
Software Testing
Prof. Meenakshi D’Souza

Department of Computer Science and Engineering
International Institute of Information Technology, Bangalore

Lecture – 16
Software Design and Integration Testing

Hello again, this is the second lecture of the fourth week. What I wanted to do today was

to continue with graph based coverage criteria, we saw how to test code based on a graph

coverage criteria. The basic idea was to take the control flow graph model it as a graph

and then consider the various structural coverage criteria to be able to do graph coverage

and then we augmented the CFG with definitions and uses, looked at D u pairs, D u paths

and tested it for data flow criteria.

(Refer Slide Time: 00:47)

And what did we achieve by doing this? It was basically white box testing of code, we

could cover the code see what statements were executed, how many times loops were

executed  where loops skipped and so on,  and through examples  we saw that  it  was

indeed useful to find the errors in codes.

Now, I want to continue to use graph coverage criteria, but instead of considering code I

want to be able to work with design, graphs for design models right. When it comes to

design the phase of testing that we are looking at is what is called integration testing, and

integration testing basically assumes that design puts the software into various modules it



puts together these modules and test set. So, what I want to spend some time on with this

lecture is to help you understand the traditional or the classical view of integration test.

What is integration testing, how has it been defined in the popular textbooks available on

software testing, how do graphs corresponding to integration testing look like, right. So,

today we will look at the classical view of integration testing any old book on software

testing that is existed for many decades will use this view of integration testing. In the

next lecture what I will tell you is I will tell you graph models for design and how to

apply structural and dataflow coverage criteria on those graph models we have to define

slightly new structural and dataflow coverage criteria to be able to cater to graph models

for design we will do that in the next lecture.

This lecture we will just spend on understanding integration testing as it is always been

classically presented in several text books and software texts.

(Refer Slide Time: 02:30)

So, when I say software design what is it? Software design for a large piece of software

is basically tells you details about how its large piece of software is split into modules

since their software runs into several thousands of lines, of code or even millions of lines

of code it is all not going to be one flat piece of code right; it is going to be split into

several components each component is going to be designed and implemented by maybe

by separate  team, separate  individuals and then they are all  going to be put together

modular way to be able to constitute the whole piece of software.



Typically for software popular design languages are UML unified modeling language,

system ML system modeling  language and some proprietary  embedded  software  are

modeled using proprietary design languages or even languages like simulink state flow

etcetera. In this lecture we really will not consider each language for design and look at

models for these languages instead I will assume that design is just a way that tells you

how the software is split across modules and then we will see how these modules are put

together and tested. So, what is a module? A module or a component these terms will be

used interchangeably it is a self contained element of a piece of a software or a system.

What do I mean by self contained? By self content I mean that it takes inputs executes,

and produces outputs. For its execution it is not dependent on another piece of software

running or calling another piece of software or availability of data from another piece of

software right. So, it executes as a standalone entity, stops its execution produces outputs

and stops. Simplest view of a module would be a procedure in C or a method in Java

right, individual method. Modules interact with each other using what are call interfaces,

we will see what are the various kinds of interfaces, but interfaces always have to be well

defined.

What is an interface? An interface you can think of it as implementing a mechanism for

passing control and data between modules. So, one module can call another module or

procedure or a function can call another procedure or function in which case it passes

control to the other called procedure or function, and when it calls it  can call it with

certain data right it says you, please return this data to me or run it with this input and

return the following input. So, it also exchanges data between the call procedure and the

calling procedure, right.

So, interfaces are basically mechanisms that facilitate this call and return, control of call

and return of data. Integration testing is basically a phase of testing that deals and tests if

all  the  modules  have  been  put  together  properly  as  per  design  and  whether  all  the

modules put together meet the functionality that they are supposed to meet together.



(Refer Slide Time: 05:36)

When its integration testing typically done if you remember the phases of testing and the

levels  of  testing  that  we saw right  in  the  first  week  integration  testing  immediately

follows unit testing right. When I mean integration testing here I mean integration testing

of software modules, there is also what is called software hardware integration testing

which involves putting the piece of software in the hardware and then testing. That is not

the focus for today’s module. We mean software-software integration, putting together

individual code components and testing the software right. 

