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Hello there, this is the last lecture of the fourth week, we will be winding up with looking

at graphs today this will be the last lecture where we will see testing based on coverage

graph coverage criteria for now, what I will do today is introduce you to this popular

model called finite state machines most of you might be familiar with it, and see what

kind of graphs they are and how graph coverage criteria will be applicable to them.

So, far what  did we see now? We saw graphs structural  coverage criteria,  data  flow

coverage criteria, then we saw how to apply to source code then we saw how to apply

them to data flow along with source code and the CFG. Then we saw how to apply them

to design elements specifically we saw how to apply it to sequence in constraints; and

then I told you some amount of sequencing constraints need you to keep track of state

information. So, when you need to keep track of state information, finite state machines

or finite state automata come in to be very handy.

(Refer Slide Time: 01:10)

So, today we will  introduce those models and see how a graph coverage criterion is

useful  for them. Another  popular  design models  are  what  are  called  UML diagrams.



UML is basically unified modeling language the collection of popular diagrams each of

which is represented using both graphical and textual notation, and is used to document

design. I will not really be able to give you detailed test case design for UML diagrams,

but I will tell you what sort of diagrams basically correspond to finite state automata and

how the coverage criteria that we saw till now can be used on them. At the end of this

lecture we will revisit the entire graph base testing that we have looked at in the past

three weeks, and I will briefly recap all that we did.

(Refer Slide Time: 01:59)

What is the finite state machine? I hope most of you will be familiar with it, if you have

done computer science or IT you would have seen a course called automata theory or

formal  languages or theory of computation;  finite  state  automata  are  one of the first

models that you will learn in the course. So, a finite state machine can be thought of as a

finite graph the nodes in the graph or what are called states, and the edges in the graph

are what  are  called transitions.  So,  what  do the nodes describe? The nodes typically

describe what happens to certain variables and software at a certain point in time. They

tell  you the values that these variables take at  that point in time what are transitions

describe? They describe how the machine or the program changes state from one stage to

the other.

So, if a stage depicts the values of certain variables at a certain point in time, transition

might mean executing a particular statement in the program, which results in change of



values of one or more states and these results in a new state right. So, those are the edges

of a finite state machine, typically many interesting finite state machine models that I

useful for software design always have guards conditions associated with edges triggers

associated with nodes and so on, right. So, here is a simple example of a finite state

machine, it has 2 states, 2 nodes; one called closed, one called open. States are always

given these names with special identifiers which help you to identify what these states

are while modeling using finite state machines.

(Refer Slide Time: 03:23)

As we have seen till now there is an incoming arrow at the state closed. So, this says that

closed is an initial state; this small toy finite state machine can be thought of as the finite

state machine corresponding to an elevator. It is a very highly abstract machine, but it

represents an elevator. The elevator could be door could be the closed or it is open and it

says that there is a transition or an edge from the state closed to the state open, when

somebody presses this open door button.

You could think of it as there being a door button and then when you press that open

door button the state machine changes from state closed to state open and what are the

preconditions for this transition or this state change to happen. Preconditions here it is

abbreviated as pre in short for precondition, it says the elevator speed should be 0, which

basically means that the elevator should not be moving if it moves the door cannot be

open and it says that somebody should have pressed the open door button.



So, the precondition says that elevator should not be moving it is speed be 0, and the

trigger  is  the  open button  command should have  been pressed  by somebody.  If  this

happens and the machine transitions from closed to open of course, this is just a small

machine it does not really describe all the transitions or the full behavior or design of an

elevator, I just took this abstract level description to explain what a finite state machine is

to you.

(Refer Slide Time: 05:17)

So,  how our  finite  state  machine  useful  for  us  in  testing?  Finite  automator  are  very

classical models, any course and automata theory or theory of computation would begin

with them they are very robust  models,  but  we would not  really  look at  finite  state

automata and the theory and what they mean because our focus is to be able to purely

understand it from the point of view of testing. Surprisingly finite state machines have

been  around  in  testing  for  more  than  30  years  now,  and  they  have  always  been

considered is popular models that have been used for designing test cases to achieve

some goal or the other with reference to testing.

