Software Engineering
Prof. N.L. Sarda
Computer Science & Engineering
Indian Institute of Technology, Bombay
Lecture-4
Overview of Phases
(Part - 11)

We studied the problem definition phase, with which we generally start our development life
cycle where we tried to state the problem clearly try to characterize it, and give a scope of effort
and time to the user. The next step we discussed was the feasibility step, where we give different
alternatives to the user we work out their costs and benefits which mean include both the tangible
benefits as well as the intangible benefits. And then we started discussing the important phase of
requirements analysis: where we specify inputs, processing and outputs. Primarily we said that
the requirement analysis phase goes ‘outside-in” where we start by looking at different outputs
that the system has to provide to the users or different type of interactions that the system has to
support for the users.

(Refer Slide Time: 01:46)

Summary of previous lecture
= Froblem definibon phase | sizte the problem
cRaracienre i, gree Scope

= :!'.i!i.:D"l‘.'? gihve aitematihves, costs berne{ts

* Regurements anaiysis | specrly mputs

processing, outputs

= Goes ‘oulsiche-n’

Starting from the outside boundary of the software, we work towards the inside and try to
identify the inputs and the processing which is necessary to meet the functions of the systems.
We said that the requirement analysis phase consist of meeting users, finding out detailed
requirements as to see them and in fact it may be also study the existing systems by following
various activities which happen in the real world.

(Refer Slide Time: 02:30)

Tolr T’_‘: '* NEER

Summary of previous lecture

* Problem defimibion phase : state the problem
characienrIe it, gree SCope

- :EIE'E-':I".'? gve aftematives, costs beneits

* Reguirements analysis - specify mputs
proces3nNg. oulpuls

= (3OS “ouUTS -

= irmteriews, study existing sysiems

* Uging tools, building models

And since these activities is a fairly long drawn activity, many people are involved lot of record
keeping has to be done. It’s important that we use appropriate tools and also build different types
of models through which our understanding can be concisely stated and can be verified with the
users. So these are the different phases we have discussed last time. Let us continue further and
see what is available further in requirement analysis phase and what kind of documentations
standard are prescribed for recording the finding during analysis phase.

Now structured analysis has often been accepted as one of the common technique to use during
requirement analysis. It consist of focusing on various functions and processes existing in the
user environment and then identifying the data flowing between these functions. We generally
use the top down decomposition approach in this where initially the whole applications is seen as
a single process. For these processes we identify the different inputs, outputs, who are the users
of the systems, what kind of data is stored and which need to be used and which needs to be
made available to the applications. So at the single process view of the applications, the external
inter faces in terms of the inputs, outputs and users are possible data sources are identified. This
is the initial step or the first step. Hereafter we decompose this process in to sub processes and
we identified the different data which flow between them. The two techniques which we
commonly used in the structured analysis method are the function decomposition technique and
the data flow diagrams.

(Refer Slide Time: 03:45)

- e -‘-'—.:'; <oy BPE
T - " ¥ TSOFTWARE ENGINEER

Structured Analysis

« Focuses on funchions/processes and data
flowing betwesn them

* Uses iop-gown decomposihion approach

- irwaally see the applicabon as 2 single process
and adentify mputs. oulpuls. vse's and data
SOUITES

- Decompose (he process imlo sub processes.
show dafa fiows for hem

- Funchon Decompombon and Dsta Fower
Duagrarres (FDOD. DFD) very wiatul

We will study them in more details subsequently but basically the idea here in the functional
decomposition is that the overall functionality of the software system we plan to develop is
broken down into subtasks. For example in a railway reservations system we may have one sub
function called reservations the next one called cancellations the third which may consist of
producing various types of reports and the fourth could be maintaining the data about various
strains, schedules and time tables and so on. So we decompose the overall functionality in to sub
task or sub processes this is the function decomposition.

