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Hello again. We are in week 5: finally, done with graph coverage criteria. What we are

going  to  do  now  is  to  move  on  and  see  algorithms  for  test  case  design  based  on

predicates and logic. You might ask why logic? Why are we looking at logic? So the

reason is; if you see a typical program, every kind of decision statement in the program

if, while, for loops, do while loops and so on; they have a predicate in them and the

predicate is an expression that is meant to evaluate to true or false and based on whether

it evaluates to true or false; different execution paths are taken by the program.

So, logic is the very important part of the program and this week; what we are going to

see is how to design test cases based on the logical predicates that occur in programs and

later based on the logical predicates that occur as a part of specifications. So, like we did

for graph coverage criteria, we will not look at programs and predicates that occur in

them first; instead what we will spend time on, is directly looking at logic. 

In this module, I will give you a basic of logic, basic introduction to logic as we would

need it for design of test cases. Next module, we will introduce coverage criteria based

on logical predicates without really seeing where these logical predicates come from and

then after  seeing the  coverage  criteria,  the different  kinds,  their  subsumption from a

purely theoretical basis; we will go and look at how we can apply to do the coverage

criteria on source code and then on specification.
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So, in this module; I will introduce you to the basics of logic as we would need it for

software testing. Formal logic is a very old area, as old as mathematics is; philosophers,

mathematicians and astronomers several people have used logic. It approximately dates

back to 320 BC starting with the work of Aristotle; by no means I can do justification to

introducing you to any kind of decent fragment of logic in this course. The goal of this

lecture is to be able to look at logic, just about as it is enough for designing test cases as

we would need in this course in software testing.

So, the fragment of logic that we need to work with when we do software testing is what

is called predicate logic or first order logic. Here you assume that there are functions,

relations put together called as predicates and then they are meant to eventually assume

true or false values. But to be able to get to predicate logic, I need to introduce what is

called propositional logic which most of you; if you have done a course in discrete maths

or a course in logic, you would know about propositional logic. We need propositional

logic which is a basic building block of every other logic including predicate logic and

then we will do predicate logic.

Typically,  another  thing  to  note  is  that  predicate  logic  or  first  order  logic  also  has

quantifiers.  You  might  have  heard  two  quantifiers  for  all  and  there  exists,  so  very

important part of first order logic or predicate logic, but as far as its use in testing is

concerned we do not really need these quantifiers. So, I will introduce predicate logic



assuming that they are not going to use these quantifiers explicitly. Before we get on to

predicate logic, I would like to spend some time recapping propositional logic; as I am

not really sure if each of you have been through a course on discrete maths and really

know propositional logic. This assumes that you have not seen it and we will do it from

the basics, I will introduce you to the basics of propositional logic as we need it and then

move on to predicate logic.
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So, what is propositional logic? Propositional logic can be thought of as a absolute basic

logic  that  occurs  as  a  subset  of  several  different  kinds  of  logic  that  are  used  in

mathematics  and philosophy. The building blocks of propositional  logic  are what are

called atomic propositions. An atomic proposition can be thought of as a Boolean entity

or a Boolean variable. It is always meant to be either true or false and propositional logic

tells  you;  how to  take  an  entity  that  is  true  or  false,  that  is  how to  take  an atomic

proposition and how to combine it with the Boolean connectors. 

So, here are the various Boolean connectors that we would be using or written like this

written like a V and a conjunction written like this; read it as; and not or negation written

like  this  and implies  could  be represented  in  two different  ways,  this  is  right  arrow

symbol and this could be thought of as a superset symbol; the different books use these

symbols interchangeably. So, that is an implication operator and then finally, you have an



equivalence operator which is again written in two different ways, you have these three

lines or you have a double headed arrow.

