Software Testing
Prof. Meenakshi D’Souza
Department of Computer Science and Engineering
International Institute of Information Technology, Bangalore

Lecture - 15
Data flow graph coverage criteria: Applied to test code

Hello again, now we are in week 4 this is the first lecture of week 4; what are we going
to do today. Today I will complete testing of source code using the graph models; if you
remember last week we took source code then we looked at control flow graphs over
source code and then we saw how the various structural coverage criteria applied for
these, what we will be doing today is take source code again, but instead of looking at
control flow criteria alone we will consider the CFG or the control flow graph which is
augmented with Defs and uses of data, and see how the data flow criteria that we had

learnt about last week applies to testing of source code.

(Refer Slide Time: 00:56)

Graph coverage criteria: Overview

o We look at graphs as structures and look at the following two
coverage criteria over graphs.

o Structural coverage criteria.
o Data flow coverage criteria.

o Later, we consider software artifacts (code, design elements
vand requirements) modelled as graphs and see how these
coverage criteria apply to them.

@ Focus of this lecture: Using data flow coverage over graphs to
test source code.

This is what we have done till now it is a summary of what we have done. So, we have
looked at graphs the structures and we have learnt about 2 kinds of coverage criteria:
structural coverage criteria and data flow coverage criteria. We learnt various coverage
criteria see how they (Refer Time: 01:10) then what we saw last week was we took
source code, we learnt how to draw CFG modules for each bits of design construction

source code and then we took an example, we took the holes CFG for that example and

learnt how to apply structural coverage criteria to test that source code by applying the

coverage criterion the CFG.

Today what we will do is we will take the source code, take the CFG augment the CFG
with depth and uses and see how to apply the 3 data flow criteria that we learnt on those

things to test the source code.

(Refer Slide Time: 01:46)

o We consider CFGs augmented with data and understand how
the three data flow criteria come to use for testing code.
¢ Data could be defined and used in nodes in the CFG.
o Data is used in the edges of the CFG.

L]
o Data flow criteria test if every definition reaches its use.

So, to start with I will recap data flow coverage criteria, and then like we did in the
previous example we will take one example code draw a CFG, look at the Defs and uses
and see what applying dataflow coverage criteria to them will mean. So, as I told you we
look at CFGs augmented with data, data as augmented as definitions and uses definitions
and uses. Definitions and uses occur in the nodes of the CFG, there are no typically
definitions in the edges of this CFG when it comes to modeling code definitions come
only a nodes edges have uses in them. So, what are data flow criteria’s goal, it is to be

able to write test paths that check if definition reaches is used in 1 way or the other, right.

(Refer Slide Time: 02:31)

Recap: Def-use paths

o A du-path with respect to a variable v is a simple path that is
def-clear from a def of v to a use of v.
o du-paths are parameterized by v.
o They need to be simple paths.
o There may be inte#vening uses on the path.

° du(n,‘}nj, v): The set of du-paths from n; to n; for variable v.
o du(n;,v): The set of du-paths that start at n; for variable v.

So, we recap a few basic concepts about data flow criteria that we learned from the last
weeks lectures, we learned what is called a def use path abbreviated as d u-path; d u-path

are with always reference to a fixed variable b.

What sort of paths they are the first thing to notice that they are simple paths they do not
have any cycles, and they trump from a node that contains a definition of v to a node or
an edge that contains a use of v. What we insist is that in between these 2 definition and
the corresponding use, there are no further definitions of v in all the intermediate vertices
along the simple paths. So, this is what is written here we have parameterized by the
variable v they need to be simple, and that they need to be no intermediate definitions,
but they could be intervening uses we really do not worry about that, and for a variable v
if there is a d u path going from n i to n g we write it as d u of n i, n j, v for a variable v

the set of d u paths beginning at the node n i is writtenasdu of niv.