And was the function decomposition has been done and the sub processes have been identified
we also can establish what kind of data flow text place among these sub processes. So this is the
metrology in the case of structured techniques and subsequent to doing this kind of analysis
where we start from single process view and decompose it we precede further to establish what is
called the current physical data flow diagram. So we start by studying the existing systems we
understand the sub processes we try to find out what is done and where and how it is being done.
So the beginning point is the existing systems. From here the data flow diagram that we produce
naturally corresponds to the current systems and it corresponds to the physical view of what is
happening in the real world. So we call it physical current data flow diagram.

From here we prepare a logical data flow diagram by removing the current implementation-
specific details. Basically we want to now focus on the what specification what exactly done and
what is require to be done rather than how it is being done. So we try to construct the logical data
flow diagram from the physical current data flow diagram. We did also identify the boundary of
automation. What is the scope for the software system which processes and sub processes would
be included in the scope of the software. Once this is done we prepare the data flow diagram for
the proposed system.

In fact the difference between the existing system and proposed system has to be clearly worked
out and this would depend on not only the user requirements but it would benefit from the
experience of the analyst the innovations that he can suggest in the existing processes so that the
proposed system will effectively solve the problems which were felt by the user and which has
initiated the whole project.

(Refer Slide Time: 07:22)

Structured Methodology

= Sludy exrstnng system: What s done and how

= Prepare physacal current DFD

= ™™y Cr
= OmverT T U1 L0 logica DFD

Remowe pivyTaeal mpemenEhon-amecic detmin
* Define boundary for automatbon (scope)
* Prepare DFD for proposed sysiem - requares
INNovabon, eEXpernence, ViSion
- Incorporate new nesds
improve work fiows (BPR: buroress process
re-Engg)
- Inthodiuce effoencyieffecinmness

So the proposed system is not just a duplication of the existing systems. We are not only
changing the way the things are done today but we may even extend the scope of the system we
may suggest new task, new functions, new output from the system. So this would depend on the
vision and the experience of both the users in terms of what they need in order to solve their
business problems effectively and the experience and the vision of the developer or the analyst
who is assisting the user in identifying the requirements. So naturally this will include new needs
of the users the proposed system would improve the work flows it might do some business
process re engineering it will try to introduce efficiency and most effectiveness in the way things
are done at present. So idea is to repair the data flow diagram for the proposed system. This
proposed system will become the basis for software implementations subsequently and once
these proposed systems is clearly defined in terms of inputs, processing, outputs.

Then we are ready to develop or to prepare the documentation for this particular phase which
results in the preparation of what is called the software requirements specification document. We
will now look at the format of the Requirement specification document. Is very important to
understand these clearly because this is one of the very important documents as we said earlier it
become a baseline for a contract between the user and the developer. It is expected to contain the
complete requirements which are adequate to tell the user what he would get from software and
it also adequate to tell the designers and developers subsequently for the complete
implementations of the software solutions.

So let us understand the documentation format which has been standardized by IEEE this is the
format that we are discussing is as per the recommendation given by the IEEE organizations
which has made lot of recommendation for software’s standardization. The first section is the
introduction section. It first establishes the purpose of this document; what exactly is the purpose
and what is covered in this document?

(Refer Slide Time: 10:58)

Hequnremnt Specification Format

{(Based on (EEE Recommeandation)

1.1 PURPOSE: dearfy siale purposse of Tes docurment

1.2 SCOPFE: by whom and how il will be oted

1.3 Defirutsons. Acromyrms, Abbrewabons s
appheabie

1.4 REFRENCES: o ofher documents

1.5 Overaew of Developer's Responsibilities In terms
of developrment, nstaiiaton. Tamng, mantenance,
=

Then it defines the scope of usage; who will use these documents and for what purpose? It gives
various definitions, abbreviations, acronyms as they may be applicable and which have been
used in the rest of the document. It may also refer to other documents which have been prepared
and which have been referred by the user. For example, these may be documents made available
by the user which define some parts of the requirements or these may be documents which are
prepared during feasibility step. All these documents can be referred here clearly in the SRS
document. Finally the introduction will also briefly specify the responsibilities of the developer;
what exactly is the scope of the project? Does it include development, installation, training,
maintenance, and support for a limited time etc?

