
Software Testing
Prof. Meenakshi D’Souza

Department of Computer Science and Engineering
International Institute of Information Technology, Bangalore

Lecture - 24
Logic Coverage Criteria: Making clauses determine predicate

Hello again. We are in the last lecture of week 5, we are in the middle of doing logic

coverage criteria based testing; I defined what the various logic coverage criteria are and

showed you the subsumption relations. Today is what we are going to see is suppose you

have to take a real program and you use this logic coverage criteria to actually correctly

write your test requirements and subsequently define test values; how would you go

about doing it.

(Refer Slide Time: 00:41)

So, just to recap, what we saw till now here is all the logic coverage criteria that we saw,

we began with predicate and clause coverage the most elementary form of logic coverage

predicate coverage says test for the predicate to be true once and false once, clause

coverage says test each clause to be true and false once, then we saw all combinations

coverage, right on top in terms of subsumption says test for the entire truth table of all

the clauses in the predicate, we say that is too expensive because it reads to an

exponential number of test cases. So, what can we do in between?

The in-between coverage criteria are broadly classified as active coverage criteria on the

left hand side; 3 kinds and inactive coverage criteria on the right hand side 2 kinds, both

the cases the premise first choose one clause at a time in the predicate, call it the major

clause and in active coverage criteria, major clause determines the predicate, the minor

clauses take values as the major clause determines the predicate. In inactive coverage

criteria the minor clauses take values such that the major clause does not determine the

predicate. So, this is a summary slide that contains all the logic coverage criteria that we

saw and how they are all related to each other; what subsumes what and what does not

subsume what?

(Refer Slide Time: 02:06)

The focus of today's lecture would be to design test cases. So, we take one at a time and

then see how to design test cases we saw during the logic coverage criteria lecture that

we did as a third lecture of week 5, these how to design test cases for clause and

predicate coverage and for all combinations coverage they are reasonably easy because

as long as a predicate is not always true which means a predicate is not valid or as long

as the predicate is not always false which means the predicate is never valid which

means it is a contradiction. So, always possible to get test cases that will do coverage

criteria for both predicate coverage and clause coverage you have to identify a set of

values that will make the predicate or the clause true once and another set of values that

will make the predicate or the clause false once.

For all combinations coverage it is again easy write out the entire truth table and then

write test cases for every row in the truth table that will make each of the clauses true

and false in turn right the only problem that we might have to solve is suppose there is a

predicate that comes deep down in a program as a part of an if statement which is way

down in a program in the sense that it comes. Let us say after a few hundred lines in the

program and it so happens that the variables that you encounter in the; if statement none

of those variables deal with input values directly. So, I should be able to give inputs to

the program first of all to reach that if statement and exercise my desired coverage

criteria for the predicate in that if statement.

So, you remember right in the first week we saw this thing of observability and

controllability and then I told you about RIPR criteria. So, we will have to do

reachability and then we will have to do infection to be able to achieve our coverage

requirement and in turn propagation. So, what we will do in the next week the first

module that we will see we look at logic coverage of source code take a piece of program

look at all the predicates in the program and see how to apply the coverage criteria that

we learnt at that point we will deal with this last item here of reachability or RIPR

criteria in detail which basically means that; if a predicate in a program deals with

internal variables that are not inputs how to give input values that will make program

reach and achieve the desired coverage criteria on that predicate.

So, now what about designing test cases for the rest of these coverage criteria for the 3

active clause coverage criteria and the 2 inactive clause coverage criteria the first thing to

do and remember is that for active clause coverage criteria.

(Refer Slide Time: 04:50)

We chose each clause will take turn as a major clause and the minor clauses take values

such as the major clause determines the predicate. Now, what we will do is how to make

a major clause that is chosen in any point in time determine the predicate now major

clause determining a predicate means the predicate should take true or false values as

and when the major clause takes true or false values right. So, we will see how to do that

by using examples and then based on that how to choose TRs and test cases that satisfy

the TRs.

(Refer Slide Time: 05:30)

So, what I will do is I will walk you through several examples that tell you how to make

a major clause determine a predicate in all these examples we do a generic definition

based approach of deciding when a major clause determines a predicate sorry. So, here is

what we do to make a major clause determine a predicate. So, you consider predicate p

and let us say there is a clause c in the predicate p, I want c to be the major clause which

means to be able to do active clause coverage criteria I want c to be able to determine p

and when I do inactive clause coverage criteria I want c to be able to not determine p for

the purposes of this lecture I will focus on active clause coverage criteria and tell you

how to make a particular chosen clause which is the major clause determine a predicate

p. So, I fix a predicate p and I pick up a clause c in that predicate call it the major clause

the idea is when will c determine p for small predicates it will be easy.