(Refer Slide Time: 03:40)

Recap: Data flow criteria

There are three common data flow criteria:
o All defs coverage: Each def reaches at least one use.
o All uses coverage: Each def reaches all possible uses.

o All du-paths coverage: Each def reaches all possible uses
through all possible du-paths.

To get test paths to satisfy these criteria, we can assume best effort
touring, i.e., side trips are allowed as long as they are def-clear.

What are the 3 dataflow criteria that we learnt? Not as many a number of structural
coverage criteria only 3 n number. So, if you remember the 3 criteria deal with how the
definition goes to with use. The first one was called all Defs coverage, it basically
insisted that each definition reaches at least one use; it basically insists that the variable
is never defined and not used at all. The second criteria says all uses coverage it insists
that each definitions reaches all possible uses. The third criteria called all d u paths
coverage says that each definition reaches all possible uses using all possible different
paths that take the definition tools use, and another thing to remember is that when we

consider these 3 data flow criteria what are called test requirements, right.

So, when we consider test paths to test these test requirements, we assume that the test
paths can be taken with what is called best effort touring. So, which means you allowed
side trips and detours as long as it remains to be a test path and you can use the test paths
to satisfy data flow coverage criteria, one extra requirement that we have about this side
trips that could come in best effort to array, if this side trip should still be definition clear

that is always a condition that we insist.

(Refer Slide Time: 05:09)

Re-visiting Example program: Statistics

public static void computeStats (int [] numbers)
{ int lemgth = numbers.length;
double med, var, sd, mean, sum, varsum;
sum = 0.0;
for(int i=0; i<lemgth; i++)
{ sum += numbers[i]; }
med=numbers [length/2] ;
mean=sun/(double) length;
varsun = 0.0;
for(int i=0; i<lemgth; i++)
{ varsum = varsumt((numbers[i]-mean)*(numbers[i]-mean)); }
var = varsum/(length-1);
sd = Math.sqrt(var);
System.out.println ("length:" + length);
System.cut.println ("mean:" + mean);
0 System.cut.println ("median:" + med);
) System.out.println ("variance:" + var);
System.cut.println ("standard deviation:" + sd);

So, if you remember we had looked at the statistics examples when we had seen the

control flow graph and how to draw it, I am recapping the same example this is the code

for the same statistics program.

We will quickly recap what it does, it takes an array called numbers and then it is idea is
to compute various statistical parameters about this array. What are the various statistical
parameters that it computes? It computes the median, variance, standard deviation means
sum and the variance and how does it go about doing? It is very simple this formulae as
straight forward initializes the sum to 0, computes the sum in a for loop, then it computes
the median mean and then it initializes varsum to 0 uses another for loop to compute the
varsum and then it computes the variance an standard deviation, and it prints all the

values that it is computed, right.

So, this is how the program looks like. So, if you remember the control flow structure of
the program, there are 2 for loops one here and one here and the whole set of assignment
statements before the first for loop 3 statements in between the 2 for loops, and a few

statements and belong with printouts after the third for loops.

(Refer Slide Time: 06:18)

Re-visiting: CFG for Statistics program

"\ 3
<. i»=length

i<length
'y 5

i++
~, =0

i<length R4

[Page 7 of 20]
iiii=1engths
7 8
it4

So, here was the control flow graph for the statistics program that we had drawn last
time, node 1 is where we begin and the node 2 initializes the for loop, node 3 is this
dummy node corresponding to the CFG of the first for loop, this 3 4 structure here enters

and executes the first for loop.

This 3 to 5 means I have finished computing the sum here in the first for loop, and move
on to compute the median, mean, variance sum and then go on to the second for loop. So,
that is this path 3 to 5, I do all the other initializations the other computation sorry
median and other things here at node 5, and then I move on to node 6 where I begin the
second for loop this cycle of length 2 between 6 and 7 executes the second for loop, and
when I take from 6 to 8 I finished my execution, 8 is the node where I go ahead compute

this var standard deviation and do all these printouts.