So propositional logic, building blocks or propositions then uses these logical connectors

to combine and talk about combinations of propositions.
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So, what are propositions as I told you they are basic building blocks of propositional

logic, an atomic proposition or a proposition is just an entity that is either true or false

and there is clarity about when it is true and when it is false, but at no point in time; it

can both be true or false and at no point in time, it can neither be true nor. So, here are

some simple examples of atomic propositions, so the sentence which says; New Delhi is

the capital  of India, is an atomic proposition and we know that because Delhi is the

capital of India; this proposition is true. And similarly, this statement which says 2 plus 3

is equal to 5; that is if you add 2 and 3; you get 5; is an atomic proposition because it

always evaluates to be true or false; in this case it evaluates to be true.

The next statement 3 plus 3 is equal to 8; another statement about addition is another

atomic proposition, but in this case the atomic proposition is false because we know that

in the world of numbers that we deal with 3 plus 3 is not equal to 8 and the last one today

is Friday is another atomic proposition; it is true every Friday and on days that are not

Fridays, it is false.



(Refer Slide Time: 06:33)

So, in propositional logic; we begin with what is called as Syntax of propositional logic.

So, what is Syntax of proposition logic? It assumes that we have a set of propositions

written like this P as p naught, p 1, p 2 and so on. What sort of a set is this? We assume

that  the  number  of  propositions  that  are  available  to  this  set  for  us  is  infinite  and

countably infinite. Countably infinite means it can take the propositions and enumerate

them one after the other.

So, I have as many propositions as I need for use, so we begin with set of countably

infinite propositions; typically represented by p naught, p 1, p, q, r and so on and then I

define  the  set  of  formulas  of  propositional  logic.  What  are  the  set  of  formulas  for

propositional  logic?  It  is  a  smallest  set  that  contains  every  atomic  proposition  and

inductively, if it contains a formula alpha; then it also contains negative of alpha, read

this as not alpha. If it contains formulas alpha and beta, then it also contains alpha or

beta. So, this is how I define all the formulas of propositional logic, it so turns out that

these three entities; the atomic propositions, negation operation and disjunction operation

are all are enough to define all the formulas of propositional logic.

So, you might wonder that I gave all these as also connectors and implies if and only if,

but when I defined the Syntax here, we use only not and or; what happened to the rest?

The rest are what can be derived from using not and or operators.
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So, and can be written as alpha and beta is nothing but negation of not negation alpha or

negation beta. Alpha and beta is nothing but not of not alpha or not beta; alpha implies

beta can be defined as not alpha or beta; alpha, if and only if beta or alpha equivalent to

beta can be defined as alpha implies beta and beta implies alpha.

(Refer Slide Time: 08:48)

So,  moving on here  are  some examples  of  propositional  logic  formula,  so here is  a

simple sentence which says that you cannot ride a roller coaster, if you are under 4 feet

tall or unless you are older than 16 years. So, how do I represent it as a propositional



logic formula? First I have to figure out what the atomic propositions in these entities

are; so if you see there are three statements. The first statement can be thought of as this;

you cannot ride the roller coaster, second statement is you are under 4 feet tall, third

statement is you are older than 16 years.

So, give them names let us say q represents you can ride the roller coaster, you could say

q represents you cannot ride the roller coaster. We just change the negation appropriately,

there will be no difference. Let us say r represents you are under 4 feet tall; the second

phrase and s represents you are older than 16 years; the third phrase. So, now what does

the formula say? Take the first phrase which is q, which is here; it says you cannot ride

the roller coaster if; if is there and you cannot. So, there is an if and a not; if and a not

can be this alpha implies beta; read it as if alpha then beta.

So, if alpha then beta is same as alpha implies beta, so to be able to express you cannot

ride the roller coaster; if you are under 4 feet tall I need to use an implication sentence,

but then there is also one more atomic proposition here; which is being older than 16

years and then there is an unless connector here. Unless means that you have to be older

than 16 years, if you are under 4 feet tall to be able to ride a roller coaster. So, if I try to

use  the  connectors  that  we learnt  so  far  and  try  to  write  it  as  a  propositional  logic

formula, this is the formula that I will get. What does it say? It says that you are under 4

feet tall or and you are older than 16 years and when you are not older than 16 years

sorry implies you cannot ride the roller coaster.

