked out for when a

will determine p if you remember from the last weeks lecture when a determines p will

be called p a. So, p a was obtainable by using this formula right. So, you make a true and

xor it with making a false in the same predicate. So, I have reworked this solution for pa.

So, pa true is what substitute a to be true in this predicate. So, you will get 2 or with b

and c and d xor with false or the b and c and d now you simplify this true or with b and c

is nothing, but true. So, that be true and d false or with b and c is nothing, but b and c.

So, that be b and c and d I go on simplifying it further then I get this final value.

As I told you in case you are not clear about how to go from these fourth line to fifth line

and fifth line to sixth line why are they equivalent you could stop at fourth line or fifth

line they are equivalent. So, in terms of obtaining pa assuming that you would stopped at

fourth line or fifth line that is also good enough you need not know how to simplify this

to be able to get the last line even if it is stopped here it is good enough. So, same way

we can determine p b p c and p d I have not worked that for you, but in the same way

you could do that. In fact, you must try and do it as a little exercise. So, now, what I have

done is here is how the test requirement for CACC will look like.

(Refer Slide Time: 22:04)

So, how do you read this there are 4 clauses a b c and d and this p a is when a it is the

major clause p b is when b is the major clause p c is when c is the major clause p d is

when d is the major clause when a is the major clause this capital T and capital f when

the column corresponding to a indicate that a is made true once a makes false once the

rest of the values for b c and d indicated by small t and small f for true and false tell you

the values that the clauses b c and d take for a to determine p. Similarly for p b when b

determined p b is made true once false once the other clauses a c and d which are minor

clauses when b is the major clause take values such that predicate becomes true once and

false once similarly for c when c is the major clause the true false values corresponding

to c are written in capital letters the rest of the clauses take values such that c determines

p and finally, for d, right.

So, now if this is how I write and fill up the test cases, now I examine the table once

again to see how many reputations are there in the table. So, if you see row number three

false true a is false b is true c is true d is true is the same as row number 5 a is false here

b is true c is true d is true please do not worry about capital T true being capital T here in

for b and for capital T here for c it just still means true. So, these are basically duplicates.

So, I do not have to repeat. So, if we ignore the duplicates I basically need 6 test cases to

be able to satisfy correlated active clause coverage criteria for p what are the 6 test cases

the rows that do not come as duplicates these all other rows. So, what I do I take one row

at a time and like a did for predicate coverage I give values to all the variables that

makes each clause true or false in turn right. So, for a to become true here is the set of

values.

(Refer Slide Time: 24:16)

So, a is this for a to become true current temperature could be 63 desired temperature

could be 69 threshold difference could be 5 for a to become false current temperature

could be 66 desired temperature could be 69 and threshold difference will be 5. In this

case current temperature will not be less than desired temperature minus threshold

difference and dTemp we saw you have to pass that value by setting values for morn for

a period and for dtype b is very simple because it is just is Boolean variable override.

(Refer Slide Time: 24:53)

Similarly, for c, c is this clause I give values for current temperature desired temperature

and threshold difference to make c true once false once similarly for d. So, once I have

this I go back to this table for every row in the table a true b true c false d true here is the

test case.

(Refer Slide Time: 25:12)

Read this as a true b true c false d true in order a b c d here is the test case this is the

complete test case for the first row in this test requirement for CACC.

(Refer Slide Time: 25:30)

Similarly, I give 6 set of test cases right this is a second one this is the third one, this is

the fourth one where a is false b is false c is true d is true.

(Refer Slide Time: 25:38)

Similarly, this is the fifth one all 4 are true this is the sixth one a b and c are true and d is

false. So, these are the final test case values that will help us to test correlated active

clause coverage criteria for the predicate p in lines 28 and 30. So, similarly you could do

clause coverage for that predicate generalized active coverage criteria for the predicate

RACC for the predicate all other conditions that you want.

(Refer Slide Time: 26:06)

Hopefully this exercise of this example would have helped you to understand how to

apply logic coverage criteria for source code and how to write test cases end to end.

What we will do in the next lecture is I will take you through another examples slightly

longer and more complicated than this.

(Refer Slide Time: 26:32)

So, that you understand reachability and controllability well and tell you how to apply

logical coverage criteria for that example.

Thank you.