So, in this CFG that we have drawn here corresponding to the statistics program, we
have given labels corresponding only to the length I have written the same structure that
we used it in the last module, we have not given all other labels just to reduce clutter. But
I hope you remember what labels node 1 the statements that label node 1 are all these
statements before the beginning of the for loop, 2 begins the for loop 3 to 4 executes the
for loop 3 to 5 comes out of the for loop, at node 5 we do all these computations median,

mean, initialized varsum; node 6 begins the second for loop the cycle 6 to 7 executes the

second for loop, 6 to 8 exits the for loop, at node 8 we compute var standard deviation

and do all these print Defs, right. So, that is the CFG.

(Refer Slide Time: 08:23)

Statistics program: Definitions and uses at nodes

Defs Uses
{numbers,sum length} | {numbers}

{i}

{sum,i} {numbers,i,sum}
{med,mean varsum,i} | {numbers length,sum}

{varsum,i} {varsum,numbers,i,mean}
{varsum length,var

CoO =~ O N B Wk =

So, if you look at the CFG it depicts plane control flow graph. My goal is to be able to
augment the CFG with data information specifically with information about definitions
and uses of data, that is what we are going to be able to do it again what I have done is
have drawn tables, where I have taken nodes from the CFG we will go back to the
control flow graph, if you see the nodes are numbered 1, 2, 3, 4 and so on up to 8, at each
node certain variables are defined and certain variables are used. So, this table lists
which are the variables that are defined at each of the nodes and which are the variables

that are used at each of the nodes.

So, if you see it says at node 1 3 variables I define. What are the 3 variables numbers
sum and length. So, let us go back and see how they are defined at node 1. So, this is
node 1 in the CFG, it marks the node where all statements that happen before the
execution of the first for loop are. So, we go back one slide which are the statements
these are the statements there is this length is numbers dot length by compute the length
of the array, I do all these initial the declarations and then I initialize. So, it says node 1
represents that and the variables that are defined that node 1 are these array numbers
which is taken as input, sum which was initialized to 0 and length which computes the

length of the array.

So, that is what these statements correspond to numbers which was taken as input, length
which initially which computed the length of the array, and sum which was initialized by

0.

So, it says at node 1 which corresponds to those statements these are the definitions.
What are the uses at node 1 it says the array numbers is used at node 1 why is that so? If
you go back to the statement, we have this statement right which says length is numbers
to length. So, it says you compute the length of this array numbers and set it to the

variable length.

So, the numbers as an input as a variable which is an array data type is also used at node
1 right. Node 2 is very simple it initializes the index corresponding to the for loop. So,
the only variable that is defined at node 2 is i, nothing is used at node 2. We go back to
the CFG see node 3, you remember node 3 corresponds to the beginning of the for loop
and in the module where we discussed how to draw control flow graphs corresponding to
loops, I told you that CFG is corresponding to loops will have a dummy nodes. Dummy
node in the sense the node that is meant for the loop to come back 2 3 such a node
because there is a dummy node corresponding to the for loop there are no definitions and

no uses at node three. So, this whole row is left blank.

I move on at node 4 what happens the for loop gets executed. Let us go back to the code
and see which is the statement that gets executed in the for loop that is this. So, it a just
take the variable sum, add the value of the next number that you find in the array
numbers to the sum, and keep repeating it for the entire length of the array. So, the
definitions at sum at node 4 are sum, because it is set back to sum and i and what are the
uses? Uses are the array numbers i and sum again a set here and node 5 what happens if
you go back to the CFG node 5 we are out to the for loop, which means we finished
going through this array compute that the sum of all the numbers that we found in the
array, we are out of this for loop we are doing these 3 statements we are computing the

median, we are computing the mean, and we are computing we are initializing varsum.