But for large predicates it may not be easy to know when exactly c will determine p. So,

we use a default definition based approach which is like a set of steps that you need to do

to make c determine p. So, here are the steps. So, what we will do first is we will take the

predicate p take every occurrence of c in p by the way without loss of generality I will

assume that in the all predicates that we see particular clause occurs exactly once if it

occurs more than once the second occurrence is usually redundant and we remove the

second occurrence. So, what I do is I take the predicate p consider the place where the

clause c occurs in the predicate p and replace c with true. So, call that resulting formula a

resulting predicate by this notation p subscript c is equal to true.

Now, I do the second thing that I do is I take the predicate p consider the clause c replace

c with value false wherever c occurs and simplify the logical formula corresponding to

the predicate call that Pc false. So, is it clear what Pc true and Pc false are Pc true means

take the predicate p consider an occurrence of c in p replace that occurrence with true

and simplify the formula Pc false says take the predicate p consider the occurrence of c

in the predicate p replace c with false.

So, once I replace c with true or false to get these 2 predicates Pc true and Pc false please

remember that p has no more occurrences of c c is completely eliminated from the

predicate p now I define the following formula Pc I take this for atomic this formula Pc

true and XOR it with the formula Pc false -read this notation that looks like a lens of a

this thing as XOR. You remember what XOR is a logical operator is XOR says a XOR b

says that it will be true exactly when one of a or b in is true right. So, or says it will be

true when one of is true it could be the case that both of them will also be true to make

an; or true XOR is exclusively or exclusive or means a particular a XOR with b is true if

and only if one of a or b is true.

So, I take p fix a clause c my major clause take copy of p replace c with true simplify the

predicate keep it on one side that is Pc true then I take the same predicate p replace the

clause c with false simplify it keep it on one side that is Pc false now I XOR these 2

formulas call it P c.

(Refer Slide Time: 09:37)

What do we do with Pc, it turns out that Pc describes the exact conditions under which

the value of c determines p why is that. So, that is. So, because if you see the clauses that

occur in Pc first of all c is not there they take values such that when p is Pc is true c will

determine p in terms of its truth values and the clauses in Pc take values such that when

Pc is false p.

So, the truth or the falsity is independent of truth or falsity of c why does this happen

instead of doing a proof I will show you several examples of how to take a predicate and

a clause how to determine Pc and understand why Pc will represent the conditions under

which the clause c determines P.

(Refer Slide Time: 10:26)

So, here is the first formula. So, the predicate that I want to illustrate by using an

example is this predicate I have taken the predicate p which is a or b how many clauses

are there in the p in the predicate p there are 2 clauses one clause is a one clause is b now

I want to be able to compute Pa which means I fix a to be my major clause and I want a

to determine p. So, as per my formula what should I do I take this p and first replace

every occurrence of a in the predicate p by true and then I replace every occurrence of a

in the predicate p by false and XOR them that is what I have written in the first line here

this is as per our definition Pa is the same as p with a replaced with true XORed with p

with a replaced with false right what is p with a replaced with true p in this example is a

or b. So, you take this predicate a or b instead of a write true that is what I have written

in the second line here.

So, this is a or b which is the predicate p with a replaced with true and p with a replaced

false is false or b with a replaced with false and then my goal is to XOR them now what

is the semantics of true or b true or b should basically be the same as true right because

true is always true. So, b does not really influence. So, true or b simplifies to be true

logically and false or b simplifies to be b logically.

So, you can look up the basic rules of inference of proposition and logic and these would

be some elementary rules. So, this is what is called the generalization this is what is

called absorption. So, true or b simplifies to true false or b simplifies to b and now again

one more rule I have to XOR true with b which is the same as not b right because it says

what either exclusively true will be true or b will be true right. So, it should be the case

that not b is true or in other words b should be false.

So, what I have done here I have taken the predicate p, I want a to be the major clause in

p and I want to compute Pa p a says Pa is true whenever a determines p. So, I did use the

formula that we had and simply substituted simplified and got Pa to be not b right now if

we see how do I read this as I read this as follows for the major clause a to determine the

predicate p the only minor clause b; b is the only other clause here must be false why is

that.