All these responsibilities are also clearly stated briefly in this section so introduction section is an
overview of the documents purpose, and the references responsibilities. These are clearly stated
and this is the first section of the SRS document. The next section is the general description of
the software that we plan to develop. It first contains the product perspective. Here we see the
product as a single unit and try to establish its overall context. We see it as a black box; how
does it relate to possibly other software products? What are its interfaces with the other
products?

(Refer Slide Time: 12:53)

Hequsremnt Specification Format

i GENERAL DESCRIFTION

2.1 PRODUCT PERSPECTIVE: relaborrship with
oifser products amd prmcipie mierfaces

1.2 PRODUCT FUNCTIONS OVERVIEW: general

orvervees of tasis, including data flow dagrarms
2.1 USER CHARACTEHESTICS: who they ane and
wial trameng By mary reed

1.4 GENERAL CONSTRAINTS: abowl schedule.
MESCArCEs. Corl. e

Then it states the functions of the product briefly. These are the general overview of various
tasks that the product is supposed to perform, including references to data flow diagrams. This
product function overview is an overview of the functionality of the software. We then try to
characterize the users for whom the software is being developed and we also mention the
different constraints which are placed. These constraints may be about the schedule of
development, resources such as the existing system and software packages, constraints about the
cost and other resources. The section 2 of the SRS document is a general description given not
only the overview of the product’s features, but also placing it in its proper context in terms of
other products, in terms of users who will use what characteristics we can assign to these users,
in terms their expertise and training and so on.

Section 3 is really the core part of the document. In this part we give functional details. We
define every function of the software, by giving a brief introduction to this function. Then we
describe the inputs to the function, processing and the outputs. So these functions may be
different functions that the software will perform. For example, it may be a function related to
reserving a seat on a train or cancellation of a ticket already booked. So these are different
functions or tasks. Each of them needs certain inputs, performs some processing and produces
some output. For every such function, we give description in this particular section. So section 3
is really the body of the SRS document where functions are described in full details.

(Refer Slide Time: 14:36)

Requnrement Specrﬁl;atmn meat

11 FUNCTIONAL REQUIREMENT
111 INTRODUCTION
112 NPUTS

113 PROCESSING
114 OUTPUTS
12 _ jrepesi similarly for esch funciion)

(Refer Slide Time: 15:32)

Reqmr&ment Specification Fnrmat

4. External interface Requirements
4.1 User interfaces 3 prefmanary user manual
giving commands. screen formats, outputs.
ETTONS METTage sic

4 7 Hartware interfaces with ensting 25 weil xS
narw OF SpeCIal purpose harchware

4 1SofMware Imterfaces with offwer sofftware
paciages. operating sysiems. sic.

In section 4, we give summary of external interfaces of the software. We first define the user
interfaces; that is the human users, what kind of screens or outputs they would receive, what kind
of commands they can give, what kind of error messages may be thrown up by the software. In
fact this section of the document can be treated as a preliminary user manual. In fact it is this
section which will give a good idea to the user about the kind of system he is likely to get at the
end of development. We should note here that we are not doing any design. At this point, the
user interfaces are specified more in terms of contents.

Meaning, what are the logical contents of different interfaces or commands that will be made
available to the user in order to use the software we are developing. So we must remember this
point that, exact screen format, screen layout report format are not essential. If the logical
contents of these components which are specified and in terms of which the user will try to get a
good idea of what kind of system is being developed. Then we also describe the different
hardware interfaces. Of course these interfaces are applicable when we are interfacing with
specialized hardware for meeting some functionality of the software.

For example this might be a hardware interface to control some chemical process. So these
hardware processes are also clearly specified. Then we have software interface specifications. In
case the product that we are developing has to interface with some existing packages. Then those
interfaces are clearly specified here. For instance the railway reservation system may interface
with the accounting system of the railways, so that all the fund collections are automatically
transferred to the accounting system. Now, this accounting system will be an already existing
system. So our railway reservation system package that we might be developing will have to
interface with such an accounting package.

(Refer Slide Time: 18:09)

'1-::-'5".".‘;_--:_- '.";--I_l:: Nt

Requirement Specification Format ...

