
Software Testing
Prof. Meenakshi D’Souza

Department of Computer Science and Engineering
International Institute of Information Technology, Bangalore

Lecture - 18
Specification Testing and Graph Coverage

Hello again, we are now doing the fourth lecture of fourth week. As I said this will be the

last week where we look at graph coverage criteria. We saw graph coverage criteria on

code. Last 2 lectures I told you how to apply graph coverage criteria for integration

testing that deals with testing for design that is interaction and interfaces between

modules. Now we will move on to the requirements on design.

So, what we will see in this module and in the next module is somewhere between design

and specifications and see how graph criteria apply to test these also. So, we will

understand what specifications are, the focus of this lecture would be specifications that

actually talk about design itself.

(Refer Slide Time: 00:51)

So, I will explained to you through examples what it means to write specifications that

talk about design because there are several specifications that we need to write along

with the design to ensure the things are working correct, even though these specifications

may not explicitly map to the requirements of a software.

(Refer Slide Time: 01:35)

So, today we will deal with those kind of specifications and in the next lecture, I will

introduce you to finite state machines, finite state automata which are a popular model to

write requirements and then we will see how graph coverage criteria work on them.

What is the design specification? So, as I told you design describes; what are the

modules in the software? How software is broken up into its components and how they

interact with each other and what happens? The design specification talks about what are

the requirements or constraints that need to be satisfied by the design that is being

written and baseline to make the design, correct.

Not all design specifications are derived directly from the requirements of software some

of them are extra specifications written to ensure that the design is indeed correct. So,

design specification can be thought of as the path of the model, design model

corresponding to the implementation. While we do graph base testing we will consider 2

types of design specifications, what I will do in today’s lecture would be what is called

sequencing constraints which are constraints on methods and functions that come in the

design or modules that come in a design. Not all sequencing constraints can be used to

write all kinds of design specifications. So, certain things that cannot be used we will

look at finite state machines that describe state behavior that we will do in the next week.

(Refer Slide Time: 02:52)

So, what is the sequencing constraint? Before I introduce you to what is a sequencing

constraint, I would like to begin with a small example.

(Refer Slide Time: 02:54)

Let us say this is just another abstract snippet of some design it says that there are 2

methods here the both methods deal with the queue data type, you know what a queue

data type is right. A queue is a first in first out list or an array of elements. So, what are

the typical operations that come with a queue? The typical operations that come with a

queue are enQueue and deQueue - enQueue inserts an element into the queue deQueue

removes an element that is already present at the other end of the queue, right. So, there

are these 2 methods - one is in deQueue which is removed the element from the queue

and assign it to an integer variable the other is insert an integer into a queue right. And I

have not really given the code for these methods, but if you see there are 2 comments

that are written here for deQueue there is a comment which is named Pre which says at

least one element must be on the queue.

So, you can read this as it is a precondition which says that there must be at least one

element in the queue. Why is this thought of as a precondition? Let us say the queue was

empty then how do I deQueue anything I will not be able to deQueue, deQueue will give

me an error. So, to be able to deQueue I need at least one element in the queue. So, I

state it like a precondition and if you read what is written in enQueue I have written

again as a comment the first condition which says that e is at the end of the queue. So,

this is which basically says that the queue is like a FIFO data structure first in first out

data structure. So, when I insert an element in the queue it goes to the end of the queue

and for me to remove an element from the queue the precondition is that there must be at

least one element in the queue.

So, these can be thought of as basic constraints that tell you what methods enQueue and

deQueue should satisfy. The methods enQueue and deQueue could be used as a part of a

mainstream functionality that is meant to cater to a particular requirement of a software,

but wherever they are used these preconditions and post conditions basically say what

will happen or what should happen when they are used. Precondition for deQueue says

that the queue should not be empty. So, there should have been at least one enQueue

operation without another deQueue operation before the current deQueue operation.

And the post condition for enQueue says that after an element is inserted into the queue

it goes to the end of the queue. So, these are what are called sequencing constraints. So,

what is a sequencing constraint? These can be thought of as the rules that impose some

constraints in the order in which the methods in a particular piece of code can be called.

Like for example, for me to be able to do deQueue I should have done at least one

enQueue in the past. So, these can be written as preconditions, post conditions, assert or

any other way of writing it and they are requirements that we impose on the design of the

software, right.

On other thing that I told you that has to be noted is that these are typically not given as a

part of the specification document or as a part of the requirement document. These are

written along with design typically by designers to ensure that their design works

correctly in the sense of it is necessary that these constraints are satisfied for the design

to be able to meet its expected functionality. Suppose they are typically not given then

the onus is on the tester to be able to derive them and test them.

