
Software Testing

Prof. Meenakshi D’Souza

Department of Computer Science and Engineering

International Institute of Information Technology, Bangalore

Lecture – 02

Software Testing: Terminologies

Hello everyone. So, this is a first module of the first week. So, in this module what I will

be doing is to introduce you to the various terminologies that exist in the area of software

testing. What we would be using in this course - clarify the basic terms and tell you what

are the various types of testing, the various methods and testing. We will also look at

various activities in testing and see what this course will deal with. Here is an outline of

the course.

(Refer Slide Time: 00:39)

So, to begin with we clarify on these terms which you might have heard about

verification, validation and testing and I will tell you what we will deal with in this

course. We will also look at a whole set of related areas briefly and clarify what this

course will cover. There are several terms and terminologies related to testing. What is

the test case? What is an error? What is a fault? What is a failure? So, I will introduce

you to all these testing terms and we will see what they mean.

And then in testing there are several methods of testing, several types of testing, several

phases of testing. You might have heard terms like white box, black box, functional

testing, usability testing, performance testing. So, we will see what these various terms

are in the classification of testing. I will end this module by introducing you to various

testing activities and tell you what our course is going to focus on.

(Refer Slide Time: 01:36)

IEEE maintains a standard glossary of software engineering terms in this particular

standard called STD-610. So, as per that standard what is verification and what is

validation. Validation is something that you do at the end of software development or

system development. You may have your own software or system developed ready in

place and you want to be able to check if the software of system needs all its

requirements when you do that at the end of the development then that is what is called

validation. Verification deals with what you test or verify while developing software. So,

while developing software you might go through various phases, phase value defined

requirements, phase value to design and architecture. Phase value write code and face

value test. At each stage you are dealing with a set of software artifacts.

So, the kind of verification that you do where and you check whether a particular

software artifact needs the requirements that were established for that particular set of

artifacts then you do what is called verification. Testing as we will see in this course

mainly deals with verification. There are several other related areas that you might have

heard about.

(Refer Slide Time: 02:46)

One of the most popular or my favorite ones is that a formal methods, formal

verification. There are 3 broad areas that people work on within formal verification

namely model checking, theorem proving, program analysis. Testing as we will see in

this course, we will not deal with model checking or theorem proving or program

analysis. Towards the end of the course we will see symbolic execution. A lot of

symbolic execution is used in program analysis, but we will see it from the point of view

of testing right.

In fact, there are several NPTEL courses available in each of these areas and if interested

you are more than welcome to go and see them. A related area where people also do

verification is what is called modeling and simulation.

Let us see you have a piece of hardware design or a system design or a software design.

For hardware design popular languages that you could use a VHDL very law, so you

have your design and then you model your design in this particular language and you run

simulations to see if the design model that you have done correctly, does the design as

per its requirements right. So, you have a modeling language, which is usually

proprietary or open source you modeled using that modeling language and run several

different kinds of simulations to see if the design model needs its requirements.

So, that area has modeling in simulation and the testing that we would see in this course

we will not deal with that also. Another related area is what is called accreditation. Now

what is accreditation? Accreditation deals with software that is safety critical and needs

to be certified. Take for example, software that runs your play right like typical autopilot

software, any company you cannot say that I have written in autopilot software as per the

normal requirements of autopilot software. So, here it is stake and run right. So, these

autopilot softwares being safety critical because they cannot afford to fail they have to be

audited and accredited by responsible authorities like FAA and the US, DGC in India

and they demand lot of additional testing there is a separate process of accreditation for

which there is testing needs to be done.

But accreditation as it is we want look at, in this course what we will look at is the kind

of testing that people do towards accreditation and the algorithm behind that kind of

testing.

(Refer Slide Time: 05:02)

We will move on to looking at various terms in testing, you might have heard of lot of

these terms faults, failures, errors what do they mean, right. So, what is a fault? Fault is

considered to be a static defect that occurs in software, a static defect in the sense the

defect that occurs because as a part of the software, not a defect that occurs when the

software is executed. So, this defect could be a function that was wrongly written

function that was not written at all, it could be any of these, right and then when software

with the static defect or fault is executed, there is misbehavior or a wrong behavior on

software that is observed, right. This wrong observable behavior is what is called failure

right and when the software has a fault to execute around the software you observe a

failure, then the software is supposed to enter an incorrect state. The incorrect state in

which software enters, the software that has a fault enters and a failure is manifested is

what is called the error in the software.