So, I will repeat it again you are under 4 feet tall; so, r is true and you are not older than

16 years; which means you are younger than 16 years; these two implies that not q is

true. What does not q say? Not q says, you cannot ride the roller coaster because we have

instantiated q to be you can ride the roller coaster. So, here is one more example; this

example says Maria will find a good job when she learns software testing. 

So,  how many  atomic  propositions  can  be  created  out  of  this  sentence;  one  atomic

proposition is which says Maria will find a good job, the second is if she learns software

testing; some Maria learns software testing. So, I say p represents Maria learns software

testing, q represents Maria will find a good job then the sentence p implies q will mean

Maria learns software testing; if Maria finds a good job.
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So, now Syntax tells you how to write formulas, how to build formulas. Now, what is

this semantics of propositional logic, what does semantics mean? Semantics mean what

is the meaning of these formulas for example, if I go back and look at these two formulas

r and not s implies not q and I look at p implies q; how do I know what they mean; are

the formulas true, are the formulas false, how will I know? How will I infer that? That is

what semantics is all about. 

So, semantics we begin with a valuation function which takes every atomic proposition P

and tells me whether it is true or false. So, valuation is the function from the set P of

atomic proposition to the sets T and F, where T stands for true and f stands for false.

Throughout this lecture, in the lecture for logic; I will use the term T for true and F for

false, these are Boolean constants. Now, we extend valuation what other parts were there

in the Syntax of propositional logic? Every atomic proposition was there and then all

these  operators;  negation,  disjunction  and  then  derived  operators  conjunction,

implication and equivalence.

So, once I define; once I start with the valuation function that tells me whether every

atomic proposition is true or false, I can go ahead and extend the valuation function to

the set of all formulas phi and it make each formula of phi become true or false. So,

extension of valuation is a map v; that takes a set of all formulas phi and each formula



phi whether it  tells  true or false by extending the valuation function v that takes the

proposition and tells me whether each proposition is true or false, how is that extended?

So, if alpha is of the form not beta; then v of alpha is true if and only if v of beta is false.

So, it says if alpha is of the form negation beta; then alpha is true if and only if beta is

false. If beta is false then not beta will be true so that is why alpha is true; now if alpha is

of the form beta or gamma then alpha is true if and only if beta is true or gamma is true.

Please note that this is not an either or statement, it is just a plain or; that means, that if

both beta and gamma turn out to be true; then alpha can be true also. The only time when

alpha is false is when both beta and gamma become false.

So, I have not given you the semantics of other three operators, but it is easy to infer

what they are because we have given semantics of not and or; and other three operators

can be defined using them or you could directly write the semantics of these operators.

For example, when will be alpha and beta be true in under valuation function; if both

alpha and beta both individually evaluate to true.
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So, later very soon I will tell you what truth tables are and then we will see what each of

these semantics mean in terms of truth tables. Some of you might find this notation a bit

cumbersome to read valuation as a function from the set of propositions to true and false,

but most of you might be familiar with the notion of truth tables. What are truth tables?



Truth  tables  are  a  simple  way  of  calculating  the  semantics  of  a  propositional  logic

formula.

So, what we do is we take a formula and we split the formula or break the formula into

its constituent sub formulas; repeatedly till we reach what are called atomic propositions

and when I reach atomic propositions, I have my valuation function which tells me when

each proposition will become true or false. Then, I use the semantics of the Boolean

operators and of the negation operators and work my way up till  I know whether the

entire formula is true or false. I have put these words split and reach in italics because if

you have to do it properly, then you need to be able to parse the formula, generate the

parse tree and the truth table works inductively bottom up beginning from the leaf; all the

way till the root of the parse tree which contains the formulas.
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So, what are the various truth tables for the elementary connectors of Boolean logic? So,

here  are  the  truth  tables;  how does  the  truth  table  for  not  look like.  Remember  the

valuation for the negation function not, if p is true; not p is false and if p is false; not p

becomes true; that is what this table says. How does the truth table for and look like? For

and it is a binary connector, so it takes two operands p and q. 