(Refer Slide Time: 06:46)

So, this is the queue example that we saw of a simple sequencing constraint on a queue

which basically says that enQueue must be called before a deQueue, if that is not the

case then the queue could be empty because it begins with an empty queue and there is

nothing to deQueue from right. So, I do not want to keep trying to deQueue from an

empty queue. So, insist that there must be at least one enQueue operation before a

deQueue operation.

Here in this example such a sequencing constraint is given implicitly as pre and post

conditions. In fact, you can write several such other sequencing constraints for the queue

example itself another simple sequencing constraint is something like this it says that

there must be at least as many enQueue calls as there are deQueue calls. Why do we need

this? Let us say I have a queue the queue contains at any point in time at some point in

time let us say it contains 3 elements. So, what can I do I can do continuously 3

deQueues. So, how did the three elements come into the queue? There must have been 3

enQueue operations in the beginning before the 3 deQueue operations. It can never be

the case that there were only 2 enQueue operations, if there were only 2 enQueue

operations in this queue then the queue cannot have three elements right assuming that

the queue is empty to start with.

So, what it says is that to be able to deQueue I should have enQueued in element in the

past. So, at any point in time the following hold is an invariant, the number of enQueue

operations should be greater than or equal to the number of deQueue operations. So, if

you see the word number matters here we are talking about the number of enQueue

operations and the number or deQueue operations. Whenever I am counting the number

of operations related to a particular piece of software execution I typically you cannot

write it as a simple assertion or a sequencing constraint. I need what are called state

based models for that we will not look at state based models in this lecture that will be

the focus of next lecture. But what I wanted to tell you as a part of this lecture is that

when I take a queue example or any other kind of example which is meant to be like a

data structures serving as a part of a method, I could write constraints which talk about

how the data structure should work correctly such constrains are called sequencing

constraints.

Some sequencing constraints can be written as simple invariants like we saw here

enQueue must be called before a deQueue. Some sequencing constraints need to deal

with history or memory or number and they need state machines to be able to write them

which we will see in the next lecture.

(Refer Slide Time: 09:20)

So, as I told you sequencing constraints typically are not explicitly given say they always

have to be written by the designer and it could very well be the case to the designers mis-

writing them if the designers miss writing them then the onus is on the tester to be able to

identify write them and test for all these sequencing constraints to be met. Like interfaces

when you go into integration testing absence of correct sequencing constraints or a

software not adequately tested for correct sequencing constraints is meant to lead to a

rich source of errors and onus is on testers to be able to identify and eliminate these

errors during integration testing.

(Refer Slide Time: 10:01)

So, we will see how to test for sequencing constraint through an example. Consider a

class called file ADT, ADT stands for abstract data type this is the class that encapsulate

operations on a file, that file has some kind of data what is the typical bare minimum set

of operations that you would do on a file. You could open a file which is done through

this command, open file name with the name fName. So, this is a method open which let

us you to open a file name with the name fName and once a file is opened you could

close it. I have not given an argument as the name of the file here just for convenience

sake, but you could as well write close a string followed by file name. So, that you know

which file to close because I have not written an argument for close here I assume

through the examples that we look at that I am working with only one file at a time.

Suppose it happens to be the case that you are working with more than one file you need

to give close operations for that file name also.

And once the file is open before being closed you would want to work with a file you

could read data from the file or you could write on to a file. So, here is a method that

writes on to a file. So, this method writes a line of text called text line which is a string to

the file.

So, there is a class file a abstract data type in short file ADT which encapsulates three

methods open file, close file and write data to a file. So, if you think about sequencing

constraints for any code that uses these methods. So, there is a code that deals with some

file operations and in the process of dealing with those file operations it uses methods

that are available as a part of this class. What would be sequencing constraints that you

will write for such kind of code? The obvious kinds of sequencing constraints are as

follows.

(Refer Slide Time: 11:55)

A file must be opened before you can write on to it, an open file must be closed before

you finish operations better not leave it open. A write may not be executed after a close

unless there is an open in between. So, what it says is suppose you open a file and then

you write and then you close the file and then you have to open it once again to be able

to write. So, once you close the file you cannot write on to it without opening it again

and then the fourth sequencing constraint says that a write should be executed before

every close.

So, what is the fourth one say, a fourth one says write should be executed before every

close, so suppose this is violated then what will happen then it means that a piece of

software is trying to do some dummy operations on a file, it could just open a file close a

file, open a file close a file without doing anything even it does not read from a file, it

does not write on to a file. So, it is just keeping itself busy, but doing nothing. So, we

would want to prevent such things. So, we say that once a file is open do something with

it, do something like a write with it before you close it.

