
Software Testing
Prof. Meenakshi D’Souza

Department of Computer Science and Engineering
International Institute of Information Technology, Bangalore

Lecture - 13
Graph coverage criteria: Applied to test code

Hello again, we are in week three. What I will be doing today we will actually begin to

do real testing algorithms today. So, what we saw till now, we saw various coverage

criteria over graphs structural or control flow coverage criteria, and then we saw data

flow coverage criteria. While doing that we did two things we considered graphs as just

models and defined the coverage criteria, so what they mean and also discussed their

subsumption relations. And while doing that I gave you a few examples, but I did not

really tell you how to use these graph based coverage criteria to actually test software

artifacts.

So, what we will do from today’s lecture onwards is to consider software artifacts one

after the other and then see how they can be modeled as graphs, and how we can use the

various graph coverage criteria that we have learnt to be able to actually test the software

artifacts. The first software artifact that I will begin with is code - source code because

that is the most commonly available source software artifact that in fact it is the most

exhaustive software artifact apart from testing.

(Refer Slide Time: 01:12)

So, we will take source code we will see how to model it as graphs, and then we will

look at one after the other, the various coverage criteria that we have learnt and see how

we are going to apply them to actually test the source code.

(Refer Slide Time: 01:41)

So, when it comes to source code, how are we going to model source code as graphs. The

most common model of source code for graphs is the control flow graph right. So,

control flow graph typically models branching, looping, you know sequential calls of

statements and so on and so forth. It also models things like function calls class

inheritance and so on. So, these are called call graphs or inter procedural call graphs

some times and when you club them together along with the control flow graph you

could call it as an inter procedural control flow graph.

What we will see today is to take one assume that the code consists of one method, one

procedure or one function not several different function calls, functions calling each

other. We just take this we will try to model it first see how to model it is a control flow

graph, and then see how to use that a structural coverage criteria that we have learnt to be

able to test various aspects of this code. In subsequent lectures, I will teach you how to

augment this control flow graph with information about data in particular definition and

uses, and how to use the data flow coverage criteria to test these graphs.

In between in you might be wondering I know testing a little bit, and I know several

common terminology is in testing. So, what we will do is we will spend one lecture

looking at what are the common terminologies that I used when it comes to testing

source code, and source code with graphs and see how what we are doing relates to what

is commonly understood.

(Refer Slide Time: 03:22)

So, what will we be doing today, we will be doing following. We will take source code

the code that we are going to test; I will assume without loss of generality that the code is

contained within one method or one procedure does not have too many procedure calls.

We will look at that when we look at design later on. And I will also assume when I do

examples that you are familiar with programming languages like C or java right the basic

how to read code. So, I will tell you how to take this code model this code as a control

flow graph and then how to look at structural coverage criteria that we defined over this

control flow graph abbreviated as CFG.

So, graph as we know has nodes and edges. So, what are nodes in the control flow graph

modeling a code, nodes are basically statements or sequences of statements, they are

commonly known as basic blocks. In the sense that is one continuous sequence of

statement such that there is no branching in between, there is no if, there is no while,

there is no for loops. It just may be series of assignments, a series of statements like

assignments and printfs, series of asserts something like that it just a continuous

sequence of statements commonly known as basic blocks.

And then what are edges, edges basically dictate transfer of control. So, we see it through

examples in detail. So, control flow graphs are many times annotated with what are

called branch predicates which tell you which is the predicate on which your branching.

It comes as labels of the edges, they are also annotated with defs and uses of variable as

we saw in the example. For the purposes of today’s lecture we will look at examples we

look at annotation were branch predicates come, this defs and uses which deal with

augmenting control flow graph with data I will deal with it separately in another lecture.

(Refer Slide Time: 05:13)

So, what we will do from now on for the next few slides is I will take each kind of

software structure and tell you how with control flow graph corresponding to that

software structure looks like. So, here is how control flow graph corresponding to a if

statement will look like. So, let us say we have this code snippets. I told you when I

show you one example like this, I am just showing you a fragment of the code this is not

a complete piece of code, definitely not compliable or executable as a standalone entity.

We just look at a fragment because our focus is to understand for the concerned fragment

how it is control flow graph will look like.