So, the Defs at node 5 are median, mean, varsum and i. Why is i there? I is there because
I still came out at node 5 when i exceeded the number of iterations of the for loops, I still
gets defined at node 5 the last increment of I happens at node 5. So, the Defs at node 5

are all these the uses at node 5 are numbers length and sum; because these statements use

those variables to be able to compute the mean, median and initialize varsum. So, the
Defs an uses a node 5 I hope are clear; node 6 if you go back again is a dummy node that

corresponds to the loop.

So, I that is no Defs uses for node 6, I move on like that node 7 corresponds to the
execution of the second for loop. So, the Defs at node 7 are these, the uses at node 7 are
these. If you remember node 7 was inside this for loop where this is computed varsum is
computed. What do I use here? I use the variable mean, I use varsum which are
initialized to O here, and I use the array number. What do I use them for? I use them to
define varsum once again. So, that is what the table indicates right I use varsum numbers
I and mean, and I define varsum and I also increment I in node for a for loops that also
comes with definitions. At node 8 I am out of this for loop and I do all these statements,

right.

So, the Defs and uses at node 8 are like this, I define variance and standard deviation and
I print out all these values. So, because I print out all these values at node 8, they are all
come as uses for node 8. So, is it clear please how this table has arrived at I take the CFG
list all the vertices of the CFG per vertex, I go back and see what are the definitions,

what are the uses.

(Refer Slide Time: 14:11)

Statistics program: Uses at edges

{i,length}
{i,length}

{ilength}

: {ilength}

So, what we do now is repeat this exercise for the edges of the CFG. Remember when
we talked about edges of a control flow graph there are no definitions associated with

edges of a control flow graph corresponding to code.

So, typically it will only be uses and again where do use is come use is come only in
those edges that involves checking of conditions. So, if you go back and then see the
CFG the uses, which are the edges that correspond to the users will be very clear. The
edge 3 5 means that I am exiting the for loop. So, this condition holds the invariant of the
for loop is no longer true, the edge 3 4 means I am executing the next iteration of the for
loop. So, this condition holds. So, these correspond to uses at these 2 edges. Similarly we
uses this at these 2 edges 6 8 and 6 7 are these, that is what is written here and all other

edges there are no uses, so they are left blank.

So, the uses at edge 3 4 are i and length, the uses at edge 3 5 are i and length, the uses at
edge 6 7 and 6 8 which correspond to the execution of the second for loop are again i and
length. Please remember that in this code we have used the same variable i to represent
the first for loop and second for loop and when i document Defs and uses, I again reuse
the same variable like; it really does not matter, but if you find it very confusing you
could call the index of the second for loop using another variable, you could call it as a
variable j and then track Defs and uses for j, it will still be the same right there is no

harm in using the same variable again, right.

So, what have we done till now we have taken the control flow graph, taken each node in
the control flow graph written down what which variables are defined at a node which
variables are used at node; and then we took each edge in the control flow graph, and
talked about are there any variables that are used at these edges and if there are what are
they that is this table. Now the next step after we have documented the definitions and
uses is to compute definition use pairs right. So, now, if you remember d u pairs are
always parameterized by variables. So, per variable I document to the various def use

pairs or d u pairs.

(Refer Slide Time: 16:21)

Statistics program: du-pairs

Variable | du pairs

numbers | (1,4),(1,5).(1,7)

length 1,5),(1,8),(1,(3.4)).(1,(3.9)),
(6.7)).(1(6.:8))

1
med 5
var 8
sd 8
mean 5

8
8
8
N

(39)

So, for the variable numbers let me go back numbers is defined at node 1 and where it is
used at node 4, it is used at node 5, and it is used at node 7 is it clear. It is also used at
node 1 right so, I write that in this table. For the variable numbers it is defined at node 1
used at node 4, defined a node 1 used at node 5, defined a node 1 used at node 7. So, you
might wonder it is also defined and used at node 1, why have I not listed it in this table? I
have not listed it in this table because that will violate the condition that from node 1 to

node 1 the path is def clear right because to define and use to the same node.

