
Software Testing
Prof. Meenakshi D’Souza

Department of Computer Science and Engineering
International Institute of Information Technology, Bangalore

Lecture - 23
Logics: Coverage Criteria, contd

Hello everyone. We are in the middle of week 5, what I will be doing today is the 4th

lecture of week 5, we did assignments solving for the last week then we began with logic

coverage criteria, I introduced to you the basics of logic in the second lecture of this

week. Then last lecture we started seeing coverage criteria. Today we will continue to see

coverage criteria.

(Refer Slide Time: 00:42)

We will finish doing logic coverage criteria in the next class, I will tell you about

algorithms for logic coverage criteria. So, what were the coverage criteria that we have

seen till now we saw what were predicates and clauses predicate is like any expression

that evaluates to true or false that labels decision statements that you find in programs

and guards that you could find in design or requirements.

So, the predicate has one or more clauses which are atomic entities in predicates clauses

do not have logical connectors. So, we saw predicate coverage which tested the predicate

to be true or false clause coverage which tested each clause in the predicate to be true or

false in turn then we saw what was called all combinations coverage sometimes it is also

called complete clause coverage where they test the entire predicate for every possible

combination of true false values in clauses this will result in exponential number of test

cases usually not desirable.

So, what we try to want to test is how each clause affects a predicate in turn and, which

are the important clauses, which will affect the predicate in the sense that the truth or

falsity of the clause clearly determines the truth or falsity of the predicate so that gives

rise to what we call as active clause coverage and we realize that active clause coverage

did not really tell you what the other clauses would do we fix the clause called the major

clause see how the major clause determines the predicate, but we did not really specify

how the other clauses put together called as minor clauses affect the truth or falsity of the

predicate what we did was we went ahead and refined active clause coverage into 3

specific coverage criteria called generalized active class coverage correlated active

clause coverage and restricted active clause coverage.

So, in generalized we do not have any conditions that tell you what are the values that

the minor clauses take in correlated we say that the minor clauses take values such that

they aid the major clause to completely determine the predicate and in restricted we say

the minor clauses all have to take the same value as the predicate is true and as and when

the predicate is false.

(Refer Slide Time: 02:52)

Now, moving on we will today look at what is called inactive clause coverage criteria.

So, here again we want to know we want to know per clause in a predicate how that

clause influences the predicate in active clause coverage criteria in inactive clause

coverage criteria we fix a clause again call it the major clause, but our interest is

knowing how the major clause does not affect the predicate this might be a little counter

intuitive very soon I will tell you an example that motivates for the need for a clause

criteria like inactive clause criteria. So, what is the basis with which we start inactive

clause coverage criteria? So, there is a predicate there are several clauses in the predicate

each clause in the predicate takes turn to become what is called the major clause.

So, let us fix one clause in the predicate call it a major clause I want the other clauses

minor clauses to take values in such a way that the major clause does not affect the

predicate. So, that is what is called inactive clause coverage criteria. So, what is inactive

clause coverage abbreviated as ICC it says for every predicate p in the set of predicates

capital p each clause takes turns to be a major clause let us say c p is a major clause we

chose minor clause as c j such that c i does not determine p the test requirement has 4

requirements for c i the predicate p can evaluate to be true in the first 2 cases in which

case the c i major clause evaluates to true once and to false once.

In the second case the predicate p evaluates to false and the major clause evaluates to

true and evaluates to false. So, put together if you read all these 4 TRs, it says the

predicate p can evaluate to true once and predicate p evaluates to false once and for each

of these combinations of the predicate p evaluating to true and false the major clause c i

evaluates to true once and false once each time. So, the major clause has no influence on

p in other words the major clause does not determine p. So, we say the major clause is

inactive as far as the truth or falsity of p is concerned and this is what is called inactive

clause coverage another thing that I would like you all to observe before we move on is

look at these 4 test requirements it says p evaluates to true in the first 2 p evaluates to

false in the first 2.

So, in both the cases between both the cases predicate coverage is true. So, inactive

clause coverage criteria subsume predicate coverage. So, towards the end of this module

we will see logic coverage criteria subsumption there we will tell you what happens

right. So, just to repeat and make sure you understand what inactive clause coverage is.