Modules can be put together in several different ways, but whatever; however, they are

put together the way of putting them together is predetermined and its incremental it is

not like I suppose I have 15 modules, we develop all the 15 modules and one fine they

just sit and put together right we do not do that. We have a well defined incremental way

of putting together all the modules. Integration testing basically what it does is that it test

if  the modules that have been put together are working fine, while testing for this it

focuses on testing the interfaces - how are the calls and returns happening, the focus is on

that designing test cases to see if there are any kind of errors on these interfaces. So, we

spend some time understanding what are the various types of interfaces and how we will

be dealing with them



(Refer Slide Time: 06:55)

The  most  common  interface  is  what  is  called  procedure  call  interface.  So,  here  we

assume that a software procedure a function or a method in one module calls another

procedure  or  a  method  in  another  module  right,  this  call  could  be  called  parameter,

passing call by value right several different ways that you would study in any standard C

programming would apply to this kind of interfaces. Both control and data can be passed

I mean both the direction. So, when it calls another module it transfers control to the

other module and while it transfers control it also passes some data and when the call

module returns back the control to the main module while returning back it could pass

some data.

Second popular type of interface is what is called a shared memory interface here we

assume that there is a block of memory that is available at some place. This block of

memory could be within one of the modules that are sharing the interface or could be

available or created by a third module in a different interface. How do these two modules

communicate? They communicate by reading from that block of memory and writing

onto  that  block  of  memory.  So,  this  is  a  common shared  global  location  and  these

modules  communicate  by  reading  from and  writing  to  that  value.  Typically  several

systems software, like operating systems, embedded software they all use these shared

memory interfaces.



The third popular interface is what is called a message passing interface. Here what we

do is that we assume that there are dedicated channels or buffers available and various

components communicate by sending and receiving messages on these channels. Popular

examples  of  systems that  communicate  with  message  passing  interface  are  what  are

called client server systems right, IoT is a very popular system these days that basically

says that each individual IoT device is a client and then there are aggregate or nodes,

common nodes. So, it can be thought of as a kind of a client server system. Web apps,

web applications  that  we all  popularly  use  right,  social  networking applications  like

Facebook, Twitter and all other things they also exchange a lot by using message passing

interfaces. So, this gives you a broad idea of what the various interfaces could be. 

But the testing methodologies that we would see today are independent of these kind of

interfaces this is just to educate you a bit about various interfaces that could actually

exist. When we look at testing techniques for integration testing for today’s lecture we

will abstract out and not worry about which is the kind of interface that is in play.

(Refer Slide Time: 09:47)

And why is it important to test for interfaces it is important to test for interfaces because

a  lot  of  errors  could  come  from  interfaces.  In  fact,  empirical  studies  in  software

engineering,  empirical  studies  or  studies  based  on  collecting  factual  data  right  from

various organizations which contribute to these data we use lot of statistical tools to be

able  to  come to  conclusions.  Such empirical  studies  actually  indicate  that  almost  25



percent, at most 25 percent the total errors that come in software are basically related to

interface errors, wrong calls wrong returns whatever they are. What could be these kinds

of errors?

So, here is a broad category of the various kinds of interface errors that can happen. It

could be the error could be related to module functionality in the sense that let us say one

module is calling another module it could assume that the module that is calling offers

some kind of functionality for sure. But then it might be the case that the module that is

being  called  has  inadequate  functionality  is  not  being  able  to  offer  the  kind  of

functionality and its assumed to offer, there could be errors because of that and there

could be errors in where the module that is being called is located right, it could be in the

wrong place, it could be in a place where it is not being able to call it easily right or the

module that is calling could have been removed, could have been changed a lot of things

could have happened.

The next kind of error is the actual interface error itself in the sense that the interface can

be misused. Suppose a procedure is calling another procedure let us say the first one

procedure call interface, it could be the case that you are passing the wrong parameter

type you are passing parameters in the wrong order, you have missed passing certain

parameters,  you are trying to pass more parameters any kinds of errors could happen

right. 