So, when that happens we typically do not list it as a d u path; because it violates the
condition of the path being simple and it violates the condition of the path being def clear
I list everything else and I do is exercise for each of the variables. So, I repeat this
exercise for length for median, variance standard deviation mean, sum varsum and I right
this data spread across 2 slides. So, what is it for length let us go back, if you see length
is defined at node 1 you see here the length is defined at node 1 whereas, length used
again it is used a node 5 it is used a node 8, and when it comes to users we have to look
at edges also it is used at node edge 3, 4, it is used at edge 3, 5, 6, 7 and 6, 8 that is what

is listed here.

Its defined at node 1 used Def 5, defined at 1 used at 8 and defined at 1 and used at all

these various edges. So, please read this as defined at 1 used at the edge 3, 4, right I go

on repeating this exercise the variable, median this defined at node 5 used at node 8 that

is what is given here similarly for var standard deviation mean sum varsum.

(Refer Slide Time: 18:48)

Statistics program: du-pairs, contd.

Variable | du pairs

sum 14),(1,5),(4.4),(4.5)
varsum | (5,7),(5,8),(7.7).(7.8)
i 24),(2,(34)
44),(4,34)
5,7),(5.(6,7)
7.7).(7,(67)

(27)(2(67)).(2.(6.8)
(47).(4(67)).(4.(68))

)(2,(35))
)(4(35))
)(5,(6.8))
)(7,(6.8))

And for i, if you see the list of the d u pairs is quite vast, because I is the index of the

variable for loop and it comes in 2 for loops in the code right.

And if you see here in these tables also in the use of edges this i all over in the uses in the
Defs of nodes there is i here there is i here correct. So, the d u pairs for the variable i is
quite a bit this one that begins at 2 talks about i being used in the first for loop, 2, 4, 2 an
edge 3, 4, 2 an edge 3, 5, 2 an 7, 2 an edge 6, 7 this one talks about it is i being used in

second for loop right. So, the d u pairs for i is a large set right.

So, is it clear what we have done till now, we took the CFG augmented the CFG, with
Defs and uses augment at each node of the CFG with definition and use augment at each
edge of the CFG with uses; then which just repopulated the table we said we will take 1
variable at a time and used the pairs where the variable is defined and used. The
definition of a variable typically comes only from the node; the use of variable could
come from a node or from an edge. So, this is the set of all the d u pairs corresponding to

each of the variables in the code these 2 tables depict that right.

(Refer Slide Time: 20:22)

Statistics program: DU paths

Variable | DU pairs DU paths
number | (14),(15).(1,7) | [12.34),[1.2.35],[1,23,56,7]
length 5).(L8), [12,35)[1,2.35,6.8],

h [12,34][1.2359]
[12,356,7][12356.8]
med , [5.6.8]
A No path needed
sd : No path needed
[1234]]1.235]
[4,34),4.35]

Now, after we have had d u pairs we are ready to define definition use paths. So, we take
the same data per variable which are the d u pairs, and then say; which are the paths that
correspond to this d u pairs. So, take the variable number it is defined at 1 used at 4, and
the paths that takes it from the definition at 1 and to the use at 4 is this path 1 to 2 to 3 to
4. Similarly the variable number is defined at 1 used at 5, and the path that takes it from
the definition at 1 to the use at 5 is this path 1, 2, 3, 5. Take the variable of number
defined at 1 used at 7 and this is the path 1, 2, 3, 5, 6, 7 that takes the definition of the

variable 1 number from it is definition at 1, 2 it use at 7.

Similarly, let us say for from median it is defined at 5, and used at 8. So, the paths that
takes it from it is definition at 5 to it is use at 8 is the path 5, 6, 8; for var and s d is
defined and you study it I as I told you I need not have listed this at all even as I do you
pair. So, I do not list d u paths because they are not def free and they are not simple paths
I ignore them and get going. So, I go on listing for all the variables in the program this

are the pairs this is the paths right.