Later we will take the full piece of code, a large example that contains all the statements

and we will put together the CFG is that we learnt to draw for each of this fragments and

see how the CFG for the whole code will look like right. So, what I will do is I will look

at various codes structures like branching, looping exception handling and so on and tell

you how the CFG is for each of the those code structures will look like. So, we begin

with if statement because that is the simplest. So, let us say we had a code fragment that

look like this. So, there is a statement which says if x is less than y, then you do these

two statements assign 0 to y and make x as x plus 1 else which mean if x is greater than

or equal to y, then you say x is y plus 1. And irrespective what you do when you come

out of this if statement, you say z is x plus 1.

So, how does a CFG for this if statement look like CFG looks like this. So, this node

which is the initial node, what is it say it corresponds to this if statement. So, you checks

for this condition is x less than y. Suppose x is less than y then it take this branch or this

edge where it executes these two statements which correspond to these two statements on

the code. And suppose do not, suppose x is not less than y which means x is greater than

or equal to y then it executes this statement, it says x is equal to y plus 1. Irrespective of

whichever statement it executes when it comes out of this if loop control flow structure it

executes this assignments statement given here in the graph z is x plus 1. So, here is how

a control flow graph or a CFG corresponding to an if statement looks like.

So, there is a node that corresponds to this check or the if statement, if that check is

positive let us say if x is less than y, then it takes one branch depicted by an edge and

executes this statements corresponding to that branch. If this condition is false then it

takes other different branch which represents the negation of that condition; in our case it

is a x greater than or equal to y, and it goes to a block where it executes the statements

corresponding to the else branch. Whatever it is, it has to come back and merge for this

kind of an example and executes the statement that is just outside if statement; in our

case it is z is equal to x plus 1. So, I hope this is clear.

(Refer Slide Time: 08:17)

What we will do is suppose we had just if statement without an else part. So, in this

example, we had a then part and an else part explicitly written out. Suppose, you just had

an if statement, we just had a then part right I just remove the else from the previous

example. How does its CFG look like? So, as you show let begin at node where I check

for the truth or falsity of predicate x less than y. If x is less than y then I do this otherwise

I just exit directly because there is no else part specified, I directly exit and come out to

the node that represents the execution of statement that immediately follows the if

statement.

(Refer Slide Time: 08:55)

So, now suppose I had an if statement with, but with this specially marked statement

called return. So, let us look at this code fragment here. What it says is that if x is less

than y then you return; and when you return you print the value of x because that is the

statement that is immediately after this; otherwise you just return. The some silly piece

of code do not worry about what it is meant for and all, our purpose is to understand how

its control flow graph looks like. So, as always I start with one node representing this if

statement where I check for truth or falsity of this predicate. Let us say it turns out to be

true I will come here, take this branch and then I do a return statement. Suppose, it is

false then I come out do a print x and then do a return statement. One thing to be noted is

that please note that this return is different from this return. So, this is put by

distinguishing two nodes corresponding to the two different returns that are there one

inside the if statement and one outside the if statement.

(Refer Slide Time: 09:58)

So, the next kind of branching that we will be looking at is what is switch case statement,

it is another very common branching statement. So, let us look at the code fragment.

What it says is that you read a value into a variable called c, c looks like a string variable

and then you switch to this different cases based on the value of c. If c happens to be n

the string n then you execute the statement z is equal to 25; if c happens to be the string

y, then you execute these two statements x is 50 and break. Break means break out of the

switch case statement. If it is none of these cases which means if it is the default case

then you execute these two statements. One of the statements again is a break which tells

you to break out of this switch case statement. Whatever you do when you come ou,t let

say you have a print x statement.

How does the CFG for this statement look like. So, I begin with a node which

corresponds to this read c. And then I merge it with the same node where the switch c is

also taken. I can keep another node which is serially connected to the node

corresponding to read c there will be no big difference this CFGs are more or less the

same. But in this case I chose to keep one node for both the statements. So, and then the

next thing represents the three branches corresponding to the three cases of the switch

statement. If case is n, I take this branch and do this statement z is 25; if case is y, I take

this branch and do these two statements x is 50 and break. Please read these labels

corresponding to this node, they same to overlap with this edge, but they are labels that

annotated this particular vertex. And if it x, if c is not n, if c is not y then I am in the

default case in which case I come out and do these two statements. And when I break, I

go back here which is the print x statement that is present in this code.

Now, if you look at this CFG carefully that is one extra edge here. What is that extra

edge represent that extra edge says that the case for n if you see here does not have a

break statement. If it does not have a break statement then as per the semantic, the

typical semantics switch statement I go and evaluate the next cases. So, what it says is

that when it is the case for n you go ahead and lead it to the case for y and continue from

there on. If I do not want this edge then I explicitly put a break along with z is equal to

25 for the case for n. Because such a break is not there the case for n leads to the case for

y as per the semantics switch statement, and that is the reason why this particular edge

exists in the control flow graph.