So, I fix one clause call it the major clause and my goal is to make sure that the major

clause has no influence on the truth or falsity of p. In other words the major clause does

not determine the predicate p. So, my TR under inactive clause coverage has 4

requirements p can become true in the first 2 p can become false in the last 2 whenever p

becomes true the major clause becomes true once and false once for p becoming false the

major clause becomes true once and false once.

(Refer Slide Time: 06:30)

So, the major clause that I fix has no influence on the value of p. So, as I told you might

wonder why I want to have inactive clause coverage criteria why do I want a major

clause such that it does not determine p it. So, happens that it is very useful when I

consider practical applications of logic coverage criteria. So, here is a simple example

that motivates and justifies the need for inactive coverage clause criteria. So, let us take

an example system the example system that we consider is a shut down system of a

reactor. So, there is a particular reactor it could be any kind of reactor let us say nuclear

reactor or any other reactor and sometimes I may want to shut down the working of the

reactor how is the shutdown done shutdown is done with the help of a software that

controls the working and shutting down of a reactor.

So, that software we call it control software right the control software typically operates

in 2 modes or in 2 states. So, it operates in normal mode or it operates in what is called in

override mode you can interpret normal mode to be normal operations of the control

software as it is working with control reactions on the reactor override mode is control

software is trying to take over may be there is an emergency or something like that it is

trying to take over and do certain actions on the reactor system now what are

specifications of such a control software they could be several specifications, but here is

a small example that will motivate why we need inactive clause coverage criteria. So,

specification says.

Now, remember we are going to shut down we are looking at control software that shuts

down the nuclear reactor let us say shutdown happens through a particular valve the

valve could be open when you want to you want the nuclear reactor to work normally

and the valve needs to be closed when you want to shut down the nuclear reactor.

So, the control software actually sends activates the command to open or close this

valve. So, specification could be the following it says that a particular valve which could

be open or closed is relevant the status of a particular valve is relevant to the reset

operation in normal mode, but not in override mode. So, what it says is that this reactor

could be in normal mode or override mode. So, the shutdown operation which means

opening or closing the valve the status of the valve whether it was already open or

already closed what do I want to do with it that is relevant to the reset operation in

normal mode, but when the control software is working with the reactor in override

mode irrespective of what the status of the valve is it will go ahead and shut down the

reactor right.

So, what it says is that the reset operation if I consider it as an action that should behave

identically in override mode when the valve is open and when the valve is closed in other

words stating it in terms of logical coverage criteria if you think of this as a predicate it

says the clause which says reset is true or false should not influence the predicate the

mode of the predicate. So, it should be the same as an override mode when the valve is

open and when the valve is closed right. So, it says the particular operation should not

influence the state of a valve when the nuclear reactor is in override mode.

So, the particular operation should be inactive if it is modeled as a clause when the

reactor is in override mode inactive to the status of the valve. So, this is a natural case

where you say that if this is modeled as a clause if it is a major clause it should never

influence what happens to the status of the valve.

(Refer Slide Time: 10:16)

So, here is the good reason to consider things like inactive clause coverage criteria like

we did for active clause coverage if you go back to the first slide where we recapped

what we did in the last class we looked at active clause coverage we looked at 3 specific

ways of working with active clause coverage one was general active clause coverage

correlated active clause coverage and restricted active clause coverage today we went

ahead and defined inactive clause coverage. So, like we did for general active clause

coverage you could define extends inactive clause coverage into various specific things.

So, what are the 3 extensions possible like we did for active clause coverage you could

have generalized correlated and inactive, but if you pause and think for a minute

correlated inactive clause coverage criteria does not make sense why does it not make

sense, because in inactive coverage clause criteria we say that the major clause does not

determine the truth or falsity of the predicate. So, when it does not determine the truth or

the falsity of the predicate the minor clauses cannot correlate with each other and assume

values that aid in the major clause determining the predicate. So, we do not define

correlated inactive clause coverage criteria it does not make sense we define only

restricted ICC and generalized ICC.

(Refer Slide Time: 11:34)

So, here is how generalized ICC is defined like we did for active clause coverage criteria

you retain the main part of the definition you retain the main part of the definition of

inactive clause coverage criteria then you add a few extra condition which define what

the specific extension is. So, in the first part in the generalized inactive clause coverage

criteria we repeat the definition of ICC that we gave in this slide right. So, I pick up a

clause call that the major clause and choose minor clauses such that major clause

evaluating to true and false in each of the cases.