So, typically finite state machines what do they model? The model design of embedded

software;  software that  sits  in  cars,  planes,  phones,  toys  etcetera  they model  several

abstract data types like for example, in the last lecture we saw queue with an abstract

data type right. So, finite state machines can model such abstract data types, almost all of



hardware, hardware circuits can be modeled using finite state machine several protocols

can be modeled using finite state machine.

So, a large class of design and design element can be modeled using finite state machines

and why does this help? Typically finite state machines model design and when I create

FSM models  for  design and doing it  before I  write  code in  fact,  my model  is  good

enough then there are several tools that process finite state machine design models and

automatically generate code.

So, when I come up with formal models of design it is been found by past experiences in

several projects, that such models help you to identify test and detect errors early even

before you begin coding, so that these did errors if detected early can save development

cost and time right. And the other thing is many as I told you many popular modeling

notations also support finite state machines. So, most popular modeling notation is that

of UML.

UML has a  diagram one of it  is  diagrams is  that  of finite  state  machines,  the other

diagram that it has a state charts which can be thought of as finite state machines with

hierarchy and concurrency specific finite state machines, and the other thing to note is

that  whenever  I  have  a  control  intensive  applications  right  like  elevator,  something

controlling  something  a  software  controlling  an  entity  right  controlling  a  piece  of

hardware or a system, finite state machines are considered to be very good models for

that.  But  suppose  I  have  a  data  intensive  application  like  something  that  handles  a

database server, something that processes data and renders it as high speed GUY, FSMs

are not considered good models for such things, which typically do not work with finite

state machines for them right.

So, FSM the summary of this slide is that finite state machines are reasonably popular,

fairly large class of software can be modeled the design of such software can be modeled

using finite state machines.



(Refer Slide Time: 08:24)

So, it helps to look at our graph coverage criteria on finite state machines and see what

they mean right. Before we move on I would like to mention to you that finite state

machines are beyond just simple graphs right, when we saw structural coverage criteria

we saw plane graphs and when we saw data flow coverage criteria we saw graphs that

we  are  annotated  with  definitions  and  uses,  finite  state  machines  have  lot  more

annotations than data flow graphs.

They can be annotated with different types of actions, actions could be on the transitions

of the machine, actions could be on the node specifically as actions that dictate when to

enter a node, actions could be on the node dictating when to exit from the node; and what

do these actions represents? They represent change of values of variables they represent

change  of  evaluation  of  conditions  several  different  things  right.  As  we  saw in  the

elevator a small example there could be preconditions associated with nodes that tell you

when to take a transition out of a node, there could be conditions or guards associated

with edges that tell you when to take a particular edge, they could be triggering events

and so on. So, to finite state machines are graphs, but they have a lot of extra add on

information to them.



(Refer Slide Time: 09:41)

Now, let us look at the structural coverage criteria that we saw and see what they mean.

So, simplest structural coverage criteria that we saw was node coverage, in the context of

finite state machine it means execute every state. That makes a lot of sense you know

when it comes to saying that if a machine models are designed, then you execute every

state in that design right. The next coverage criteria is edge coverage it means execute

every transition which means execute every state change. The third coverage criteria is

edge pair  coverage  execute  every pair  of transitions.  Now path coverage prime path

coverage is not very useful, because we do not really look at loops as they come from

control  flow graphs in  finite  state  machines,  what  would be  useful  is  specified  path

coverage; as we go down the course we will see some more finite state machines where

this could be useful for us.



(Refer Slide Time: 10:49)

Now, let us move on and look at date and flow coverage; in the data flow coverage when

it  comes  to  applying  for  finite  state  machines  definitions  and  uses  can  get  very

complicated.  If you go back to the previous slide I told you that they can be actions

associated with edges or transitions and then they could be actions associated with nodes

and those actions further on could be entry actions or exit actions, right.