The next is what is called inadequate error processing. So, here what we assume is that

lets say suppose two modules are there one module is calling another module, you are

also supposed to do some elementary debugging or error processing as a developer. Let

us say the call  the module  is  error  prone,  the calling  module is  supposed to  have a

handler  that  is  supposed  to  handle  an  erroneous  message  from  the  module  that  is

returning the value,  maybe that  was not  correctly  done right  or it  was assumed that

certain kinds of errors would be there and those kinds of errors were not possible. So,

there could be interface errors due to incorrect error handling. 

The next is initialization and other value errors. You could pass wrong initial values, you

could pass wrong data values, you could have missed initializing values anything can

happen.



The  last  kind  of  popular  interface  errors  are  related  to  timing  and  performance.

Sometimes you not only call a module you want to call module to respond to you fast

enough, you wait for some time and if there is no response your timeout right and there

could be errors because you have decided to timeout early or you waited for too long

there  could  be  errors  related  to  these.  But  the  basic  summary  is  that  interfaces  are

important, they can cause up to 25 percent of the errors that occur in typical software, so

it is important to be able to test interfaces and integration testing focuses only on that.

(Refer Slide Time: 13:13)

Before we move on and look at  various  approaches or methods of doing integration

testing its useful to understand two other terminologies related to testing. As I told you

right integration testing puts together the modules and test them as and when they are

ready. The typical believes is that integration testing need not wait until all the modules

are ready because that will be too late right, suppose you had the typical large systems

may have 100s of modules it does not make sense to wait through all the modules are

ready. So, you test the system as and when the modules become available, right. 

So, when you are testing the system as and when the modules become available you may

not have the full test system that is test ready. So, what you have to do is a process in

testing that is referred to as scaffolding. So, what happens in typical scaffolding is that

whichever portion of the software is missing or is incomplete you try to substitute for it



right. There are two kinds of popular scaffolding that is available one is what is called

test stub and the other is what is called a test driver.

What  is  a test  stub? The word stub says that  suppose you had a module which you

wanted a module and you did not really have it. So, you create a dummy module which

behaves as if the module that you wanted was there right it takes some values it returns

maybe some dummy values, but it does not represent the module. It is just a dummy

entity that is being substituted for the actual module right. The dummy entity could need

not represent the actual module it can differ a lot from the actual module that is all right,

but we still need a dummy entity to be able to go ahead and test. So, when I substitute an

actual  module with a  dummy entity  that  behaves  like  the actual  module  in  terms of

interacting with the interfaces I have developed what is called it test stub.

The next kind of scaffolding is what is called it test driver. What is the test driver? That is

the software component that replaces a component that is supposed to take control of the

calling of the software component right. Suppose you have three modules that have to be

tested for integration testing, you want to put together and test. It so happens that three

modules are being called by the parent module let us say one after the other, but the

parent module itself may not be ready. So, then what you do is that you create a dummy

parent module it is called a test driver and make this dummy parent module just call

these three modules right. So, when you do that then that kind of scaffolding that you

develop is what is called a test driver. They are very very needed for integration testing it

cannot integration testing cannot happen without stubs and drivers. 

So, just to succinctly repeat what I said till now. What is a stub? A stub can be thought of

as a module that is like a dummy, that represents the actual module. What is a test driver?

The test driver is a dummy, but not for replacement of any module it is a dummy module

that calls the other modules that are in the lower level than this



(Refer Slide Time: 16:37)

So, there are five broad approaches to classical integration testing. Most of the books in

software  testing  would  refer  to  these  approaches,  the  older  books.  The  five  broad

approaches are incremental testing top down integration testing, bottom up integration

testing, sandwich testing and big bang testing.

(Refer Slide Time: 17:00)

So,  we  look  at  them  one  after  the  other  what  is  incremental  testing  approach  to

integration testing. So, as the word says incremental means you do it in an incremental

fashion as and when you move you keep integrating and testing right.



So, the complete system is built incrementally phase by phase or cycle by cycle as and

when the modules of one cycle are ready I put them together to integration testing. The

next cycle is ready I put them together do integration testing and each cycle is tested for

modules working in that cycle together, errors are fixed then and there and what is done

later on is incremental testing, the cycle that has been put together first is not retested all

over again.