When is p and q true? p and q is true, if both p and q are true that is what this first row

says, if p is true and q is true then p and q is true. In all other places, p could be true, q



could be false, p could be false, q could be true, both p and q could be false, in all the

other three cases p and q evaluates to be false because one of p or q is false.
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So, for or these are the semantics of valuation function p or q is true; if one of them is

true or if both of them are true. So, if p is true, q is true p or q is true that is this first row;

if p is true; q is false p or q is true that is second row, if p is false and q is true; p or q is

again true because in all three cases one of p or q is true. But, when both p and q are

false; p or q becomes false here. What is the truth table for implication, if you go back to

the slide which defines the meaning of implication; since alpha implies beta is defined as

not alpha or beta or if you want to understand it in English; read alpha implies beta as if

alpha then beta.

So, if I use that meaning then this is the truth table for implication; if p is true then and q

is true then; obviously, p implies q is true because p is true q is also true, so this is true.

So, if p is true and q is false; then p implies q will be false because it cannot be the case

that p is true and p implies q will be true when q is false. If p is false then we do not

really worry whether q is true or false, we say p implies q is true in a trivial sense. So,

when both the cases when p is false and q is true or false, we say p implies q is true

trivially. What is the truth table for equivalence? The truth table for equivalence says that

p equivalent to q is true; if p and q have the same truth value that is they both are true



together which is this first row of the table or they both are false together, which is the

last row of the table.

The second row and the third row one of p or q turn out to be false, so p is not equivalent

to q; in other words p equivalent to q itself turns out to be false.
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Now, we move on to the notions of satisfiability and validity; why are these important?

These are important because I told you that propositional logic formulas or predicate

logic formulas are going to come as labels of decision statements in programs and when I

have a predicate as a label of a decision statement in a program, I am evaluating the

predicate by substituting some values for the variables that occur in the predicate and I

am checking whether the predicate becomes true or false. If it becomes true, then the

decision statement takes one path, if it becomes false then the corresponding decision

statement takes another path. 

So, in logic we call  this as the problem of satisfiability;  the problem of satisfiability

involves checking whether a given logical formula evaluates to true or not. So, for the

propositional logic also the problem of satisfiability checks, whether given a formula

alpha is there a valuation function v; such that v makes alpha true that is v of alpha is

true; in logic we write like this, we write v read this entity as satisfies alpha to indicate

that v of alpha is true; please read this notation as v satisfies alpha.



The notion (Refer Time: 20:02) to satisfiability is what is called validity you might have

heard about it. We say that a formula is valid, if for every valuation v it becomes true; so

we say alpha is valid if no matter what truth values you assign to the atomic propositions

in alpha; alpha always becomes true. Another term for valid formula is what is called a

tautology; the exact opposite of valid formulae are what are called contradictions which

mean that no matter what truth values you assign to atomic formulas, the formula will

never be satisfiable; that is it will always be false.

So,  here  is  a  simple  example  of  a  formula  that  is  valid  and of  a  formula  that  is  a

contradiction.  Consider an atomic proposition p; a formula of the form p or not p is

always valid, why? Because if p is true then not p will be false, but this is a or, so the

whole thing will be true. On the other hand, if p is false then not p will become true again

because this is a or, the whole thing becomes true. So, the p or not p is a formula that will

always become true irrespective of whether p is true or false. 

Now, consider a formula of the form p and not p; if you see here p and the not p will

never be satisfiable, no matter what p is because if p is true then not p will become false

and because it is an and here; the whole thing will be false. Similarly, if p itself is false

then because it is an and here p and not p will be false. So, no matter what p is whether it

is true or whether it is false; p and never p; p and not p will always be a contradiction.