So, that part is fully repeated there are no changes now what are the extra conditions that

we add we say that the values chosen for the minor clause is c j can vary in the 4 cases.

So, it is as general as possible exactly like we defined for active clause coverage. So, the

minor clauses values have no conditions no restrictions associated with it they can vary

amongst the 4 cases.

(Refer Slide Time: 12:48)

Now what is restricted inactive clause coverage criteria again you repeat the entire

definition of inactive clause coverage first.

So, this part is the same. So, you choose a major clause choose minor clauses such that

the major clause does not determine p the 4 requirements in TR therefore, p evaluating to

true the major clause evaluates to true once false once for p evaluating to false the major

clause evaluates to true once and false once now come the extra conditions here below

what are the extra conditions what do they say it says the following it says that the value

chosen for the minor clauses c j must be the same for cases one and 2 what are cases one

and 2 they correspond to if you go up and look they correspond to predicate being true.

So, the minor clauses should take the same values when the predicate is true and when

the predicate is false which corresponds to cases 3 and 4 the minor clauses should again

take the same value.

So, it is a that; is why it is a restricted it says there is 1 2 TR s for the predicate becoming

true major clause does not determine the predicate the minor clauses all assume the same

value. Now, there are 2 more TRs for the predicate becoming false major clause again

does not determine the predicate minor clauses again take the same set of values. So, this

is restricted inactive clause coverage as I told you we do not define correlated inactive

clause coverage because it does not make sense as the major clause does not determine

the predicate.

(Refer Slide Time: 14:18)

So, we move on like we did for graph coverage criteria it is the case that logic coverage

criteria also suffer from several of these t rs corresponding to the various coverage

criteria being infeasible right infeasible means there is practically impossible to write a

set of test cases that will actually satisfy the test requirement. So, what do we do if that is

the case then what we do is we simply ignore the coverage criteria or we look at other

coverage criteria I will tell you through an example how infeasibility comes when it

comes to logical coverage criteria and how to deal with infeasibility it.

So, happens that in many cases restricted active clause coverage criteria or restricted

inactive clause coverage criteria turn out to be infeasible in which case we resort to

correlated or general active or inactive clause coverage criteria.

(Refer Slide Time: 15:14)

So, here is another example very similar to the nuclear example that we saw nuclear

reactor example that we saw few slides ago. So, here again there is a system some

system may be a reactor we do not know what it is it is not needed for us it is controlled

by software and then there is a particular valve that this software tries to control through

an actuator that valve as always can be open or can be closed and the system can be in 2

modes the system can be operational or working and the system can be in standby mode

there are 2 constraints on the requirements of the system 2 design constraints on the

requirements of the system that are listed here it says that the valve must be open when

the system is in operational mode.

And the valve must be closed in all other modes in particular the valve must be closed

when system is in standby mode the second constraint says that system cannot be both

operational and standby mode that makes sense right you might wonder it makes obvious

sense why would I want to write it I would want to write it because I have to be able to

be complete while writing my constraints.

So, just to repeat what is the system it is some system being controlled by software the

software controls the system by opening and closing a valve there are 2 modes or states

in which the system can be in normal mode operational mode also called as operational

mode and standby mode the valve can be open or closed there are 2 constraints on the

requirements and design of the system the first constraint says that the valve must be

open when the system is operational and closed when the system is in standby and it says

the system can never be both in the operational state and in the standby state at the same

time.

Now, what we want to do is let us say this is our requirement that is given somebody

comes and tells you test for a certain action being taken only if the valve is closed and

the system is either operational or standby there is some requirement which tells you test

this system for the following requirement the valve is closed and the system status is

either operational or standby. So, I take. So, there are 3 constraints here the 2 constraints

come as these 2 that are listed here and this last part which gives me a test requirement

written in English becomes the main predicate that I have to specify in logic and may be

try to use logic coverage criteria to be able to test it.

So, let us read out the predicate once again it says test for what test for a certain action

being taken only if this condition is met what is the condition the valve is closed and the

system status is either operational or standby.