(Refer Slide Time: 11:05)

So, the there could be several different kinds of definitions associated with nodes and

edges, and the other thing to be noted is that in when you look at control flow graphs of



code when we say annotations and edges uses on edges they typically occur as predicates

that correspond to branching, one will be one predicate the other one will be the negation

of that predicate. In finite state machine 2 edges coming out of the same node could have

very different kinds of guards that are labeling them right. Some of them could use a

certain variable some of them need not use the same variables at all they could use a

completely different set of variables.

So, the users on each edge that comes out of a node could be very different from the

other edge that comes out of a node right. So, data flow coverage criteria gets a little

cumbersome when we have to work with the term finite state machine, instead what we

will do is next week I will introduced you to logical coverage criteria; logic coverage

criteria come in handy when it comes to handling data with FSM we will revisit finite

state machines at that time right.

(Refer Slide Time: 12:07)

So, the other thing I told you is that finite state machines typically model software design

or  specification.  And when  you look at  the  large  software  organization  none  of  the

designers or architects typically sit down and draw or document the finite state machine

for  you.  They  typically  write  design  or  specifications  as  English  statements  and

sometimes maybe some sketches and other diagrams, and whenever they are missing and

if you find them to be useful for testing as a tester the owners is on you to be able to

draw finite state machines. So, it helps to get some idea of what exactly are finite state



machines and what do they represent when it comes to modeling design of software,

right.

(Refer Slide Time: 12:50)

So, one thing to note is that control flow graph which we learned how to draw, that is not

a finite state machine corresponding to any design or specification or even code. Not a

finite state machine because control flow graph does not give you values associated with

variables in states. So, it can never really be a finite state machine in the sense that we

introduced it to be. Similarly call graphs which was another model that we saw when we

saw design elements which talked about how one module calls another module, the call

graphs are also not really  finite  state machines  again because they do not debit  data

associated with states and the finite state machines.

What we need to do when we define finite state machines is that we need to consider

values of variables that are present in the code, each state of a finite state machine can be

thought  of as a  tuple  containing the values of the designated set  of variables  at  any

specified point in time and then transitions in the finite state machine tell you how when

some statement in the program executes the values of one or more variable changes and

how it affect these transitions.



(Refer Slide Time: 14:02)

So, what we will do is that if you remember in the last lecture I had introduced you to

this example queue example and we looked at one sequence in constraint in the queue.

So, the class queue typically  comes with several  methods that  support operations  on

queues, one method is that enqueue where you add an element  of the queue another

method is dequeue where you remove an element from the queue, and you could also do

things like methods which query and tell you is the queue empty is the queue full and so

on. So, and we saw that a simple sequencing constraint like for dequeue to happen and

enqueue  should  have  happened  in  the  past  could  be  described  and tested,  but  more

complex sequencing constraints saying that the number of enqueues at any point in time

should be greater than or equal to the number of dequeues cannot be tested by directly

writing them as sequencing constraints. We said last time that we would need finite state

machines for testing that.

So, what I will do today is we will look at this queue example, and I will give you an

idea about how a finite state machine for such a queue abstract data type will look like

and because see when I talk about a queue, I need to implicitly assume a bound on the

length of the queue. Suppose I say I can keep adding to the queue then in some sense the

state space of the finite state machine will become infinite and it will no longer be finite

state. So, queue is we assume or of some bounded length for the sake of illustration to

make things simple I have assumed that the length of the queue is just 2 right of course,



it does not correspond to a realistic model, to make it realistic you could assume that the

queue is of fixed length n for some arbitrarily large n that you wanted to be, the same

reasoning will extend for that length also.

(Refer Slide Time: 15:49)

So, here is a part of the code for the class queue. So, what is the queue? Queue is a

mutable bounded first in first out data structure I have assumed the bound to be 2 for the

sake of simplicity. So, what could queue look like it could be empty it could just have

one object or it  could have 2 objects,  we assume that  these objects  are not null  and

because it is first (Refer Time: 16:12) are first in first out the older elements are listed

before the elements that are new in the queue. So, queue has things like size front and

back,  and it  also it  is  main state  element  is  set  of  an elements.  We assume that  the

capacity of the side queue is 2 it is (Refer Time: 16:28) sizes 0, there is nothing in the

front nothing in the back and element is something that I want to add now.