Here is a small result, it says that consider a formula alpha; alpha is valid if and only if

not  alpha  is  not  satisfiable.  So,  it  says  validity  and  satisfiablity  are  what  are  called

contrapostives of each other. The proof is very simple, but we would not really need it

for this course, so I am leaving the proof without doing it. So, the only concept that you

need to remember mainly from this slide for the rest of the course; is to understand what

satisfiability is, we say a formula is satisfiable; if there is at least one valuation for the

atomic propositions in the formula that make the entire formula true. Typically, the most

common way of checking satisfiablity is to able to use truth tables.
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So, here is an example of how to check satisfiability using truth tables. So, you consider

this formula r or s or not q, so here is a truth table for this formula. So, what I have done

is;  I have given true, false assignment  to all  these values.  So, there are three atomic

propositions her, so if I consider the possible combinations of true, false values to each

of them; there will be 8 different combinations 2 cube is 8. So, r, s and q all three of them

take true or r and s become true, q becomes false; r is true, s is false, q is true and so on.

Now, I will first evaluate r or s which is I use the semantics only for these two rows and



the semantics of r to fill up this row with true false values. If you see in the first six rows

one of r or s will always be true here, so r or s throughout becomes true. 

The last two rows both r and s are false, so r or s is false. Now, I do this r or s or not q; I

take r or s, then I take the row the column for q; negate the column which I have not

shown in the truth table here. So, if you want to be perfect, you could negate this column

and then I apply or again; if I do that; then I will get all these values to be true and this

value to be false, so this is how truth tables work.

Now, to check if a formula alpha is satisfiable; what I do is I generate the truth table and

I check if there is at least one row in the last column of the truth table which corresponds

to the formula, where the formula evaluates to be true. If there is one such row, then it

means there is an assignment of true false values to the variables of the formula that

make the formula true. So in which case the formula is satisfiable, so if you see what is

the running time of such an algorithm? I have not really described the algorithm. 

But what is the running time of such an algorithm? The running time of this algorithm is

going to be exponential in the number of symbols of alpha because I told you; suppose

there are three different variables, then each of them will take two different truth values

and the number of combinations is going to be 2 power n. So, the number of rows in the

truth table  in the worst  case is  going to  be 2 power n and so the algorithm runs in

exponential in the number of symbols or the number of atomic propositions within. In

general, it is known that the satisfiablity problem for propositional logic is NP-complete.

So, NP-complete means we do not know of a polynomial time algorithm till date that we

can use to solve satisfiability.
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Now,  that  was  a  basic  introduction  to  propositional  logic,  but  as  I  told  you  in  the

beginning of this module, what we would need is; what is called predicate logic. What

are predicate logics? Predicate logics are used to define predicates which come as labels

of decision statements  and programs. Predicates  have variables of all  different  kinds,

they could be integer variables,  they could be floating point variables,  they could be

functions evaluating certain things; all of them need not be just Boolean variables like in

propositional logic.

So, we need to be able to move on; so, atomic propositions and propositional logic just

define Boolean entities.  But,  when we talk about  programs that  manipulate  data;  we

encounter other kinds of variables, so we need notions of predicates to reason about such

statements. As I told you in the beginning of this lecture, strictly speaking predicate logic

also deals with quantifiers for all and there exists, but we will not need that for testing; so

I am staying away from introducing them to you.
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So, what is a predicate? For our purposes a predicate can be thought of as an expression

that always evaluates to true or false; because that is what we need as far as the course is

concerned. Now, predicates can contain variables like we find them in programs and

each variable could have different type, there could be integer type variables, there could

be strings, there could be floating point numbers. Predicates also can contain functions

like  for  example;  you would  agree  with  me that  it  is  not  very  uncommon to  see  a

statement which says that if log of x is less than 0.1 then you do something.