(Refer Slide Time: 12:48)

Now, what we will do is we look at loops when it comes to loops we all know that there

are several kinds of loops, there are while loops, there are for loops, there are do-while

loops and so on. So, to model loops a CFG will have to typically add a few extra nodes

in the CFG. We will see through examples for each kind of loops how those extra nodes

look like, and where are they added, and what do they represent as for as the loops

semantics in execution is concerned.

(Refer Slide Time: 13:19)

So, we begin with while loop. Let us say you had a simple while loop that looks like this.

You initialize x to 0 and then you say as long as x is less than y, you execute these two

statements you call a function y. You call a function f with the parameters is x and y and

you assign the value that f returns back to y then you do this simple assignment

statement which is x is equal to x plus 1. How does the CFG for this code fragment

containing a while loop look like. So, initially that is this node which begins for this

assignment statement x is equal to 0, then I come and I have to do this node. So, one way

of interpreting it is to consider this as a dummy node. Another way of dummy node or an

extra node, another way of interpreting it is to consider node 2 as representing this while.

So, while this is true. So, while this predicate is true I go to node 3, where I execute the

statements that occur inside the while loop. And I go back to checking for the condition

in node 2 which means I go back to checking for the truth or falsity of this predicate.

When this predicate becomes false that is when x is greater than equal to y, I exit out of

this loop and I stop. And in this particular code, I have not really given you what we are

doing when it exists the while loop. So, this does nothing annotating vertex four. And

vertex four is marked as a final state because I stop there. So, is it clear please how do

while statement looks like they will always have this kind of branching structure that is

represented by nodes 2, 3 and 4. One branch we will represent the loop condition of

predicate being true and it will keep looping as long as the predicate is true that is this

branch between two and three. Another branch will represent exiting the loop that is

when the loop predicate becomes false.

(Refer Slide Time: 15:17)

So, in the next example we look at for loops. So, here is very simple for loop it says for x

is equal to 0 as long as x is less than y, x plus plus you do this condition. So, next how

does this look like. So, initially x is equal to 0 as labeled with an initial node. And then

here comes this. So, node one is does not have explicit status in this code fragment if you

notice. So, you can think of node one is a dummy node that implicitly initializes the

loop; node 2 is the actual check for the predicate x less than y being true. So, if it is true,

it goes through node 3 where the statement y is equal to f of x y is executed.

Now, after this what happens in the for loop, it is to go ahead and increment x using this

x plus plus. So, I add another node 4 which is actually a dummy node which implicitly

represents x plus plus or x is equal to x plus 1, it goes back after incrementing x checks

whether x is less than y is true; if it is true comes back executes this increments x goes

back and so on. So, this is how the for loop goes on between nodes 2, 3 and 4 and the

cycle between 2, 3, 4 and 2. So, what happens is the predicate is check the statements are

executed the variable is incremented predicate is checked again that is keeps repeating

and when the predicate becomes false that is when x is less than or equal to y the CFG

exists the for loop and takes this branch and comes to node 5. So, is it clear please how

this we achieve from the for loop looks like.

(Refer Slide Time: 16:56)

So, now we will move on and look at the control flow graph for a do while loop. So, how

does the do while loop work unlike a while loop or a while do loop, do while loop will

execute the statement inside the loop definitely at least once. It first execute the

statements that come inside the loop; after that it checks for truth or falsity of the

predicate that labels the loop that is what is defected in this CFG also. So, here is a code

fragment that has a do while loop, I begin with initializing x to 0, then I do the following

as long as at the predicate x less than y is true. So, what do I do, I do y is equal to f of x y

then I do x is equal to x plus 1. And when I come out of this do while loop I do print y

right

So, as per the semantics first the statements are executed then this condition is checked,

so that is exactly replicated on the CFG. I begin with the x is equal to 0, which

corresponds to this statement then I come to a node where these two statements are

executed, y is equal f of x y x is equal to x plus 1 that is these two statements. And then I

check for this condition x less than y that is represented as a self loop in this node

because as long as this condition predicate x less than y is true. I continue to stay in this

node where I execute these statements. And when this condition becomes false, I exit and

go to a node where I have to actually do print y; I should have labeled this node as print

y right because that is where I go to.