(Refer Slide Time: 16:37)

So, there are 2 methods that I have, in this slide I have presented enqueue method.

(Refer Slide Time: 16:39)

In this slide I have presented dequeue method of course, the queue class can have lot

more methods like I told you, you could have a method just check if the queue is empty,

you could have a method that checks if the queue is fully and so on I have not described

all those methods for simplicity I have just given you enqueue and dequeue methods. So,

we will  see what  enqueue does.  So,  enqueue inserts  an object  o into the queue and

whenever it is not possible to insert it could throw exceptions it throws a null pointer



exception. If the argument to be inserted is null we assume that the objects to be inserted

or non-null as I told you here we assume that o 1 and o 2 are never null.

And it throws an illegal state expression if the queue is already full. So, it cannot insert

any more element into the queue. So, this is the code for the method, it says if the object

to be inserted is null you throw a null pointer exception or if the size is same as the

capacity of the queue then you throw a illegal state exception, otherwise you increase the

size and add the object over to the elements and increase the capacity, is this clear.

What is dequeue do? Dequeue tries to remove the topmost element from the queue if the

queue is empty and there is nothing to remove it will throw an exception illegal state

exception, otherwise it will remove the oldest element or the topmost element from the

queue. So, if the size of the queue is 0, then you throw illegal state exception otherwise

you decrease the size you remove that object in the front because it is queue which FIFO

first and first out and then you reset the new thing and adjust the capacity accordingly,

and then the object that you removed you return that object.

So, now suppose we have to model the queue the contents of the queue as a finite state

machine, what would be a correct approach? The correct approach would be to first think

about what is the state of the queue at any point in time. Remember the states in a finite

state machine talk about the values of all  the variables involved in a program or the

design of a program and it actually depict  the existence the state of the system as it

would exist in real life. So, when I look at the queue data structure what is it is state? It is

state is the content of the queue what is the contents of the queue at any point in time

(Refer Time: 19:08).



(Refer Slide Time: 19:08)

So, we do not really care about the specific objects in the queue, all that we want to

know is that the; what are what is there in the queue. The queue could be have size at

most 2. So, the queue could be empty there could be one non null object at the beginning

of the queue front of the queue, there could be one non null object at the back of the

queue or the queue could be full to normal objects right. So, these could be the 4 values

of this variable element which describe the contents of the queue.

You go back to the queue code queue consists of elements and the queue is of size 2. So,

all that I am tracking is what is the current content of the queue. Does the queue empty,

does the you have one non null object, does the queue have one non null object in the

front or at the back, does the queue have 2 non null objects. So, those are these values

and then these are the states right. So, there could be it several different states you can

compute how many states would be there, but about 6 of them would be reachable states,

what would be the transitions.  Like for example,  suppose I have something like this

object, object which what are the methods of the method calls that will change the state

of the queue will a method call which says is the queue empty change the state no right.

Because what  will  is  the queue empty do? It  will  basically  look at  the queue check

whether it is empty or not if it is empty it will say true if it is non-empty it will return

false. It is not going to be able to change the content of the queue, but methods like

enqueue and dequeue will change the state of the queue; because they alter the variable



elements they alter this variable elements. When a enqueue, I add something it will the

element when I dequeue I remove something from the elements; like for example, here is

the transition suppose I begin with null null, that changes to object null when I enqueue

an object,and similarly when I dequeue an object if I have a full queue and I dequeue the

topmost object that gets replaced with empty and then it becomes like this. If the queue is

a capacity one which it looks like this it has 1 non null object if I dequeue again, then the

queue changes to a null queue right.

So, this is how the state machine for a queue would look like, I have not really drawn the

state machine pictorially I would like to leave that as a small exercise for you to do.