So, even without working this out if you independently see this formula here I want a to

determine p which means what I want p to be true or false exactly when a is true or false

right suppose b was true then the whole predicate will become true independent of the

value of a. So, b has to be false for a to influence when p becomes true and when p

becomes false that is exactly the conclusion that we have derived by using this formula

and substituting we have derived that Pa is the same as not b or in other words for major

clause a to determine the predicate p not b should be true or b should be false

symmetrically suppose b was a major clause for b to determine p if I replace the same

derivation in the same derivation a with b I will get not a which means what for b to

determine Pa should be false.

(Refer Slide Time: 14:15)

So, we look at a couple of more examples the second example that we consider will be

the predicate p which is now a and b instead of a or b which we saw in the last slide I

repeat the exercise now I want a as my major clause and I want to know when a will

determine p. So, I use the formula that we learnt I say Pa is the same as p with a

substituted with true XORed with p with a substituted with false. So, I take p which is a

and b here I substitute a to be true. So, I get true and b XOR it with a substituted with

false which gives me false and b true and b if I use the rules of logic maps to b and false

and b if I again use the rules of logic maps to false why is this. So, because true and b

true is more general and is a restrictive operator.

So, it will be true exactly when b is true and false and b will be false all the time because

it is ended with false right. So, b XORed with false as per rules of propositional logic is

equivalent to b. So, what have we concluded if a is a major clause for a to determine b

sorry a to determine the predicate p Pa is the same as b which means for major clause a

to determine p the minor clause b must be true. So, if you put it back and intuitively look

at it suppose b was true right suppose b was true then a will completely determine p no

because if a is true p will be true and a is false p will be false that is exactly what we

have concluded here and symmetrically if I consider b to be the major clause and repeat

this exercise for b I will get Pb which is the conditions under which b determines p to be

equivalent to a.

(Refer Slide Time: 16:06)

So, one more example before we move on here I am considering the predicate p to be a is

equivalent to b which means if and only if b I again want a to be the major clause and

compute Pa which says when a determines p. So, I use the same formula take the

predicate p replace the occurrence of a with true XOR it with replace the occurrence of a

with false true equivalent to b turns out to be b false equivalent to b turns out to be not b

b XOR with not b means what always b or not b is true which is like a valid formula or a

tautology. So, this simplifies to be true.

So, here what has happened when we try to make a the major clause and make a

determine the predicate p the answer that we get is true how do you read an answer like

true you read it as no matter what happens for any value of b if I choose a to be the major

clause a can never determine p right. So, you can come to several conclusions as we saw

in these examples for a predicate like this I want a to determine p then b must be false for

a predicate which looks like p is equal to a and b if I want a to determine p then b must

be true for a predicate which looks like a is equivalent to b I try to make a determine p,

but I end up concluding that a can never determine p.

(Refer Slide Time: 17:37)

So, what how do I understand this thing of never being able to determine the predicate in

terms of testing in terms of testing for a predicate p where the value of Pc for a clause

turns out to be true that is what happened here right in this example for the predicate p is

equal to a equivalent to b the value of Pa turns out to be true right in that case it means

that a clause cannot determine a predicate right cannot determine a predicate because the

minor clauses cannot take any other values.

So, which means what inactive clause coverage criteria is typically infeasible right

because inactive clause coverage criteria if you remember from the previous lecture what

does it say it says that minor clauses take values such that major clause does not

determine p, but in this case when I end up computing Pa for a to be a major clause and I

get the answer true I conclude that no matter what happens the clause that I have chosen

as the major clause cannot determine.

So, I cannot basically do inactive clause coverage criteria typically it is known that when

I have predicates with XOR or equivalence ICC criteria turn out to be infeasible because

I will end up with these funny results like true and all that symmetrically if you think of

it a little bit if I try to compute similar thing Pa and then suppose I end up with false then

I can conclude that active clause coverage criteria will not be feasible that is what I have

written here in the third point I say if a predicate p has a clause c such that Pc evaluates

to false then active coverage criteria will be infeasible for p with respect to c right it

basically means the clause is redundant you might as well remove it from the predicate p.