(Refer Slide Time: 06:07)

This is a small piece of history thanks to the book by (Refer Time: 06:10) software

testing. So, they connected the term bug and fault to Edison. So, apparently Edison use

these terms first. So, he talks about his inventions and he says there is a lot of excitement

when you initially invent something and then comes a bug or a fault, which he calls

difficulties and he says they show themselves and it takes sometimes lot of effort to fix

them right and the term error is credited for its first use, to the first programmer who

could have heard of namely the lady Ada Lovelace. So, when she was programming

using Charles Babbage analytical engine and punch cards, she says that, there could be

an error. So, this is considered the first use of error his error could make the cards give

wrong orders.

(Refer Slide Time: 07:00)

As far as this course is concerned, we will use all these terms synonymously fault,

failure, error, bug, defect they will all be used interchangeably and synonymously, they

will all mean that they something wrong in the software artifact that I am testing.

Another important that you need to know and get a clarified right now that we will use

throughout the course in testing is when we say testing the first thing that we have to do

is to write test case. What is a test case?

(Refer Slide Time: 07:26)

Test case typically has 2 main parts, it gives inputs to the software artifact that is

concerned and it also says when I give this input to the software and execute the software

on that what is my expected output, right. Say test case has an input and what is the

expected output, it is to be noted that if a test software artifact like code I always give

only inputs to the codes and the part of the test case and be typically do not give values

to internal variables to output variables and so on, right.

So, now I give this test case give inputs to the software and run the software, the

software produces the output right. So, the output produced by software is what is called

actual output right. So, now, what we do typically, we check the actual output, compare

the actual output to expected output and say whether they match or not if the actual

output matches the expected output, then you say the test cases set to a past. If the actual

output defers from the expected output then typically in testing this says that the test case

is failed. A failed test case indicates that there is a fault in the software and the fault has

manifested itself by resulting in an error, as per the terminologies that we saw.

Typically test case also contains things like an id because you need to track and record

the test case and people also maintain traceability information. What is traceability for a

test case? Traceability tells you what are you testing this particular software artifact fault,

you might be testing a particular functionality in a piece of code. Who tells you to test

for such functionality? Where did that functionality come from? That functionality could

have come from a set of requirements. So, if it came from a set off requirements, which

are the requirements that it come comes from. So, all these information is maintained in

what is called traceability matrix traceability data which is also a part of the test case.

(Refer Slide Time: 09:34)

Now, we will move on to looking at the various terms that are popular in testing and

trying to gain clarity on what is what. So, when I do testing, I do testing throughout

software development right and at each stage of software development I could do a

different kind of testing. So, there are various levels of testing based on which phase of

software development that I am testing on. The right first testing that I will do is called

unit testing, unit testing is typically done by a developer when he or she writes the code,

they debug the code, they test the code then and there to see if the code is working fine

as for as its requirements of concern.

These days because of the stress on agile methodologies developers are expected to do a

lot of unit testing themselves, they do not really came have the luxury to pass things to a

tester and say that you do it, right? After unit testing we typically do what is called

integration testing.

So, what is integration testing? A developer again can do integration testing. So, let us

see a developer has written several modules of code and then they are trying to put

together the code, what do you mean by putting together the code? Maybe the code is in

different methods in particular method could call another method, a procedure could call

another procedure. So, when you test these focusing on these calls, these function calls,

procedure calls when you test the interfaces that occur between the various modules in

code then you do what is called software integration testing right.

There is also another terminate integration testing, where people take the software as it is

written and put it is it on the hardware that is supposed to work out. Let us say you have

a fairly large server right you put it on the server that is supposed to work on you

supposed to have integrated the hardware within the software. So, when you integrate the

hardware with the software and test the integrated piece of hardware and software that is

also called integration testing. So, post integration testing, the next step that people do is

what is called system testing. So, in system testing the entire system is put together, let

us say the take case of an enterprise software, you will put together the server, the

database, the web interface, the application server, the clients and all the interfaces

between them and then you will test the end to end system from where the inputs come,

what happens in the central system, what are the kind of main decisions, that are taken

and how do they result in the output being produced.

In embedded software typically like a car or a plane you put the software as a part of the

main system, which could be within the car or within the plane, the inputs will come

from sensors the main control algorithms will run, from by picking up the sensor and

puts from the bus and then they will produce actuator output. So, this end to end software

as a part of the system with the inputs and outputs integrated from their original sources,

the entire system when we tested we call it system testing. After system testing we

believed that the system is more or less ready for reduce.