So, what is log of x? Log of x is a function that takes x and evaluates log of x and returns

a number. So, predicates can contain function that return values of a certain type; we

broadly classify variable types as Boolean and non Boolean because all non Boolean

entities will  be of one type,  as far as our semantics of predicates  are concerned and

functions return one or more values, which are again variables that have types.
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Now, you might have seen that in predicates that we use in programs, you would have

used all these operators, so called relational operators. So, variables of type, integers, real

numbers  and so on and functions which return numbers as values;  can be compared

using the normal relational operators and numbers less than, greater than, lesser than or

equal to, greater than or equal to, equal to, not equal to and so on. 

Like for example, if I have x and y as variables of type integer, flag is a Boolean variable

and f of x is a function which returns the Boolean value; then here are some examples of

predicates; I can ask whether x plus y is less than or equal to 5; this entity x plus y will

give me a number; 5 is another number; the whole predicate x plus y less than equal to 5

will return true or false, flag itself is a Boolean variable; so it is true or false; f of x is a

function which returns a Boolean value which is again true or false.

So,  all  these  are  predicates  and  like  we  saw  in  propositional  logic;  each  of  these

predicates can be combined using one or more logical operators. Like for example, if I

had these predicates then here is a predicate that combines together. So, x is greater than

equal to y or not a flag or f of x and the whole thing will evaluate to true or false because

each of these entities will evaluate to true or false and I can use the semantics of the or

operator to evaluate the meaning of the entire predicate.
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For the purposes of this course to be able to define coverage criteria, I would need one

more  terminology;  what  we  say  is  that  each  individual  entity  that  comes  without  a

Boolean operator in a predicate, we will call it a clause.

So,  clause  is  a  predicate  that  does  not  contain  any logical  operator.  So,  if  I  have  a

predicate that looks like this; x greater than equal to y or not flag or f of x, then it has

three clauses; one is x greater than equal to y, the other one is flag. Alternatively, you

could say not flag is also a clause; not a problem and you could say f of x. For our

purposes, we say it does not contain any logical operator. So, we remove the not and just

say a flag is a clause, so a clause can be thought of as Boolean atomic predicate which

always evaluates to true or false.
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So, in the next lecture what we will do is; we will see how to define coverage criteria

based  on  predicates  and  clauses.  So,  before  I  finish  today's  lecture;  like  we  saw

satisfiablity problem for propositional logic, we also consider satisfiability problem for

predicate logic for the same reason because these predicates; like these predicates are

going to  come as  labels  of  decision  statements  in  the  program and decisions  in  the

program are taken based on whether these predicates are true or false.

Typically a program is evaluated given a set of values, a generalization of that problem is

to ask given an arbitrary predicate is there at least one assignment of true, false values or

is there at least one assignment of values to the variables of the corresponding types that

make  the  predicate  true  or  false;  this  is  what  is  called  as  satisfiability  problem for

predicate logic. Unlike propositional logic; propositional logic we just assign true false

values,  build  the  way  up  using  truth  tables;  you  cannot  do  that  for  predicate  logic

because variables could be of different types and if it is a variable like integer then there

are potentially an infinite number of values for which you have to check.

So, satisfiability problem for predicate logic is known to be undecidable; there are no

algorithms the general case that solve the satisfiability problem for predicate logic, but

there what are called SAT solvers or SMT solvers that help you to do it. Please remember

that when we use it in testing, even though we consider satisfiability problem; we are not

looking for really one satisfying assignment as and when program executes, we check if



the given assignment of values to the variables makes the predicate true. So, that is not

really the satisfiability problem, but it is useful to know that the satisfiability problem for

propositional logic is tough is NP-complete and the satisfiability problem for predicate

logic in general is undecided. 

So in the next lecture, I will introduce you to coverage criteria based on predicates and

clauses.

Thank you.