Now, if you see this concentrate on this column corresponding to d u paths, you will
realize that several paths repeat right. So, if you take this 1, 2, 3, 5, 1, 2, 3, 5 comes here
again 1 2 3 5 comes here again, here again similarly the path 1, 2, 3, 4 here once twice

thrice so, on right.

(Refer Slide Time: 22:15)

Statistics program: DU paths

Variable | DU pairs DU paths
mean | (57),(5.8) [56.7[5.6.8]
58) [5,6,7],5.6,8]
78

varsum | (5,7),(

(7.7).(7.8) [76.7][7.68]

i (24),(2,(34)).(2,(35)) | [2.34].[23.4][23.5]
(44),(4,(3.4)),(4.(35)) | [4,34][43.4][4.35]
(57).(5.(6,7)),(5,(6,8)) | [5.6,7],5,6,7).[5.6,8]
(7.7).(7.(6,7)),(7,(6,8)) | [7.6,7],[7,6,7).[7,6,8]

And if you go for other variables also if you see the path 5, 6, 7 comes here, here, here
and here similarly 5, 6, 8 gets repeated, 7, 6, 7 is repeated there are several repetitions.
So, if you count the d u paths across the last column of these 2 slides, you will realize
that there are totally 38 of them, but lot of them repeat. So, there are only 12 that are

unique, right.
(Refer Slide Time: 22:33)

Statistics program: Du-paths without duplicates

There are 3§ du-paths for Stats, but only 12 of them are unique.
@ Paths that skip a loop:
o Four paths: 1,239, [1,2,3,5.6,8], [2.3.5], [5.6.8]

@ Paths that require at least one iteration of a loop:

o Six paths: [1,23,4], [1,23.4,6,7), [4.34], [7.6,7), [4.3.9], [7.6.8]
o Paths that require at least two iterations of a loop:

o Two paths: [4,34], [7.6,7]

So, these are the 12 unique d u paths, I have grouped them into 3 sets here right. So, the

first set which consists of 4 paths a paths that skip one of the loops in the program. Let us

look at these paths then go back to the CFG and see if they really skip on loop. So, what
are the paths 1, 2, 3, 5 remember from 3 it goes to 5. So, similarly here from 1 to 3 it
again goes to 5 and then does something from 3 it again goes to 5, and from 5 it goes to 6
and 8. So, we will go back now to the CFG and trace out these paths. So, 1 2 3 5 it does
skip the for loop, then 1, 2, 3, 5, 6 enters, but it took then take 7 went to 8. So, it skipped
this second for loop these 4 paths correspond to paths that skip the loop right the
remaining paths 1, 2, 3, 4; 1,2, 3,4,6,7;4,3,4;7,6,7; 4,3, 5 and 7, 6, 8 what do?

They do they require at least 1 iteration of the loop.

So, we will go back to the CFG 1, 2, 3, 4, I have entered the loop I do 3, 4, I have
iterated because once I enter 4 the only way to come out is to execute the loop once,
similarly once I enter 6 the only way to come up to execute the loop once, and I do not
go back to 4 T go to 3 instance. So, these path need 1 iteration of the loop, the remaining
paths which talk about 4, 3, 4 and 7, 6, 7 talk about walking in the loop. I am again going
back to the CFG 4, 3, 4. So, when I do 4, 3, 4 I have come back into the loop. So, I am

taking the second iteration of the loop.

Similarly, when I do 7, 6, 7, I have come back to the loop. So, I am taking a second
iteration of the loop right what did I do? I have started with Defs and then uses and then I
listed the Defs use pairs and then for each Defs use pairs we listed the d u paths. Several
of these d u paths were repetitive. So, there were only 12 unique d u paths, it just so
happens that they correspond to some of them correspond to paths that skip a loop, some
of them correspond to paths that require at least one iteration of the loop, and the rest of
them correspond to paths that require 2 iterations of the loop. So, only these d u paths

that we need to cover.