(Refer Slide Time: 19:32)

So, I will show an example here when do I say the clause is redundant purposefully in

this example I have considered a predicate that looks like this. So, what is the predicate

read as it reads as a and b or with a and not b right. So, now, what is this basically if you

use the rules of logic propositional logic a little bit and try to simplify it b or not b are

neutral they neutralize each other they will result to be true and a you just have 2 copies

of a which are redundant copies of a. So, p the predicate p is basically just a right, but for

some reason it occurs in complicated form like this. So, if the predicate p is just a, but b

is occurring is a sort of a useless form here I want to be able to conclude that b cannot

determine p.

So, how do I do that I compute Pb and I have to end up with false that is what this

derivation illustrates what does this derivation illustrate it says Pb is you do the same

formula replace b with true XOR it with b replaced with false. So, I take the predicate p

which is this I replace every occurrence of b with true which is what I have done here

and here I replace every occurrence of b with false which is what I have done here and

simplify this formula. So, if you simplify this formula a and true or a and not true you

will get a or false and here if you simplify this formula you will get false or a a or false is

the same as a false or a is the same as a a XOR with a is basically false. So, it is

impossible for b to determine p. So, it is as good as saying this b here which occurs in the

predicate p is fairly useless is redundant you might as well remove it.

(Refer Slide Time: 21:26)

So, we will go back and do one more example to understand how a clause determines a

predicate because it will be useful for you I will also give you in the assignment for this

week I will give you a set of exercise where you should work out for at least one more

formula how a particular clause determines a predicate.

So, here is another example the predicate that I have taken this time is p which reads as a

and b or c now I want to determine Pa which is basically I have chosen a to be the major

clause and I want to determine conditions under which a determines p. So, I use the

formula Pa is Pa true XORed with Pa false. So, I replace a with true in this predicate p I

get this I replace a with false in the predicate p I get this part I now use the rules of logic

to simplify it is true ANDed with b or c is the same as b or c false ANDed with b or c is

the same as false b or c XORed with false is the same as b or c.

So, now what it says is that for a to determine Pb or c must be true that is not too

surprising right because if you see p is a ANDed with b or c right. So, unless this whole

thing is true a cannot influence p right. So, b or c must be true b or c must be true you

apply the condition for b or c as another formula and find out when it will be true you

use the semantics for or if you use the semantics for or b or c will be true in 3 possible

cases both b and c are true which is listed here b is true c is false or b is false c is true.

So, there are 3 choices to make b or c true. Now suppose I have to do correlated active

clause coverage for a then what can I do I will pick one pair when a is true and another

pair when a is false. So, I can pick a to be true and let us say I pick this b true c true in

which case the predicate p will evaluate to true and now a is false I pick some other pair

let us say I pick the pair b false c true,.

So, in which case what will happen this whole thing will be true and a is false. So, p will

turn out to be false. So, a will correctly determine p now for restricted active clause

coverage criteria what do I have to do I take value of a to be true and false again a is the

major clause and I choose the same pair because that is what RACC says right the minor

clauses all take the same value.

So, I could take for example, a to be true and b and c to be true in which case the whole

predicate if I substitute it back will evaluate it to true or I could take a to be false and b

and c to be true in which case the whole predicate when substituted back will evaluate to

false. So, is it clear? Please, how to do Pa, Pb and p c. So, to be able to be completely

satisfied GACC, RACC, CACC and other criteria for this predicate what I have worked

out on this slide is only for a. So, you have to repeat a similar exercise for b being the

major clause similar exercise for c being the major clause and then write all conditions

for GACC CACC and RACC, so here for the same predicate.

(Refer Slide Time: 25:00)

In this slide I have worked out what happens when b is the major clause when b is the

major clause I am interested in computing p b. So, I take Pb true XOR with Pb false take

this predicate p replace b with true I get this part take this same predicate replace b with

false I get the part here simplify these logical formulae you might have to remember few

rules of propositional logic to be able to do this simplification. So, a ANDed with true or

c true or c is same as true false or c is same as false.

So, a ANDed with true is a a ANDed with c I cannot simplify it further I keep it like this

formula a XOR with a and c simplified to a or not c the last 2 parts from this line 25

equation 25 to equation 26 may not be very obvious one simple way to convince yourself

that 25 and 26 are the same would be to write the truth table for 25 and write the truth

table for 26 and check that the truth tables are the same right that is the easy way to

understand why this simplifies to this even otherwise if you do not know this

simplification it is to leave it like this a XOR with a and c and say this is the condition

under which b determines p right because that also be equally handled in terms of writing

test cases.