The last phase of testing the people do is what is called acceptance testing. Here if give

the system to an end user and check if the system is working fine as per the end user

committed requirements that the software or the system was supposed to meet. You

might have also heard of a term called beta testing. What is beta testing? In beta testing

people specifically release what is called beta version of software right. When they

release a beta version of software they roughly mean that this software is working fine,

but I may not have tested it for mitigating all the involved risks.

So, they are asking the users to start using the software and let them know if it has any

bugs or defects. So, when you do this kind of testing then you are doing what is called

beta testing right.

(Refer Slide Time: 13:27)

So, let us take an example to understand is a little better. So, let us say there is a main

class called class P, which in turn has 2 classes A and B. Let us say class A has 2

methods m1 and m2, class b also has 2 methods m3 and m4. Let us see a particular

developer is working on writing code for method m2 or m1 or m3 just that method. So,

when the developer finished his writing code or while writing code the kind of testing

that the developer would do to test the functionality of just that method is what is called

unit test right. So, now, if you look at this picture method m1 happens to call methods

m3 and m4, m3 intern calls method m4. So, when a developer puts together these 2

classes all their methods and tests features specific to these calls right then the developer

is doing what is called software integration test.

(Refer Slide Time: 14:41)

Let us say this after this integration testing, the developer puts together the entire system

and tests at the level of the main class B then that phase of testing is what is called

system testing. You might have heard of all these additional terms in testing, functional

testing, stress testing or load testing, performance testing, usability testing what are they

we will see them now. So, what is functional testing? Functional testing is typically done

to ensure that the software meets its specified functionality. What do we mean by this?

Let us take a software that runs as a part of an ATM machine of a bank right. What do

you think is the core functionality of an ATM software? Core functionality of the ATM

software could be the following right. Once the user enters the password and the pin, if

the credentials match and if there is sufficient balance left in the users account then, the

amount that he or she has requested to be withdrawn should be provided to the user

correctly right.

So, ATM is meant to do just this and when I test a software to check if it needs it is main

intended functionality then I do what is called functional testing. Another kind of testing

that is popularly done is what is called stress testing. So, here what happens is that the

system is meant to be up and running in available lot of times and sometimes the system

experiences what is called peak input conditions. For example, recently the class 12

marks where released right. So, they were released on the internet through a web

application software right. So, this system will experience what is called stress levels of

input within 3 4 hours of the time in the date of release when all the students would want

to login and check what their marks are right. So, when you test a system under this peak

load conditions or input conditions then you do what is called stress testing.

The next kind of texting that you might have heard about is what is called performance

testing. So, what will happens here is that here, people do testing to ensure that the

system meets it is desired response time it is fast enough, like for example, when we

insert the card into an ATM machine, we want the ATM machine to be able to respond

with the welcome screen almost immediately right, we cannot afford to wait for 10

seconds or minute or so right. Performance testing specifies performance requirements

on the system and checks whether all these performance requirements in terms of

latency, speed, response, time, etcetera are met by the system.

Next popular kind of testing is what is called usability testing. It is not only useful to

have a great software system, but the great software system is meant to be usable by a

user which means the software should have a good user interface right, it could be

graphical or not, but the software should have a good user interface that is friendly. It

should also be accessible, accessible in the sense by someone who is visually impaired,

hearing impaired right. It should be accessible. So, testing that is done to ensure that a

software is usable, has a good interface, meets all the accessibility guidelines, read is

aesthetic enough, the kind of testing that is done to do all this is what is called usability

testing.

Finally, one important term in testing before we move on is what is called regression

testing. So, when does regression testing happen? So, let us see you have developed

piece of software and usually (Refer Time: 18:12) it. So, post release there is either

change to the software that you do or you add a new functionality to the software right.

Now it is obvious that you might want it first check if the change or the new

functionality that you have added is working fine and the second thing that you might

want to do is that this change or the new functionality does not affect any of the other

features that they are already present in the software before this was done right. The kind

of testing that is done to ensure that the software is working fine after modifying or

upgrading it is what is called regression testing.

(Refer Slide Time: 18:45)

So, when all these methods testing, all the various types of testing basically, 2 different

methods in testing, you might have heard of these terms Black box testing and White box

testing. So, what happens in black box testing? When you do black box testing you

consider the software artifact that is being tested as a black box, which means you do not

look inside it like, when you test the code you consider the entire code is a black box

give inputs to the code execute the code and observe the outputs to check if the expected

outputs match the actual outputs.