Please note the difference in the control flow structure for a do while loop and for do for

loop and for a while loop. Say it for a for loop and while loop we had this kind of a

branching, where I first check and branch for truth and falsity of a predicate. I go back in

a loop whenever the predicate is true. And I branch out whenever the predicate is false

same exits for while loop also I check for the condition in a node I go back to the node as

long as predicate is true after executing the statements that label the loop and I branch

out in exit the loop when the condition is false. Whereas, for a do while loop, I stay at a

particular node as long as the condition is true, and I keep executing this statements of

that node as long as the conditions is true and I branch out when the condition is false.

So, the loops sort of in this example shrunk to a self loop at one node.

(Refer Slide Time: 19:29)

Now, I will show you slightly bigger example here again it is a while loop, but it has two

special kinds of statements, statements like break and continue which make loop

semantic little more interesting. So, here is a small code segment. So, it says start by

initializing x to 0 as long as x is less than y, you execute this large while loop it begins

here ends here the last but one line. What happens inside this while loop, inside this

while loop I do several things I first do this y is equal to f of x, y by calling the function f

and then I check for two nested if statements. So, as a if y is equal to 0, then you break.

So, what is the semantics of this break, this break means where you will come did you

will come here, you come to the print y statement. And then suppose this is not 0 then

you check if y is less than 0, if it is less than 0, and then you do something y is equal to y

plus 2 and then you continue. And when you continue implicitly what are you saying

when you continue means continue into the y loop, go back and check for this condition

that is what it is begin said. So, how does the control flow graph for such a code

fragment look like. So, there is an initial node where x is equal to 0 is given, node 2

checks for the predicate x less than y, I have an labeled the edges here to reduce the

clutter in the control flow graph.

But suppose x is less than y is true, then I take this branch to 3, where I execute the

statement y is equal to f of x, y; after that I will check if y is equal to 0; if y is equal to 0.

Then I break because at break I come out and go to the print f statement, which is that

node 0. Suppose, y is non zero then I go here to the else part; in the else part the first

thing that I do is to check if y is less than 0; if y is less than 0 then my code says you do

these two statements y is equal to y into 2 and then you do continue.

Continue as I told you means that I go back and check the condition of the while loop.

Suppose, y was not less than 0, y was greater than 0 then I come out of the second if

statement and execute this statement x is equal to x plus 1. But please remember even

here I am within the while loop, so I have to go back through this edge from seven to two

to the main condition of the while loop node were the condition is checked and I repeat

the sequence of executions. So, I hope this makes it clear how this semantics of while

combined with if break and continue works and how the control flow graph

corresponding to such statements looks like.

(Refer Slide Time: 22:13)

Now, here is another example of its control flow graph you might be familiar with this

exception handling through using try and catch in java. So, how does the CFG if such try

catch exception handling look like. So, here is a again the small code fragment which

involves the try catch piece of exception handling. So, it says there is a try here, there are

two catches here. So, what it says is that you read the line assign it to x, and you will see

the length of the line that you have the read. If length is greater than 96 then you throw

an exception saying is too long.

If length is less than 96 then you check if the length is actually 0; if length is actually 0,

then you throw another exception saying too short right. And if it is too short then you go

back and get the message; if it is too long then you go and print it is not too long sorry

then you go and print this stack trace. So, the control flow graph of such a code fragment

looks like this. I begin with reading line and assigning into s. Then what I do is I come

here and check whether what is the length of the statement line that I have just read. If

length is greater than 96, then I throw an exception and go out right to get another

message. Suppose length was less than or equal to 96 then I now check if the length 0 or

not. If the length is 0 then I throw another exception then I go back to get a message; if a

length is non zero then I go and return s. So, this is the how to CFG corresponding to try

catch statement looks like.

(Refer Slide Time: 23:47)

So, now, what we have done throw all this slides where we have looked till now is that I

have shown you how to through examples how to draw the control flow graph

corresponding to several different code constructs. Control flow graphs corresponding to

branching which involve if with then and else without else, if with return statements,

control flow graphs corresponding to switch case statement, control flow graph

corresponding into different kinds of loops - while loop, for loop, do while loop and

CFGs that include while loop with branching and breaks and continuous. And finally, in

this slide we saw an example of a control flow graph for exception handling through a

statement like try catch.

What now we move on we will see is I will show you of full piece of code, piece of code

that does something, we will draw its full control flow graph and we will see how to use

the various data structural coverage criteria that we have learnt to be able to test that

source code. So, the code that I want to look at is an example of a program that computes

the typical basic entities that deal with statistics like median, variance, standard

deviation, mean and so on.