So, similarly because b and c come with this disjunction inside the bracket I can do a

similar exercise for Pc and it will be symmetric and Pc will turn out to be a ored with not

b right.

(Refer Slide Time: 26:42)

Now, how to write test requirements for active clause coverage criteria? So, sometimes

active clause coverage criteria can get little complicated for certain predicates in terms of

finding TRs and subsequently finding satisfying test cases. So, I will walk you through

one final example and see how to actually do the end to end t r generation and test case

writing for active clause coverage.

So, this time I have taken similar predicate, but slightly different if you go back the

predicate we had here was a and b or c.

(Refer Slide Time: 27:20)

Now, what I have taken is a or b and c you could do a similar exercise for that predicate

also it does not matter, but just to illustrate I have taken another predicate what was my

goal now my goal is to be able to for each of these clauses 3 clauses taking turns to be

the major clause to be able to find test requirements for GACC, CACC and RACC. So, a

there are 3 clauses in this predicate a, b and c. So, what I do I first write out the truth

table of the predicate it helps to write out the truth table because you can understand it

little easily.

So, I have written out the truth table here truth table has eight rows you can work it out

for yourself as a small exercise and I have done using this kind of working out that we

did for this formula I have calculated Pa, Pb and Pc, I have not shown you the working

please try out as a small exercise, but if you use the formula Pa is Pa replaced with true

XORed with a replaced with false and then use the rules of logic to simplify it you

should get something like this.

(Refer Slide Time: 28:33)

Similarly, for Pb, similarly for Pc; now what I am going to do I want to be able to do first

do test requirements let us say for generalized active clause coverage criteria. So, let us

recollect the definition of GACC; GACC definition says each major clause will be true

and false and minor clauses will be such that the major clause determines the predicate.

So, now, what will be the TR for GACC I am writing what I wrote in English here in

terms of true false values. So, the first pair here is when a is the major clause a is true

once ANDed with a determining p which is p a; a is false ANDed with a determining p

which is again Pa now the second pair here is b’s turn to be the major clause b is the

major clause.

So, b is made true once ANDed with Pb which says when b determines Pb is made false

once again ANDed with Pb the third pair here is c's turn to be the major clause c is true

once false once for c to determine p I specify it using p c. So, here is a table that gives

you the true false values for the test requirements for GACC. So, a is the major clause

first 2 rows I am sorry there is a typo here it should be b is the major clause for the third

and fourth row c is the major clause for the fifth and sixth row right. So, a is true once if

you see concentrate on the ones in bold in the table a is true once false once b is true

once false once c is true once false once the rest of the values take val rest of the clauses

b and c in this case and a and c in this case and a and b in this case take values such that

the predicate becomes true once false once true once false true once false once. So, this

is how I do GACC for the predicate p.

Now, if you look at this table you will see that there are repetitions like for example, the

first row is the same as the fifth row a is true b is false c is true a is true b is false c is true

because the assignments are the same the predicate evaluates to be true similarly in the

table the second and the fourth rows are the same. So, I do not have to repeat them. So, I

keep only one copy for each of these. So, how many tests totally are needed four test

cases are needed one for row one; one for row 2 one for row 3 and one for row 6 which

is not a repeat of any of the earlier rows. So, totally my test requirement for GACC for

this example predicate p for each clause a, b and c taking turns to be the major clause can

be achieved by the set of four TRs which are basically these rows in the table.

(Refer Slide Time: 31:32)

Similarly, you can work out TRs for CACC and for RACC just as a small exercise

because it may not be very obvious to do I urge you all to please work out the test

requirements for CACC and for RACC and feel free to get back in touch with me in the

forum if you have any doubts about working out and you will realize after working out

this particular example correlated active clause coverage criteria is the same as general

active clause coverage criteria and typically for several predicates CACC is considered

to be very good to use it is practically useful and quite useful thing when compared to

other predicates.

(Refer Slide Time: 32:15)

So, this will be the last lecture of week 5, what I will do next week the first 2 modules

we will continue with logic coverage criteria, but we will see how it is practically useful

the next lecture we will take a piece of program and see how to apply logical coverage

criteria that we learnt to test that program and lecture. After that we will take a

specification as a finite state machine and see how to apply logical coverage criteria that

we learnt to be able to test that specification write test cases for that specification.

Thank you.