The other thing that you must notice in this slide is that I have put words like must in the

first 2 constraints and the word should in the fourth constraint in italic font, what do we

mean by that? Typically when we write requirements for specifications or constraints you

will encounter these words a lot when you write requirements in English me, must, shall,

should and what do they usually mean. Usually the presence of a word must means that

if that requirement or constraint is violated then there is a fault for sure and the word like

‘should’ should be interpreted as if that requirement of constraint is violated then there

might be a fault. So, it is clear event for this example that something like that holds.

Suppose, let us say the second requirement consider second constraint it says open f must

be executed before every close. So, suppose this is violated which means what somebody

has tried to close a file that was not even open, that is not possible so it will definitely

result in a fault and it is a must sequencing constraint. Look at the fourth sequencing

constraint it has the work ‘should’ should means that somebody is trying to write on to a

file I mean somebody is opened the file and close the file without writing on to it. It is

harmless in the sense that it does not really cause the serious fault, but it is useless also.

So, a requirement with the ‘should’ may or may not result in a faults. So, we have to be

careful about when we use must and should kind of requirements, these are typically

done by requirement engineers who write software requirement or by architectures

specify the design.

Now, I have class that contains the three methods.

(Refer Slide Time: 15:09)

These are the sequencing constraints on the method. Now what I want to do is the

following consider a piece of code that uses methods from this class, then that piece of

code should satisfy all the sequencing constraints that we have written right, which

means it must open a file before it writes on to it and promptly close the file and it must

not ideally open and close a file without doing a write operation in between those are the

kind of things that we do. So, what we do is that we consider the code that uses the

methods from this class you consider the control flow graph of that code, then what will

be your test requirement and test paths they would be test paths in the control flow graph

that check if any of these constraints are violated.

Typically if sequencing constraints there are 2 ways of doing it you can try to violate the

sequencing constraints in a static way or you could try to violate the sequencing

constraints in a dynamic way.

(Refer Slide Time: 16:08)

So, we first look at static weight. So, before we move on to that here are 2 examples of, 2

different pieces of code that use the methods of the class file ADT. On the left hand side

it is the CFG corresponding to one piece of code that uses methods in a particular way.

On the right hand side this CFG corresponding to another piece of code that uses a

method in another particular way. So, let us focus on the CFG in the left hand side at

node 1 it calls the method open F which opens the file F and node 2 it writes data on to

that file, at node 3 it goes into a loop where it repeatedly writes data to the file several

times and then when it comes out it closes the file. This is the control flow graph

corresponding to some code that uses these methods. I have again abstracted out and

given you only the details of the CFG as relevant to this lecture, in between it could do

several other operations we have not depicted that in the CFG.

So, here is a CFG of another graph that uses the same methods from the class file ADT.

Always it begins with open; please remember that unless it begins with open if it directly

does a write or a close that will violate the sequencing, one of sequencing constraints.

So, it always begins with the open and then like the earlier code it can do one write and

close the file or it can write and close several times in a loop which is this right hand side

3, 5, 7 write and get back.

So, now what we will do is that if this is the first CFG of some code, this is a second

CFG of some of the code we will take these sequencing constraints and see whether

these 2 pieces of code or CFGs that uses these methods do they satisfy the sequencing

constraints or do they violate the sequencing constraint. As I told you this can be done in

2 ways statically or dynamically. What I mean by statically? Statically means I do not

execute the code, consider the CFG as a graph and then try to see if sequencing

constraints are violated. Typically static analysis is not considered a path of testing, but I

will just tell you for the sake of completeness here.

(Refer Slide Time: 18:34)

So, how the static testing of sequence constraints a CFG work? It proceeds by checking

one constraint of the other, go back to the constraint slide there are four constraints - first

says open must be executed before write, second stays open must be executed before

close, third says write cannot be executed after the close unless there is an open in

between, fourth says that write should be executed before every close.

Writes of a constraint one: We check if there is a path from an open to a write, where is

open here I am focusing only on the CFG on the left hand side for the purposes of this,

open is at node 1, there are write set node 2 and node 5. So, for the first constraint I

check whether there is a path from the open at node 1 to write at node 2 and node 5. It so

happens then there are so we doing fine as far as the first sequencing constraint is

concerned.

For the second one similarly you check whether there is a path from an open at node 1 to

the close and node 6. It so happens that there are if you see 1 2 4 6 is one path, 1 2 3 4 is

one path, 1, 2, 3, 5; 3, 4, 6, this one path. So, there are paths, so as far as the second

requirement open must be executed before every close I am still doing fine.