(Refer Slide Time: 17:50)

Another popular approach to integration testing is what is called top down integration

testing. So, here it assumes that the system design that breaks up the software into its

various modules is hierarchical. So, it assumes the modules are organized in a hierarchy

of levels. 

So, here is a small example if you refer to this figure here. There are 7 modules in this

figure A B C D E F G and as you see the modules are arranged as if they were the

vertices of a tree right, this vertices of a tree represent implicit hierarchy that is available

in the module. So, here what it means is that there are three levels of hierarchy modules

E F and G are at the lowest level of the hierarchy, C calls these modules E F and G,

modules B C and D are at the next high level of hierarchy and module A is at the topmost

level of the hierarchy and that calls all the three modules B C and D.

It so happens that in this case the figure looks fairly balanced and complete at every level

there are equal number of modules, but it may not be like that. What I meant is that there



are several modules organized into levels at each level; the modules from the previous

level call the modules in this level right. So, it has a tree or a directed acyclic graph

structure to it right. So, the terminal modules are the modules that occur in the leaves of a

graph in this case B E F G and D are the terminal modules, A is a top level module, C is

an intermediate module right. This is my reference document to begin the next phase

which is top down integration testing and bottom up integration testing for that matter.

So, I have such a structure what do I do when I do top down integration testing. So, there

is a top and I start from the top which is the module A and I go down as I do integration

testing. So, that is what is top down integration testing.

(Refer Slide Time: 20:05)

So, what I do? I will explain it in these figures. So, this is the total software design, there

are three levels 7 modules I want to put them together one after the other, one after the

other and test, and I want to put them together and test in a top down way. How do I go

about doing it? I initially, I start with the topmost module which is the module A, module

A calls modules B C and D right, it is not wise to put all B C and D together and test A, I

would want to test how A works with B, how A works with C and how A works with D

independent of each other and I want to test how A works B C and D together.

So, what I do first is that I will keep A, A is unit tested ready and keep B which is a unit

tested ready actual module, what I do is I create stubs for C and D, I create test stubs for

C and D. So, even if actual module C and A are ready I do not put into them now, I just



made them a stubs, dummies and why, because my focus is to test the interface between

A and B alone. I test this part and now what I do assuming that have tested all bugs if

found  fixed.  Now I  move  on to  testing  the  next  interface  I  could  test  the  interface

between  A and  C or  A and D,  in  this  particular  example  I  am testing  the  interface

between A and D, order does not matter, you could do A and C before you do A and D

there is no problem.

So, if I test interface between A and D it is not wise to stub B now, because B is tested

integrated with A, so I retain it as it is I remove the stub for D, I replace D with the actual

module right and then I test  whether the interface between A and D as added to the

interface between A and B which was already tested works fine. And the third step what I

do is I replace C with the actual model right. Now remember in that graph in this figure

C is a module that in turn calls E F and G right. So, when I replace C with an actual

module it comes as it calls for E F and G, but for now I still want to focus in test if the

interface between A and C is working fine. So, I do not keep the module C E F and G

actual, I stub them out or they may not be ready I do not really worry about it I just stub

it out now.

Now, at this phase what am I testing? I am testing the interface between A and C to be

working fine after having tested the interface between A and B, and A and D right, I still

have to go on because I have to remove these three stubs and carry on right.

(Refer Slide Time: 23:10)



So, I can remove them in any order, here I have removed this stub for E, replaced it with

the actual module for E, now I am testing this interface between C and E. And I move on

I remove the stub for F replace it with the actual module for F test the interface between

C and F and the last step I remove the stub for G replace it with the actual module G and

interface  test  the  whole  system.  So,  this  is  what  is  called  a  top  down approach  to

integration testing.

I begin with the topmost module A then I go and test the second level modules B C and

D I can test them in any order, but typically I would want to do B and D because it

testing C will involve moving to the third level. Between B and D I can test them in any

order and then I move on to the next level which is testing C and here there are three

more modules to be tested and because there is no further calls I can test them in any

order. So, I go from top all the way down and integrate the modules one after the other

and test them. So, this is how top down integration works.

