
Software Testing
Prof. Meenakshi D’souza

Department of Computer Science and Engineering
International Institute of Information Technology, Bangalore

Lecture - 14
Testing Source Code: Classical Coverage Criteria

Hello again. We are going to look at the last lecture of week 3 today. So, the focus of this

week has been 2 things: one is data flow coverage criteria graphs and then what we did is

we went back to structural coverage criteria. So, how to model source code as control

flow graphs and how the various structural coverage criteria applied over them.

Today what we will do is that we will learn several graph coverage criteria structural and

those that deal with data. And independently if a familiar with little bit of software

testing you would have heard several classical terms in testing branch coverage,

cyclomatic complexity and so on. What we will do in this module is to see what are the

terms that we have learnt till now, how are all of them related to classical terms in

testing. In this process I will also point you to a couple of other good books in testing

that you could use for general reading, part of the material of these courses is derived

from those books.

So, for today’s module we will not use that book by Paul Amman Jeff Offutt, instead we

will see testing as it is existed for the past 4 decades. So, what are the classical terms and

how what we have done till now relates to these classical terms.

(Refer Slide Time: 01:26)

We know that the source code model can be written as a control flow graph as a graph

model, what are the other models of the graph they are a common model of the graph is

the data flow graph. The kind in data flow graph that we saw in this course took the

control flow graph, augmented with definitions in uses. Is another kind of data flow

graph that people use in program analysis that is it you reach node in the data flow graph

is actually a triple representing the actual values of the various variables.

So, we will not really look at a data flow graphs for the scope of this lecture, there are

several other graphs inter procedural call graphs execution order as I told you in the last

lecture. What would we be doing today in this lecture is to go back in focus on the

control flow graph model of a given piece of code, and then understand what are the

testing terminologies that have traditionally existed. Traditionally means you know

somewhere from the mid seventies people have looked at these testing terminologies that

we will be seeing today.

So, for about 4 decades is been around very popular very well used, and will also

understand how structural coverage criteria from this control flow graph relates to these

classical terminologies that are always been used in test.

(Refer Slide Time: 02:43)

So, what are some of the classical terminologies that we will be looking at and relate

them to graph coverage criteria. You might have heard some of these terms when it

comes to white box testing that is another thing because we are looking at code and we

are looking at structural coverage of code we are given white box testing right a. So, in

white box testing some of the popular terminologies that exist are what is called code

coverage. Code coverage means it says you cover the code some way or the other in that

you could do statement coverage; which says that you write test cases that will execute

every statement in the code. You could do branch coverage which says you write test

cases that we exercise each branch in the code. You could do decision coverage which

will cellulite test cases which will exercise each decision the various decisions could be

those that reside in if statements as conditions in loops and so on.

Or you could do what is called modified condition decision coverage MCDC or you

could do what is called path coverage. Things like decision coverage MCDC and all a

very popular terms that are used to test what are called safety critical software. So, we

will see what these are and how they relate to the coverage criteria that we have looked

at till now. Another popular term that you would have encountered value did testing was

what is called Cyclomatic complexity right, a related to cyclomatic complexity people

look at what is called basis path testing or structural testing.

Another popular term in testing is data flow testing that directly deals with data flow

coverage mostly as we have dealt within the course, and then another popular term is

what is called decision to decision abbreviated as DD-path testing. So, what we will do is

that we will take each of these one after the other except for data flow testing, I will

handle data flow testing separately as the first module of next week. So, we look at the

other things which are coverage, cyclomatic complexity and DD-paths and see what they

mean as far as they are relationship to the kind of structural coverage criteria that we

have seen till now.

(Refer Slide Time: 05:00)

As I told you we assume that we have a piece of code and we have derive the control

flow graph of that code.

In the last module I took the statistics program example and showed you how to write the

control flow graph piece by piece. In a module before that we saw pattern matching

example and we saw the control flow graph and the data flow graph corresponding to the

pattern matching example right. If you working with control flow graph then what we

saw as a node coverage criteria over graphs is the same as the statement coverage. Why

is that so? Because if you see through examples the control flow graph what is each node

or vertex in the control flow graph correspond to? It corresponds to one statement or a

set of statements that occur in sequence without branching in between them.