This information that I told you actually tell you what those paths mean. They actually
mean something like prime path coverage or loop coverage here; because if you see they
nicely skip the loop require at least 1 iteration of the loop and require more than 1
iteration of the loop right. Now what we will do is we will go ahead and write test cases

that execute these d u paths right.

(Refer Slide Time: 25:48)

Statistics program: Test case #1

o Test case: numbers = (44), length = 1.
o Test path: [1,2,3,4,3,56,7,6,8].

o Additiondl DU paths covered (without side trips): [1,2,3,4],
(234], [43.5], [56.7), [7.68].

@ Note: All these require at least one iteration of the loops.

So, what do the test case look like? I want to focus on writing test cases for each of these
groups. So, I will write test cases for paths that require at least one iteration of a loop, I
will write test cases for paths that require 2 iterations is the loop and then finally, write

test cases for paths that skip a loop.

There is a reason why I want to put this at the last it will become very clear so. So the
first test case that I write this for paths that require at least one iteration of the loop, it so
turns out that a very simple test case is enough to do this. The simple test case is the
array is just as it has just one number. So, it is length is 1 and the single number that it
has let us say it is 44 some positive number. So, is it clear? The array is just an array of
length 1 containing a single number 44, and what is the test path that it takes it happens
to take this path 1, 2, 3, 4; 3, 5; 6, 7; 6, 8. Please remember that this is a test path a test

paths by definition has to always begin in an initial node and end in a final node.

So, we take remember this if I do 1, 2, 3, 4 I am entering the loop right if you remember
the CFG, I come back to 3 finish 1 iteration of the loop I go to node 5 which comes out
of the loop then I do 6, 7; 6, 8. So, let us go back and gives this code an input of 44. So,
the numbers array is just an array of length 1 which contains the value 44 length will be
computed as 1, will enter the for loop some will be computed as 44 median mean varsum

will be compute initialized varsum will be computed.

So, in the CFG it will go through 1 2 3 do this for loop once we are just sum is computed
once, it is added 44 is added to 0 come out compute the various things, and then what it
will do it will do 1 iteration of this for loop varsum is computed and come out right. So,
it helps to have an array of length 1 right, because I just want to add that 1 number to
some execute the loop once and come out right that explains why I gave an array of

length 1 as a test case to this right.

So, this is a test path that it traces and which are the d u paths that it covers? It covers in
my list of 12 it covers these paths that needed one iteration of the loop. It covers them
correctly and. in fact, the nice thing is that it covers them without any side trips it covers
them directly you do not need any side trips to towards this right. So, now, I want to
write a test case that will cover paths that will need 2 iterations of the loop, which means
what are the loops correspond to the first loop corresponds to iterating over the length of
the array and adding the numbers to sum. So, I need an array of length more than one

any array of length more than one would do.

So, here is a sample array that I give as my test case, which has the numbers 2 10 and 15
and it is length happens to be 3 right because it has 3 numbers what it will do when it
executes the code is it will take this for loop 3 times and this for loop 3 times, because it
has to go an add the 3 numbers that it finds across the array to the variable sum in this for

loop, and in this for loop it has to compute varsum right.

So, what it will do is that you take the paths it will add the first number, it will add the
second number, it will add the third number go through this for loop more than twice
come again here, go through this for loop also more than twice because there are 3
numbers in my array right. So, the test paths that this one takes will look like this sorry
will look like this. So, it does 1, 2, 3; 4, 3, 4; 3, 4 where the 3 numbers are added here in
the 3 iterations of the loop first for loop, comes out of the first for loop then computes
varsum by doing 3 iterations of the second for loop 6, 7; 6, 7; 6, 7 comes out of the

second for loop at 8 it prints right.

So, in this it covers the paths 4, 3, 4 and 7, 3, 7 which required at least 2 iterations of the
loop. Now if T go back and take this segmentation of d u paths I have finished writing
test cases for paths that require one iteration of the loop, finish writing test cases for

paths that require 2 iterations of the loop, what is pending test case that first path that

skips will loop. So, if you see what will happen if we write a test case for path that is

skip a loop what sort of a test case will that be; that will be an array of length O right.