(Refer Slide Time: 24:17)

The next approach to integration is what is called bottom up integration. So, here as the

name says  I  start  from the  modules  at  the  lowest  level  and keep moving up in  the

hierarchy till I reach the top most level right. What is the lowest level modules it is a

module that looks like this E F G B D a lowest level models, they do not invoke any

other modules right. Now to be able to put together the lowest level modules if you go

back and see this figure E F and G are the lowest level modules right. Suppose I want to



be able to test the interfaces for E F and G how do I test them? E F and G do not really

call each other as for this figure right. Who calls E F and G? It is actually C that calls E F

and G right. 

But my goal is to go bottom up if I use this test directly C E F G and violating the

approach of bottom up integration testing I test the bottom most level with one level top

which is C, I do not want to do that. So, what I now do is I create a dummy for C right,

what  is  the dummy for C? I  need a dummy that  behaves like C in terms of calling

modules E F and G such a dummy is what is called a test driver. So, I create a test driver

module that invokes the lowest level modules to be integrated. I test for that level lowest

and one  level  up  and then  this  test  driver  module  is  actually  replaced  with  the  full

module and then I go one level high and introduce the next test driver. So, that is what is

illustrated in this figure.

(Refer Slide Time: 26:01)

My goal is to do bottom up I start from the lowest level module. So, I start from E F and

G, I do not want to put C as it is. So, I write a test driver for C that calls modules E F and

G. And in the next step I replace C the test driver with actual full module C, now my idea

is to integrate the test B C and D I still do not want to include A because A comes at next

level  above  in  the  hierarchy.  So,  I  now write  a  test  driver  for  A and  then  test  the

integration of modules B C and D at the second level finally, I replace the test driver for



a with the actual module and integrate test the whole system, right. So, this is how top

down and bottom up testing works. 

For top down to recap I need stubs to test one interface at a time, stubs are dummy

modules that replays other modules just returns some dummy values or fixed values that

are consistent with the module values that it would return and I do top down start from

the topmost modules and keep going down my hierarchy. In bottom up I start from the

lowest  level  modules and keep going up then the hierarchy,  but to integrate  this  the

lowest level modules I need to be able to write test drivers which are dummies, which

will for the name sake call the modules at each level that have to be integration tested,

right. These two are the most popular integration testing techniques.

(Refer Slide Time: 27:41)

There are other popular techniques called sandwich and big bang. So, what is sandwich

do? As the name suggests its somewhere between top down and bottom up. Sometimes it

uses top down sometimes it uses bottom up sometimes it uses a mix of them right, it

could be the case of the lower level modules are tested using bottom up the higher level

modules are tested using top down and then they are put together in a sandwich (Refer

Time: 28:09)

The next popular approach to integration testing is what is called big bang testing all

individually tested modules are put together in one shot and tested. I am personally not a

very big fan of big bang testing because I feel that it is very difficult to isolate a fault



when an error happens in a fairly large piece of software. I would advocate that when

there is a clear cut notion of hierarchy, you follow either top down or bottom up based on

which are the modules that are readily available for you to integrate and test.

(Refer Slide Time: 28:39)

So, now what we will do in the next lecture is we will go back to our favorite graph

models, our focus is now to look at graph models for design and see how they apply to

integration testing as we learnt today. So, what do graph models for integration testing

look like? If you see the ones that we saw here right these are graphs, all these are also

graphs.  So,  what  do  the  nodes  in  these  graphs  represent?  They  represent  modules

sometimes they could represent stubs or drivers right. What do the edges represent? They

represent interfaces.

As I told you I really do not worry about which is the correct interface for now, when we

go later  weeks look at  object  oriented software,  web software at  that  time we worry

about interfaces, but for now I consider them as just edges. Now we want to see how to

apply structural coverage criteria which will deal with calls on the interfaces and how to

apply data flow coverage criteria which will deal with parameter passing and return. 

So,  in  the  next  module  we  will  look  at  graph  models  for  integration  testing  and

specifically consider coverage criteria for all these things.

Thank you.