So, when I say my test requirement is node coverage, what I mean is execute every

statement in the graph. So, what is popularly called a statement coverage is basically

what we refer to as node coverage. Similarly edge coverage is the same as branch

coverage. So, branch coverage says you take every branch in the graph right. So,

everywhere there in branches come from they come from edge statements, they come

from loops, they come from switch case statements and they result in various edges that

go out of the graph. So, when my test requirement is edge coverage then basically I am

looking an branch coverage of the corresponding source code.

And then finally, loop coverage is another term; in white box testing they say you write

test cases that will cover every loop it will skip the loop, it will execute the loop, once it

will execute the loop a (Refer Time: 06:47) iterations within the maximum number of

iterations allowed by the them. We all know that we saw prime path coverage. So, prime

path coverage as a TR is basically the same as loop coverage in the underline piece of

code right. Now if you go back to the previous slide in the various coverage criteria we

understood statement coverage, branch coverage, loop coverage as an extra (Refer Time:

07:12) path coverage could be thought of as partly doing loop coverage, we said we want

explicitly look at complete path coverage right because several times it turns out to be an

infeasible requirement. So, we did prime paths.

Today I will tell you few other kinds of path coverage criteria. What is left? Decision

coverage and MCDC; decision coverage in MCDC we will look at then we to testing

with logic predicates as our models. So, when we finish graphs right in a few weeks from

now, the next module that we will be beginning is to assume software artifacts as various

kinds of logical predicates and we will design test cases based on those logical

predicates. So, when we do that the coverage criteria that we see there would correspond

to decision coverage and MCDC.

(Refer Slide Time: 08:00)

Moving on the next popular testing term that you would have heard is what is called

cyclomatic complexity. It is a pretty old term actually it is a more than 4 decades old, it

was introduced by this person called McCabe in the year 1976.

So, what is cyclomatic complexity it is a software metric; what is this software metric?

Software metric is some kind of a measure about the piece of code that we have in hand.

The most popular software metric is what is called lines of code and usually for fairly big

software that are deployable income for commercial purposes, lines so there are several

thousand lines of codes. So, this is a kilo lines of code a KLOC for every thousand lines

of code. That is the most popular software metric. So, we say a large software has every

KLOCs means several thousand lines of code.

Another popular metric that is used to measure how complex a software is, is what is

called cyclomatic complexity. Here complexity is not measured in terms of the number

of lines of code; it is measured in terms of the number of various branches that can occur

in a software. So, what a cyclomatic complexity represent? It represents the number of

linearly independent paths in the control flow graph for program; a testing that deals with

cyclomatic complexity is what is called basis path testing. Basis path testing basically

enumerates the number of different linearly independent paths and then tests with

reference to a cyclomatic complexity of the program.

So, what can spend the next few minutes on is trying to understand how exactly to

compute cyclomatic complexity given a control flow graph of a graph of a code, and

what does basis path testing as a class of testing a category of testing correspond to

testing it with reference to the cyclomatic complexity measure.

(Refer Slide Time: 09:59)

So, with cyclomatic complexity as I told you deals with a number of linearly independent

paths. So, we first need to understand what is a linearly independent path. What is a

linearly independent path? It is a path that does not come as a sub path of any other path.

So, you take the control flow graph of the, or the CFG of a program can be several paths

in the graph. It is linearly independent path is similar to prime path. If you see prime path

is a path that do not come as a sub path of any other simple path in the program, linearly

independent path is a path that do not come as a sub path of any other path in the

program. So, except for the fact to the word simple not there linearly independent paths

are the same as prime paths right. So, what we do is, how do we compute the cyclomatic

complexity? We compute the cyclomatic complexity denoted as M by using this formula.