(Refer Slide Time: 30:42)

Statistics program: Test case #3

@ Only loop coverageicriteria pending needs to skip the loops.
o Need test case with array of length 0.

@ But, the method fails with index out of bound exception: A
fault is found.

What will be a; what will happen if we give an array of length 0? Let us go back and
look at the code. There will be a fault in the code now; probably the first fault that we are
seeing through the span of this course you will get to see little more faults which are
always interesting to find in testing. So, if you see right here what will happen if I pass
the parameter of length O right. I do this i pass a parameter of length 0 I come here
initialize i to 0, i less than length that you fail. So, an exception will be produced and the
code is not meant to handle arrays of length 0, so the method will fail with index out of

bound exception. So, I have found the fault.

So, what was the fault in the code? The fault in the code is very simple; the code did not
handle the corner case of what will happen if an array of length 0 is given as input to the
code. So, the code was computing all the statistical details correctly, it just did not handle
one corner case and that is the fault that we have found by applying dataflow coverage
criteria to this code. So, I hope you walking through this example in detail would have
helped you to learn how to apply dataflow coverage criteria step by step, and see if the

fault of a fault if it is there in the code can be found.

It just so happens that for this example there was a fault and the applying dataflow

coverage criteria helped us to find the fault. We are module is done with looking at

dataflow coverage criteria I would like to recap some of the points that I told you last
week, one is sometimes we are interested in asking how much have we covered in the

code when I apply any of the 3 dataflow coverage criteria.

(Refer Slide Time: 32:22)

Data flow coverage criteria

@ Measuring actual coverage achieved by the various data flow
coverage criteria is an undecidable problem as we have to
work with graphs that contain data information.

o Several studies exist for measuring data flow coverage.

@ It has been reported that the number of bugs detected by
putting the'triteria of 90% data coverage were twice as high
as those detected by 90% branch coverage criteria.

It so turns out that that is a tough problem to solve usually un decidable, and there are
several studies that exist for measuring dataflow coverage criteria we will not be able to
look at such measurements in detail, but empirically it is known that suppose I take one
of the dataflow coverage criteria and I insist that 90 percent of the dataflow coverage

criteria needs to be done right.

It so happens that the coverage that it achieves is twice as high as those detected by
insisting that I do 90 percent of branch coverage criteria. So, a dataflow coverage

criterion is indeed more effective and these are purely empirical studies.

(Refer Slide Time: 33:19)

Reference material

o A latest survey on data flow testing techniques. Covers
several topics not introduced in these lectures also.
T. Su, K. Wu, W. Miao, G. Pu, J. He, Y. Chen and Z. Su, A
Survey on Data-Flow Testing, ACM Computing Surveys,
50(1), April 2017.

@ Data flow testing criteria as discussed in these lectures.

o 5. Rapps and E. J. Weyuker, Data flow analysis techniques for
test data selection. In Proceedings of the 6th International
Conference on Software Engineering (ICSE82). IEEE
Computer Society Press, Los Alamitos, CA, 272V278.

o 5. Rapps and E. J. Weyuker, Selecting software test data using
data flow information. |EEE Transactions Software Engg. 11
(4), 367V375, 1985.

You can look at these papers which I talked about at the end of the previous lectures also,
to look at more details about dataflow coverage criteria. These 2 are very seminal old
papers that introduced most of the dataflow coverage criteria that we looked at
throughout this course, and there is a latest survey on entire data flow testing techniques

that is available right.

So, what we will do next time is we move on to design how to model design as graphs
and how to look at data flow coverage criteria right. Just to end I took the statistical
example from this text book that we have used throughout this course. So, when I see
you for the next lecture we will move on from code to design and see how to apply graph

coverage criteria for design.

Thank you.