Assume that these are the states of (Refer Time: 21:42) state machine and draw edges to

depict the changes states, and label those edges with method names like enqueue and

dequeue which tell you when you do an enqueue and when you do a dequeue, how this

state changes in terms of elements getting added or removed from the queue respectively

try and draw this finite state machine as a small exercise that you could do for yourself.

(Refer Slide Time: 22:05)

Now, when it comes to testing as I told you any kind of graph coverage criteria that deals

with structural coverage criteria can be used except for prime paths, we specifically use

no coverage,  edge coverage,  edge pair coverage and specified path coverage when it

comes to finite state machines. Coming up with test paths for these coverage criteria can

be non trivial because you have to solve for the actions and the guards that come in state



machines,  we will deal with it when we look at how to solve logical predicates next

week, we will also see some more examples of concrete finite state machine as we move

on in the course.

(Refer Slide Time: 22:56)

So, that is all I wanted to talk to you about finite state machines, I briefly spend some

time looking at some part of UML diagrams and tell you that the coverage criteria that

we have seen till now can also be used to test UML diagrams. UML in short for unified

modeling language is a very popular modeling language used for modeling designs of

systems.

There are about 14 or 17 UML diagrams, and here are the ones that look a lot like graphs

state machine,  state charts, activity diagrams they are basically some special kinds of

graphs and the kind of coverage criteria that we have seen specifically path coverage

criteria, specified path coverage criteria, can be used to test most of these graphs right;

one list to think to be noted that each of this graph is very different from a typical control

flow graph so you have  to  be careful  when we define  test  cases  and path  coverage

criteria on there.

As I told you I really would not be able to do UML now for most part of the course, if

time permits towards the end of the course maybe we could look at UML diagrams and

see is testing specific to UML diagrams.



(Refer Slide Time: 24:00)

We have come to an end of graph based testing, next week onwards I will begin logic

predicate based testing here is a quick recap of what we have seen till now. The primary

structure or model that we worked with for the past three weeks was that of graphs the 2

main kinds of coverage criteria that we saw on graphs were structural coverage criteria

and  data  flow  coverage  criteria.  We  defined  these  coverage  criteria  purely  graph

theoretically right; we saw what are the various structural coverage criteria if you want to

list  them we saw node  coverage,  edge  coverage,  edge  pair  coverage,  complete  path

coverage, specified path coverage, prime path coverage.

Then we saw subsumption how each coverage criteria  subsumes one or more of the

other; then we augmented graphs with data specifically with data definitions and data

uses then we saw what are called def use paths or d u paths, and then we saw three main

data flow coverage criteria all Defs coverage or uses coverage and all d u paths coverage

then what we did where we applied this graph coverage criteria that we learnt to source

code to design and to specification. In source code we specifically learned how to draw a

control flow graph for various code snippets applied them to a full example and so, how

the various structural coverage criteria can be used to test CFGs.

Then we augmented CFGs with depths and uses and so, how to use data flow coverage

criteria on this augmented CFG, then we moved on to design I gave you the basics of

designs integration testing, then we saw (Refer Time: 26:00) call graph and saw how to



apply  structural  coverage  criteria  on  call  graphs;  then  we  saw  coupling  d  u  pairs

variables that are defined in one used in the other right from actual parameter to formal

parameter  from  a  caller  method  to  a  callee  method,  and  augmented  this  data  flow

coverage criteria to coupling variables. Finally, the last couple of lectures we saw how to

use graph coverage  criteria  on specifications,  I  told  you how to  use graph coverage

criteria to model and test sequencing constraints and in today’s lecture we solve finite

state  machines.  This  week’s  assignment  will  deal  with  this  part,  I  will  give  you

assignments the talk about data flow coverage criteria design and specifications.

Next week I will upload a video on how to solve that assignment, please try to do it

before you see the video ones they will give you a good practice, and that will be the end

of graph coverage criteria for this  part of the course, we will  move on to looking at

logical predicates define what are the coverage criteria on logical predicates and how to

apply them to code and to specifications.

Thank you.