So, it says M is equal to E minus N plus 2 P; what is E? E is the number of edges in the

control flow graph, N is the number of nodes in the control flow graph what is P? P is the

number of connected components in the control flow graph. How do I obtain the control

flow graph? When I calculate E N and P an make one important assumption about the

control flow graph. You remember when I told you that when you have a series a

statements let us say assignment statements or print statements one after the other you

have the choice to keep one vertex or one node for each statement or you have the choice

to collapse these series a statements as one vertex one individual vertex assuming that

there is no branching in between them.

So, such a series a statements is what we called a basic block; and when we do control

flow graphs of several code fragments in the last module, I assumed one vertex for every

basic block. For computing cyclomatic complexity that assumption turns of to be very

important, this formula will not be correct if you do not assign one vertex for one basic

block. If you take the other approach where I assign one vertex for every individual

statement, then this will not be the formula for cyclomatic complexity.

So, cyclomatic complexity assumes that the control flow graph is drawn in such a way

that each node represents a basic block of statements, and different nodes exist only

when there is a need to branch out of that node only when there is a decision statement

out of that node. Under that assumption that is how we built most control flow graphs

throughout our lecture. So, for all those control flow graphs the formula to compute

cyclomatic complexity is this, very easy to remember it is E minus N plus 2 P; where E

is the number of edges N is the number of nodes, P is the number connected components.

(Refer Slide Time: 12:55)

For graphs that correspond to a single program a single procedure or a single method

assuming that there are no inter procedural calls that I model in my graph, then if you

remember the control flow graph looks like one large connected component right it do

not looks several bits and pieces of disconnected components. If I consider that then this

last term P is the number of connected components is basically one for a graph control

flow graph that corresponds to one method right. So, the formula for cyclomatic

complexity become simpler it is E minus N plus 2.

So, it so turns out that the cyclomatic complexity of a program with only one entry and

one exit means with only one initial vertex and one final vertex is the same as the

number of decision points; what are decision points? Points where is branching out if

switch and so on. So, number of decision points contained in that program plus 1. So,

what it says is that how do linearly independent paths come, I go through a series a

statements at some point I branch out. When I branch out I have a choice I take the left

branch or I take the right branch assuming that is the branch of an if statement with an ls

part.

So, each look at rise to one linearly independent path, and what happens is the

cyclomatic complexity of a program is basically the number of such branch is plus 1, and

it exactly gives the number of linearly independent paths in a program. And they say that

usually a good indicator of good software that is easy to maintain and easy to handle

should have cyclomatic complexity somewhere between 1 and 10. Cyclomatic

complexity of one means the software has no branching. So, it may not be very useful to

look at such software. So, cyclomatic complexity should be typically between 2 and 10.

Any number less than 10 is considered to be a good cyclomatic complexity for a piece of

software when it comes to maintaining and handling this software.

(Refer Slide Time: 14:55)

So, get this small example. So, this software this is the control flow graph corresponding

to some piece of code it has exactly one initial vertex marked here, it has one final vertex

marked here and then it has 2 if statements, there is one branching here which branches

out to this node and this node, there is one more branching here which branches out to

this node and this node. So, there are 2 if statements; if you count the number of edges in

this graph there will be 8 edges, and there be seven vertices and this whole graph is like

one connected component.

So, the formula cyclomatic complexity turns out to be 3. If you see how many branches

are there in this graph? There are 2 decision points one here and one here. So, what did

we discuss here we said the cyclomatic complexity is the number of decision points plus

2 for this example; it is the number of decision points plus 1 which is 3.

(Refer Slide Time: 15:50)

So, that is another popular way of checking for cyclomatic complexity; what people do is

the suppose this turns out to be the control flow graph of a particular program right what

they do is they put a dummy edge back from the finding vertex to it is initial vertex like

this, you trace assume that I am tracing an edge back from the final vertex, to it is initial

vertex. After doing that the graph becomes one strongly connected component. You

remember what strongly connected components are we looked at them in the graph

algorithms lecture, strongly connected components are those components in which every

pair a vertices are each everyone which other.