So, what it takes is that it takes an array of numbers and it returns what are the various

parameters. So, it returns the length the array, it returns the mean value of the array, it

returns the median, it returns the variance and it also returns the standard deviations. So,

those are all these print l n statement. And what is the code do the code basically has to

for loops one for loop right here and another for loop right here. The first for loop is use

to compute median and mean the second for loop is use to compute the variance and the

standard deviation. So, I am sorry I put the code in smaller font to make it squeezed into

a one slide this curling closing brackets is sort of gone down, but this represents the full

piece of code, it takes an array of numbers the code is called compute stats. And it

outputs length, mean, median, variance and standard deviation.

How does it go about doing it, it says the length is an integer variable and the rest of the

numbers or all declared is double it initializes the sum to be 0. Then it will goes into a for

loop where it repeatedly adds the number in the array to itself, and computes the sum of

all the numbers in this array in this for loop. Then it says median is this right numbers of

length by 2 which is the midpoint and it says mean is sum slash double of length.

So, now this for loop computes the variance sum. So, initializes the varsum to 0 and then

it gets into this. And what it does is the there it computes the varsum as this difference

which is standard way of doing at in statistics. When it comes out it computes the

variance is varsum divided by length of the array minus 1 and standard deviation is the

square root of this variance. And then it has all these print statements that print the

various values. Now, what is a goal, a goal is to take this piece of code; and model it as a

control flow graph and use the various structural graph coverage criteria that we have

learnt to be able to actually test this code.

So, how am I going to model this code as a control flow graph. So, initially when it

comes to CFG, please remember we ignore these entities, we ignore the statements. So, I

begin with a node that initializes the sum that is what is given here as node 1. Then the

next think that is there is this for loop; it initializes i to 0 checks for this truth of this

predicate and there is a node that increments i, whenever this predicate is true it assign

sum to be this value.

(Refer Slide Time: 27:56)

So, that is represented in this fragment of the CFG. So, it initializes a nodes 2, 3 4 and 5

represent the first for loop. So, it initializes i to zero node 3 is where it checks whether i

is still less than length or i is greater than or equal to length if i is still less than length it

increments i plus plus and adds the think to sum. If i is greater than length it goes out

here and then enters the next for loop which is this loop. So, here again I check for the

same this thing and I do this. Just for simplicity and to reduce clutter I have not labeled

this control flow graph fully with all these statement like for example, I have not used

these two statements median its numbers length by 2 and mean is sum of double length

varsum is 0. Where should they all come they should all come here with labels of this

node, but I wanted to focus only on structural graph coverage criteria.

So, I have just reduced myself to looking at the main CFG corresponding to this one I

have removed all the labels that we are use to annotating the CFG with. I have retained

sum just to tell you that this little fragment here is for the first for loop this is for the

second for loop. I really speaking I should have put all other labels, but then the CFG

would have become to cluttered and the focus on understanding this example for

structural coverage criteria will be lost. So, I have just retained as minimal labels as

possible, this CFG by no means is complete when it comes to a label annotation. So,

now, if taken this code modeled it as a graph.

(Refer Slide Time: 29:57)

Our focus now purely on this graph right we want to now look at this graph go back

recap all the structural coverage criteria that we have learnt till now and see how we can

use some of them to test this graph. So, the first coverage criteria that I would like to you

can apply any of the coverage criteria that we have learnt till now. We will apply a small

sampled two or three different coverage criteria for the purposes of understanding.

So, suppose I want to do edge coverage criteria for this graph. If you see you have taken

CFG that was here and further removed all the labels retained only the core graph

understanding is this. This is the graph that corresponds to that java code that

corresponds to this statistics program suppose I want to achieve edge coverage for this

graph, what am I test requirements test requirement of TR says cover every edge. So, this

is a set that contains the list of all the edges of this graph if you see as put all the edges in

this set 1, 2, 2, 3, 3, 4, 4, 3 and so on.

And what is a test paths that will need this test requirement, it is fairly simple. I start

from one I do 2, 3, 4, 3, I have covered these four edges. Then I take this branch, now 5

and then I do 6 and now I do not want to do 8 then I would have lost the edges 7, 6, 7

and 7, 6. So, I from 6, I got to 7, 7 to 6, 6 to 6 that is the path that I have to traced out

here. I will just read out once again for clarity when I go from 1 to 2 to 3 and then move

on to 4, come back to 3, come to 5, move to 6, come to 7, come back to 6 and then

branch out to 8.