(Refer Slide Time: 18:05)

So, I write it again the valve is closed and the system status is operational or system

status is standby that is the predicate p that I want to focus that I want to be able to test

on. So, my p is valve is closed written as a system status is operational written as b

system status is standby written as c. So, what is the predicate if I translate; if I substitute

back for a b and c in the formula then what is the predicate that I get I will get the

following I will say a and b or c a means the valve was closed and the system is either

operational or the system is in standby mode.

If you remember this predicate a and b or c is precisely the predicate that we looked at in

the last lecture when we worked with examples of combinational coverage criteria

generalized active coverage criteria and restricted active coverage criteria I had given

you the truth table for this predicate and told you which rows to choose from and do

what in terms of meeting the TRs for the various RACC and CACC coverage criteria.

Now, this is the predicate go back to this example it also had 2 constraints what were the

constraints the first constraint said that the valve must be open in operational mode and

closed in all other modes. So, the valve is closed is modeled as for me the system status

is operational is modeled as b. So, how will I write the first constraint I will write the

first constraint using this formula it reads as not a if and only if b not a is equivalent to b

what does not a mean not a means the negation of a a says the valve is closed. So, the

valve is not closed which means the valve is open. So, it says the valve is open if and

only if the system is operational that is what is the first constraint right second constraint

says the mode cannot be operational and standby at the same time.

So, there is a clause that we have already designated calling b for the system status being

operational and there is another clause call it c for the system status being standby. So, I

write it like this I say it is not the case that b and c holds together it is not the case that

the system is operational and the system status is standby together not of b and c. So,

what have I done my goal is what my goal is to illustrate the difference between CACC

and RACC through an example.

So, what have I done I have taken this example written 2 constraints on this example and

the predicate. So, in this slide we have expressed the predicate as a logical formula and

we have expressed the constraints as these extra conditions that the predicate any test

requirement on the predicate needs to satisfy before achieving a coverage criteria on the

predicate.

(Refer Slide Time: 21:03)

So, let us go back and look at this predicate if you remember this is the truth table for the

predicate that we had written in the last lecture I have re-copied the entire truth table here

in the left hand side and I have added one more column here what does this extra column

say this extra column populates details about if this was the assignment of truth values of

the clauses a b and c and let us say I am considering this as a potential test case value

then can I consider it or can I not I can consider it provided it does not violate any of the

given constraints. So, for every combination of truth values for a b and c in the last

column I have taken the truth table and added the last column and I have documented

about whether the particular combination of a values for a b and c violates any of the

constraints. So, for the first row a comment is written here saying that the value of a b

and c being true violates both the constraints one and 2 why is that.

So, let us go back to the previous slide look at the constraints. So, first constraint says

not a if and only if b. So, not a if and only if b cannot be true if both a and b are true right

because not a may be false and b will be true. So, that is violated second constraint says

not of b and c. So, not of b and c will be not of true and true which is not of true which is

false right. So, this assignment of truth values for a b and c all of them being true violates

both the constraints the second assignment where a is true b is true and c is false violates

constraint one.

So, again it violates not a if and only if b because both a and b are true. So, negation of a

cannot be equivalent to b. So, I have does not violate constraint 2 that is fine, but it

violates constraint one third assignment of truth values for a b and c seems to be fine. So,

nothing is written about it violating any of the constraint 4th assignment is also fine fifth

violates constraint 2 because b and c are true together sixth is fine no violation seventh

and eighth both violate constraint one. So, if I consider a test requirement for this entire

predicate p the test requirement basically should not violate the additional constraints

imposed on the system. So, totally eight possible test requirements are there because that

is the exhaustive combinations of true false values of a and b.

Now, it, so, happens that 5 of them violate some condition or the other one of them

violates both the constraints. So, out of the various test requirements test values I have

for TRs only 3 combinations of true false values for a and b can be used as test cases

because only those 3 of them do not violate any of the constraints. So, those 3 are given

by rows 3, 4 and 6.

(Refer Slide Time: 24:07)

Now let us go back and recap from the previous lecture what was CACC on this

predicate CACC TR and test cases the predicate is the same this is what we saw in the

last lecture, we had taken the entire truth table and worked out what this restricted table

represents as test cases for CACC if you remember we said any of these combination of

test cases one for the predicate evaluating to true and one for the predicate evaluating to

false will be to satisfy CACC requirements. So, you could pick up either one anyone

from rows one 2 and 3 or any one from rows 5 6 and 6 5 6 and 7 sorry and that will be a

test case combination that will satisfy CACC.