So, under that assumption cyclomatic complexity also turns out to be E minus N plus 2

basically because of the same reason, these exactly one connected component which

actually happens to be strongly connected also. So, cyclomatic complexity becomes

simpler, I do not have to compute connected components. It is usually easier this way

because if you have something like this at the cost of adding a few extra edges, then you

do not have to run algorithms that compute the number of strongly connected

components is subroutines. So, directly count the number of edges number of vertices

which I usually easy to do given a representation of the graph, and there you go the

cyclomatic complexity is easily measurable without calculating any strongly connected

component.

So, usually this measure of cyclomatic complexity is preferred and it is popularly known

as the cyclomatic number; some books and papers also call it the Betty number.

(Refer Slide Time: 17:23)

So, now let us look at basis path testing; as I told you basis path testing test the

cyclomatic complexity of a piece of software, what it basically does is it enumerates all

the linearly independent paths in the graph or in our terms it enumerates all the prime

paths in the graph, and for each such path this is your TR your test requirement. And any

set of test paths it satisfies this TR would whole good for basis path test. Because we

looked at prime paths and enumerate in prime path and not revisiting any algorithm that

will enumerate linearly independent paths, it is very similar to this. So, we consider the

same algorithm that we did for prime path as working for enumerating linearly

independent paths and test it.

And like we did for prime paths coverage; basis path testing subsumes branch coverage

or edge coverage, complete path coverage in turn subsumes basis path testing. If you are

confused what I am trying to say is that basically linearly independent paths correspond

to what we saw as prime paths, the only difference is simple path versus non simply

paths. So, basis path testing is more or less the same as prime path testing. So, how will I

come up with a set of test requirements for basis paths, what are basis path testing test

requirements? Enumerate all the linearly independent paths; it is a same as enumerating

all the prime paths.

So, I will use the same algorithm that we saw for prime paths to enumerate all the

linearly independent paths that is my test requirement, and then I come up with the test

paths that satisfy the test requirement exactly in a way similar to the ones that we did for

prime path test right.

(Refer Slide Time: 19:05)

So, the last one that I wanted to deal with another popular term that is been used in

testing is what is called a DD-path or the decision to decision path. This is different from

basis paths or linearly independent paths or from branches or from any of the kind of

paths that we have seen throughout the span of this course. So, in short what is a DD-

path? A DD-path is a path of execution between 2 decisions in the CFG. The books that

talk about DD-paths usually call the control flow graph as the flow graph or a program

flow graph, but if you are confused please remember that it is the same as what we call a

CFG. At the end of these modes this slides this module I will point you to good

references where you can read more information about cyclomatic complexity and about

DD-paths.

For now we will just introduce what a DD-path is and say how we could go about testing

for DD-paths. But so, here is the small control flow graph it is initial vertex is 1 final

vertex is 6 and where are all the branches that is the branching here. At 2 that is a

possible choice of going to 3 or going to 5, and from 3 they you can go to 4 there is no

choice there and if you see 6 there are 2 ways that you could use to come to 6, you could

have come from this 2 3 4 and 6 or you could have come by using 2 5 and 6.

So, I considered 6 also as having a decision point as a representative decision point in the

graph 2 as representing another decision point in the graph. Why because for both these

kinds of vertices there is a choice about either coming in or going out of the vertex the

choice in more than one way to come in or more than one way to go out. So, these are

what are call decision points in the graph; and DD-path says you test your test

requirement of TR is a set of all paths between 2 decision points in the control flow

graph.

(Refer Slide Time: 21:12)

So, to see what a DD-path is in detail, we will need the notion of what is called a chain in

a graph. You might (Refer Time: 21:19) heard about the term chain when you looked at

what are called partial order rights, you typically see partial order is in a course with

discrete math let us say, change the what are call total orders there to the sake of

simplicity and redefining chains here. So, what is the chain? A chain is a path which

satisfies the following 2 conditions. The initial vertex and the terminal vertex of this path

are distinct which means it is not a loop it is not a cycle, and then all the interior vertices.

What are interior vertices? Interior vertices are those that are not the initial vertex and

not the final vertex everything else in between that comes in between; all the interior

vertices have both in degree and out degree as one.