White box testing is the exact opposite, when I am testing a piece of code, with reference

to white box testing I look into the code and I test for requirements like, suppose there is

an if statement in the code can you write a test case that will cover the if statement. What

is it need to cover in the if statement. It means; that can you write a test case which will

execute the then part of the if statement ones which will execute the else part of the if

statement once. So, similarly, when a white box test code I could insist that you cover

loops in the code. So, let us say there is a while loop in the code, covering the loop

would mean that you write test cases to skip the loop, to execute the loop in normal

operations and execute the loop on boundary conditions.

So, in summary what is white box testing do? White box testing actually looks at the

code, looks at the design at the corresponding software artifacts looks at structure what it

what is it have, what are the kind of statement, what are the kind of design elements it

has and then it tells you how to test it by looking at its structure. So, black box testing

applies to almost all phases of testing, all types of testing it applies throughout the

development life cycle, it applies for doing usability testing, performance testing, stress

testing and so on. White box testing is typically done only during software development

Once software is ready put together the system is tested, later on when we test for other

non functional requirements like performance, stress, response time, good user interface,

being accessible it typically do not test it, as a white box testing then we consider the

system as a black box and then test for all these quality features in the software right.

(Refer Slide Time: 21:12)

Now, we will move on to the last module, where we look at the various activities in

testing. There are typically 4 raw activities in testing. So, we begin with design in cases

because, if you do not have a test case then you cannot execute it and you cannot find

errors in the software .The first thing is to be able to define or design a test case, once we

design a test case I have to make it have to make it execution ready, that process is what

is called test automation. After I make it execution ready, I can use a tool to actually

executed and record the results. After I record the results then, I do what is called

evaluation or analysis to check whether the test case is passed or failed and if it is failed

and if there is an error where the error is and so on, these are the core technical activities

and testing.

Apart from this there are several other umbrella activities. Like you have project

management in software development, project management specific to testing is what is

called test management. So, there are test managers to design test teams try to organize

them.

Another important activity that happens is a part of testing is what is called test

maintenance and test documentation. A lot of testing especially in enterprise software

domain realize on reusing test , extensive number of test cases are reused again and again

to be able to text software right. So, how do I reuse a test case I should be able to

document it and store it well to be able to make it amenable for use.

(Refer Slide Time: 22:59)

So, the kind of activities people do to ensure the test cases are well documented and well

maintained and available for reuse as an when they are needed broadly constituted test

maintenance and documentation.

So, now moving on to test case design this is considered the most critical job in testing.

Why is it considered the most critical job in testing? Because, the pareto principle applies

to testing which means roughly 80 percent of the errors, a lot of the errors is focused on a

very small percentage of the code right. So, if I do not design my test cases effective

what do you mean by effective in turn, if my test cases are effective then they will find

errors faster, they will find errors at all the errors or most of the errors areas that are

present in software, there is no point in saying that I designed so many test cases and I

tested them for days and days and your software is doing fine right.

So, the effectiveness of test case design is in finding errors right and this needs domain

knowledge. This gives knowledge about the system, about how it is developed and

typically cannot be alternative. A lot of this course with deal with algorithms and testing

techniques, that we will use to design test cases and give you more details about the

precise kind of algorithms and artifacts that we will use in the next module.

After you designed your test case the next comes the converting this test cases in to

executable script. So, you might have a test execution framework you could use j unit,

you could use selenium, these are open source tools, that will let you do test execution

right. So, you have to be able to make your test case ready for execution please

remember, I told you that test case always talks about Inputs. So, suppose there is a

requirement white box testing requirement, which says that you go to a while loop which

is somewhere deep inside my code and you test for coverage of that while loop. It might

so happen that the while loop has got no input variables, it directly deals with internal

variables. Now it is up to the tester to be able to design test cases and give test cases

input values such that this while statement is reached not only it is this while statement

reached this while statement is also covered under various coverage requirements.

So, how does a test go about doing this? Software has to meet 2 important criteria called

observability and controllability. So, we look at these 2 concepts in the next module in

this week. So, after your design your test case and it is ready for execution then comes

the job of actually executing it and recording the results, this typically is almost always

fully automated. There are several open source and proprietary tools that can do this

really well for you.

After you have executed the test case again you need human intervention to be able to

evaluate the result of the test case. So, let us say the test case is passed everything is fine,

but if the test cases failed that indicates that the software is in an error condition. So,

where exactly is the error, which is the erroneous components especially when you are

doing system testing or integration testing your software or system might be fairly large.

It takes some amount of domain knowledge experience and human effort to be able to

isolate the fault and facilitate the development team to be able to debug and test it once

again right.

So, we would deal mainly with test case design algorithms in this course. So, in the next

module I will tell you what are the algorithms are and what are the mathematical models,

modelling software artifacts that we would deal with in this course.

Thank you.