So, now I take this predicate my goal is to be able to do CACC for this predicate in the

presence of these 2 additional constraints. So, these 2 additional constraints mean the

only feasible test cases are those from rows 3 4 and 6 and here I can pick row 3 and row

6 both of them do not violate the constraint and they end up satisfying the predicate.

(Refer Slide Time: 25:26)

So, CACC is a feasible TR for the predicate p in the presence of those 2 additional

constraints, similarly now let us go back and look at RACC restricted active clause

coverage criteria here is what we did in the last lecture to be able to derive at test cases at

RACC. So, after working out we realize that one of these combinations row 1 plus row 5

row 2 plus row 6 row 3 plus row 7 would suffice as a good set of test cases for restricted

active clause coverage criteria.

But now if you add these 2 extra constraints that were given here which resulted in only

rows 3 4 and 6 being possible candidates for test cases you see RACC can never be met

because it says one should be paired with 5 both are ruled out because one violates both

the constraints 5 violates constraint 2 and it says the next possible combination you can

consider is pairing 2 with 6 6 is fine because it does not violate any constraint, but 2

violates constraint one.

So, that is also ruled out the next possible combination of test cases for RACC could be

pairing of rows 3 and 7 again if you go back 3 is fine, it does not violate any constraint,

but 7 violates constraint one. So, none of the 3 combinations that we had listed as

possible test cases to achieve RACC criteria now for this example in the presence of

constraint are and all 3 of them become unusable. So, we say RACC is infeasible for the

predicate a when a for the predicate p when a is the major clause because there are 2

additional constraints in the system. So, like this when you take logic coverage criteria

and try to apply it for practical examples because of the presence of the additional

constraints in the system some of the coverage criteria requirements could become

infeasible.

(Refer Slide Time: 27:20)

So, hopefully this example would have helped you to understand how infeasibility of

these test requirements come into picture. So, how what can we do with infeasible

requirements the simplest recommendation that people give as far as testing is concerned

is that ignore them and move on ignore the infeasible requirements or we can consider

other counterparts of the requirements like for example, if we in this case we realize that

RACC is infeasible, but CACC was feasible.

So, you ignore RACC, but consider CACC right if you remember this is somewhat

similar to doing best effort touring graphs. So, whenever we say prime path coverage is

infeasible you consider achieving the same thing using side trips and detours right. So,

you ignore and you try to replace it with other coverage criteria that would be feasible

that is how you deal with infeasibility in logic coverage.

(Refer Slide Time: 28:16)

So, this is the final slide what I have done here is I have given you the subsumption

relation for coverage criteria if you remember the definition of what is subsumption we

say one coverage criteria subsumes another coverage criteria if the set of all test cases

that satisfy criteria one also satisfy criteria 2. So, we realized through an example in the

last class that clause coverage and predicate coverage do not subsume each other there

are predicates for which you can achieve predicate coverage, but you may not exercise

each clause there are formulas for which you can achieve clause coverage, but the

predicate will be true in both the cases.

So, there is no containment here they are separate we know that generalized active clause

coverage subsumes clause coverage because it exercises each clause to be true or false

and we saw through an example that generalized active clause coverage does not

subsume predicate coverage. So, I have not put any arrow here and we also saw that all

the ICC criteria just a little while ago in today's lecture I told you that all the ICC criteria

subsume predicate coverage because they test for the predicate to be true and they test

the for predicate to be false and we saw in the last class that CACC subsumes predicate

coverage I know that RACC subsumes CACC which in turn subsumes generalized a c c

this directly follows by definition and combinatorial coverage is the master of all

coverages because it says you test the predicate for every combination of true false value

exponential in number. So, it subsumes all other logical coverage criteria.

So, this is how the various coverage criteria are related amongst each other. So, what we

will do in the next module is I will tell you suppose given a predicate given a set of

clauses how to make a clause determine a predicate are there; there algorithms

methodologies to be able to do that. So, that will be the end of week 5 lecture for us.

Thank you.