So, if you try to visualize how this chain will look like, it looks like one long path in the

graph from many unique initial vertex to unique final vertex. And what is a maximal

chain? A maximal chain is a chain that is not a part of any other chain it somewhat like

prime path right a prime path is a path that is not a sub path of any other path, the

maximal chain is chain does not a sub chain of any other chain.

(Refer Slide Time: 22:27)

So, what is a decision to decision path a DD-path? A DD-path is basically a path of

vertices in this CFG that satisfies any of the following 5 conditions if it satisfies any of

these 5 conditions we call them all as decision to decision paths.

So, let us look at the conditions one after the other. So, it could consist of a single vertex

within degree 0. If you think about it visualizing the CFG, which is that vertex that has in

degree 0; what is it mean for a vertex do not in degree 0 is nothing no edge coming into

that vertex, the only vertex that has in degree 0 is the initial vertex then it can consist of a

single vertex without degree 0. Again you visualize our model of a control flow graph

which is the vertex that has out degree 0 it is our final vertex or a terminal vertex, and

then decision path can also consist of a single vertex within degree greater than or equal

to 2 or out degree greater than or equal to 2.

If we go back to the example graphs that we had vertex 2 is the vertex without degree as

2, vertex 6 is a vertex with in degree as 2. So, both vertices 2 and 6 satisfy this condition

and both represents some kind of decisions that is what I was trying to explain a few

minutes ago right. Decision path can also consists of single vertex with in degree and out

degree as both one right- or a decision path could be a maximal chain of length one. So,

just to clarify in case you find it confusing, what is the decision path basically it is a path

that takes you from one decision to another decision. As I told you when we consider

decisions in for the sake of DD-paths, decisions could be of 2 kinds they could be of the

classical kind like this branch out or they could be a of the kind where that is decision for

branching in for coming in.

So, what it says is that DD-path let us you go from one decision to one decision. So, it

clubs the vertices as all these things, it says it initial vertex is one separate DD-path final

vertex is another separate DD-path then all the decision vertices which are vertices

within degree greater than or equal to 2 or out degree greater than or equal to 2 are

separate decision paths, and then in between if I have a single vertex with in degree 1

and out degree 1 then that is another decision path, and then the other kind of decision

paths could be chains of length 1.

So, if I apply this definition to this example graph. how many decision paths DD-paths

will I get? The initial vertex one is 1one DD-path final vertex 6 is 1 DD-path, the

decision vertex 2 is a separate DD-path, the vertex 5 which has in degree 1 and out

degree 1 is another DD-path, and 3 4 is a chain of maximum length 1. So, this is another

DD-path. So, totally for this graph there are 5 DD-paths initial vertex, final vertex the

decision 0.2 vertex file which has in degree and out degree 1 and the maximum chain 3 4

right all of these satisfy one of these conditions that what is a written here the example

graph; that means so, as 5 DD-paths which have listed here.

So, we will not really see how to enumerate DD-paths and how to test them an all

because they slightly how to scope for this course.

(Refer Slide Time: 26:21)

But if you are interested in knowing more about it this is a very good book to learn more

about DD-paths it is a book called software testing of craftsman approached by

Jorgensen, and a recent addition is available. For getting to know about basis path testing

and cyclomatic complexity, as I told you McCabe is the founder of Cyclomatic

complexity he has an NIST report. NIST if you remember as national institute into

standards and technology here is an NIST report which details how to find cyclomatic

complexity, how to do basis path testing and how to use cyclomatic complexity for

object oriented software for integration testing and so on it is a very good optical.

This another popular testing book the book by Robert binder, which focuses on testing

object oriented software also has an exhaustive discussion on cyclomatic complexity and

basis path testing. So, if you are interested you could further read on from any of these

books and feel free to ping me in the forum if you have any clarifications or questions

that you would like a me to answer right, but the main focus of this lecture was to help

you understand that there are several classical terms that are present like the terms that

we saw today, and see what they are and how they relate to whatever we have seen till

now.

So, I hope you are not confused about why am I seeing these graph coverage criteria and

how does it relate to cyclomatic complexity. And I hope this lecture would have helped

you to understand then answer some of the questions that you had in your mind.

Thank you.