So, using one long test path that visits from the node 1, which is the initial node to the

node 8. I have manage to achieve the test requirement of edge coverage. So, this is like a

minimalistic test case minimalistic because this is only one test path that is enough to

tests the coverage criteria of edge coverage for this graph. Of course, this nothing no

harm in you might say that this y 1 test path I would write four test paths, I would write

two different test paths like for example, I would writ 1, 2, 3, 4, 3, 5, 6, 8 as one test path

which are the edges that are not covered there these two edges.

And when you say fine I will write on other test path that cover those two edges, I could

do 1, 2, 3, 5, 6, 7, 6, 8. So, my test case requirement of edge coverage is made through

two test paths that is also fine, anything is fine, but idea is the number of test paths we

want to achieve for any kind of coverage criteria implicitly we also desired them to be as

minimalist possible. In this case, I could achieve it with just one test path, so I just wrote

that, but there is nothing that says this is only option available we could do it with test

paths that have two test paths, three test paths as long as you cover all the edges we are

doing fine.

(Refer Slide Time: 32:52)

Now, let us say we want to do edge pair coverage for the same statistic program CFG.

What is the test requirement for edge pair coverage, the TR for edge coverage is this set.

I have written it such that I have given a label A, B, C, D, E F and so on for each test

case. I will be using these labels in a few later lectures and I have also group them to

indicate the edge pair right like for example, 1, 2, 3 is this pair of edges 2, 3 I could do 4

or I could do 5. So, I have listed them together similarly from three I could do 3 4 3 or 3

5 6, so I have listed them together because both begin at 3. Similarly, the once that begin

at 4, I have listed them together, these two together and then the rest of them. So, this is

my TR or test requirement for edge pair coverage which lists all paths of length two

because it subsumes at coverage node coverage I am not listed those paths again and for

this I will not be able to do it with just one test path.

So, this one test path is that long test path that we saw do before which is 1, 2, 3, 4, 5, 6,

7, 6, 8. So, this test path is needed what is it miss out if you notice which are the edge

pairs that it misses out does it include for a example 5 6 8, it does not right because it

does not come directly. If you see here, 5, 6, 7 comes 7, 6 8 comes, 5, 6, 8 does not come

and for now assume that I do not want to do side trips and detours. So, I have put another

path that includes 5, 6, 8. So, I do 1, 2, 3, 5, 6, 8, so that is my second test path. And now

we go back here and see what else as this missed this is missed 4, 3, 4 also because if

you see it is not there here it is defiantly not there here, because the paths does not if an

come here. It is also missed 7, 6, 7 that is not in both these paths. So, I have another test

path that includes both them

So, test paths always have to begin at one which is an initial node end at 8 which is a

final node. So, it is fairly long path, because it has to go through the loop once again. So,

I do 1, 2, 3, 4, 3, 4 that way I include this 4, 3, 4. And similarly for this one also I do 5, 6,

7, 6, 7, so that I can have 7, 6, 7 and then end it with 8. So, this is the test requirement of

TR for edge pair coverage; and I need minimally three test paths to be able to achieve

edge pair coverage for this graph.

(Refer Slide Time: 35:38)

So, we look at prime paths coverage. You remember I told you what are the algorithms to

enumerate the test requirements for prime paths, so I run that algorithm on this graph,

and this is the set of prime paths that I get. If you remember and go back to the slides that

we had done then you would see that I would have taken same example graph and we

would have worked out the prime paths are these. So, I am just taking it. It so happens

that this is the graph that comes the CFG for the statistic program, but these are the set of

prime paths, so that is my TR and for meeting this TR, I need five different test paths

right. So, this is how I do prime pair coverage. If you see the example, these five

different test paths they will neatly execute the loop there are two loops in the graph one

for loop here and one for loop here, between these they will neatly skip the loop and

execute the loop each in term for both for loops. So, I have achieve loop coverage

simplicity prime path coverage for this program.

So, what was what it we do in this module we looked at how to draw control flow graphs

corresponding to source code, and how to apply elementarily structural graph coverage

criteria to test the control flow graph in turn the source code by using this criteria. Then

next lecture, we will continue with source code, I will tell you what are the classical

notions of testing related to source code, and how to they relate to the structural coverage

criteria that we have seen so far.

Thank you.