For constraint 3 and 4, I have to check if there is a path from node 6 to any of the nodes

with the write and if there is a path from open to close without write in between. So,

there is a path from node 6 which is a close to any of the write. So, if you see there is a

write that happens at node 5 before close that is a write that happens at node 2 before the

close. But if you see there is a path from open at node 1 to close at node 6 without a

write. Which is that path? That path goes through node 3, I open the file I go to node 3 I

do not do anything specifically I do not do a write then I go to four there I skipped the

loop that is and then I close. So, I have open the file and close the file without doing a

write in between. So, which is the constraint that it violates? It violates the fourth

constraint, violates the constraint that the write should have been executed before a close

that is what is given here. Path 1, 3, 4, 6 violates the constraint.

Please note that in this slide all the constraints we are reasoning about with reference to

this CFG, the CFG on the left hand side. The CFG example of the right hand side I will

use it when I do dynamic test.

(Refer Slide Time: 21:10)

Now when it comes to dynamic testing my goal is somehow to be able to find paths that

violate sequencing constraints. So, I write test requirements or TRs that tell you what to

cover. So, I will say cover for sequencing constraint, second sequencing constraint and

so on for each of the sequencing constraint and my goal is to find test paths that violate

the satisfaction of the sequencing constraint, right. So, if I consider dynamic testing and I

go back to the first CFG the path 1 3 4 6 which potentially violated constraint 4 could not

be realistic.

If you remember I told you whenever we look at control flow graphs in many times may

not be feasible to write a path that all together skips a loop in 1, 3, 4, 6 in this CFG is

such a path. It could be the case the loop was a do while loop and you are forced to

execute one iteration of the loop at least to be able to do. So, suppose you have that then

when you do dynamic testing you will know about it because you actually execute the

software and then path 1, 3, 4, 6, might not be an actual violation of a sequencing

constraint, but in static testing you will flag it as a potential violation of the fourth

sequencing constraint, but when you do dynamic testing you will know whether it was

actually a false positive or it is a genuine violation of a sequencing constraint. It will be a

false positive if the code for the CFG forces you to enter the loop it will not be a genuine

violation it would be a false positive, but if the code allows you to skip the loop then it

will be a genuine violation of the fourth constraint. You can find out this through

dynamic testing.

So, when the other thing that we do in dynamic testing as I told you is to write test

requirements that violate the sequencing constraint and apply these test requirements to

all the programs that use the methods from this class right. Typically for large programs

is actually quite difficult to write all the sequencing constraints to write the TRs for each

of the sequencing constraints and to be able to get tests pass and its usually undecidable,

but we will not really worry about proving which are the programs for which it is

decidable or undecidable, the idea is to be able to understand how it is done.

(Refer Slide Time: 23:41)

So, what I do now is I write test requirements for all the constraints this one TR for every

constraint, there were four constraints so there are four TRs. First one says that you cover

every path from the initial node to every node that contains the write such that the path

does not go through an open, this will violate the first constraint right. So, it says you

cover every path that goes through a write, but without going through an open. Let us go

back and see what constraint one said open must be executed before every write.

Suppose you are able to find a path that will meet this TR then you have violated the first

constraint.

Similarly, for second constraint, second constraint says that before a close a file must be

open. So, the test requirement to violate the second constraint will say you cover every

path from the start node to every node that contains the close command call to the close

method such that the path does not go through an open method. Suppose you find the test

path you have successfully found a test path that violates the second constraint. Similarly

for the third sequencing constraint your TR says you cover every path from every node

that contains a close to the path the node that contains a write which means the write is

happened after a close. Fourth TR says cover every path from the node that contains an

open to a close without going through a write.

I have basically written the same sequencing constraints, but in terms of coverage criteria

that violate the sequencing constraints, I hope this is clear.

(Refer Slide Time: 24:25)

So, if I do dynamic testing I will find that again the fourth constraint is violated. So, in

this case we will look at the second CFG this one. How is the fourth constraint violated?

There is this path, 1, 3, 5, 6, 3 which tries to write and not close a file. It tries to write

once goes back to 3 tries to write once more and does not close the file and after that

only closes a file.

So, through dynamic testing I will be able to find out whether there is a violation of the

sequencing constraint or not.

(Refer Slide Time: 26:08)

So, in summary what do I do, I identify sequencing constraints that they have not been

documented by designers. What is my test requirement? I write test paths that try to

cover in the test cases in such a way that if my test path is found then one of the

sequencing constraints is violated. So, I write one test coverage criteria for violating each

of the sequencing constraints and suppose I identify in a test path that achieves this

coverage criteria then I have successfully found a path in the graph that violates the

sequencing constraint which leads to an error.

Sequencing constraints can be of 2 types the first type this plain example like we saw for

the queue example or the file open, file close example. Sometimes you can have

sequencing constraints that need to count the numbers that happened in the past, the

number of certain kinds of operations that happen in the past those are called state full

sequencing constraints. And in the next module will introduce finite state machines or

finite state automata with which we can work to model state behavior related sequencing

constraints.

Thank you.