4 Exiernal interface Requirements

1 User interfaces 3 predrmanary oEe manu
ghving commands. soreen formaids. outputs.
EFTONT METISgET, Fi

L 7 Hartware interfaces wolh emrsting s wedl 3
raew O SDeCEl DurDote Rardware
4 1SafMware imlerfacet wlh Siher sofware
FECkages. operatng sysiems. ez
5. Performance Requirements
Capacity reqguirermenis (no of users. no of fkes]
FEEDOMSe DIme, ﬂ‘!ﬁ.ﬂ;ﬂ-{lﬂ {im mezsurable termmesj

{ bl

So these software packages are also clearly specified. We also define here performance
requirements. These performance requirements would be used subsequently for defining the
sizing of the various elements of the software or the hardware. For example we will identify the
number of users, volumes of data, the response time requirements, the throughput requirements.
These requirements are specified in terms of user’s requirements. That is what kind of
environment in which the system will function, what kind of work load it will have, and what
response time is expected from the system. So if the system is a real time kind of a system where
it is processing online transactions, then we need to define the throughput and the response time.
Consider the example of say banking, when the banking software has to accept transactions from
the customers.

Then we need to identify, in how much time the system must react to the input of the transaction.
Or totally in a particular given time which may be the peak time, how many transactions should
the system process in a given slot, which could be one hour or something. So these are the
capacity requirements which are important to be specified and they are specified from the user’s
point of view. And these are defined by taking into account, what are the actual requirements of
the organization. So after identifying these, we identify the various design constraints. Now these
constraints may be in terms of the development standards. The organization may have very
specific standards for developing the software. Or it may be standards for various reports. For
example in the financial world lot of reports are required by regulatory authorities. So these
reports must be as per the standards. Then there are auditing requirements. So these standards
needs to be complied with and those must be clearly identified and they are identified in this
section.

We also identify any hardware limitations. For example the user may have already some
machines, operating systems; database systems etc and we may need to develop the software for
the available environment. So these would be treated as hardware constraints or system
constraints. And finally we state any other requirements possibly mentioned here the future
extensions for the software. This is the overall format for the SRS document which is giving a
complete specification of the software in terms of what it would contain. We must note here that
all sections which are listed here may not be required in all projects, because some projects may
be very small in scope. But in most cases, these different sections would be necessary because
they cover various aspects not only the functions, but they cover constraints, they define
functional requirements, they define performance requirements.

(Refer Slide Time: 21:04)

Requirement Specification Format ...
6. Design Constrammis
§.1 Sardards Compiance. softwary devioomen
sIncdarss I35 well 3T arganoatondl Sanaards
(eg. for repors, auditheg)

§ 7 =gyrthware Ll ahors pvidstshe et Mares
Speraing Syshems siorage cCEpacThes sfc
] Other Requorements
Posubie future sxtEnons
Mole
All sectons arw not requened for all projects.

So one can see here that SRS format has taken into account various aspects and we can see that
by using this specification format, we are meeting our expectation that the document will clearly
tell the user what features and functions the software will provide and how he will be able to use
it. Similarly we have made it detailed enough, so that from here we can hand over this document

to our design team. And they will be able to convert the specifications into a design. So SRS
document which is a baseline document needs to be detailed and we must ensure that we have
collected all these data and put it in the form of a document. Once the SRS is prepared, which
can be an extensive task for large software, we need to review this with users. There has to be a
formal review meeting in which the entire SRS document would be reviewed. There should be a
sign off, where the users should say that; yes, the SRS document clearly defines what the system
needs to do. And also there would be some peer review, which will ensure that the document
contains enough details for the design activity to be carried out. So we are going to do the design
subsequently. It must contain the enough details, so that the design can be carried out.

We can define the platforms, we can define the capacities, and we can work out the sizes
required for the different systems and so on. All these must be possible from the SRS document
and we see that it is detailed enough to give us all these data. It is very important that the analysis
phase results in preparation of such a detailed and standard document. So we proceed further
only when the document is accepted by the users as being complete in all aspects. Once it is
signed off, we proceed to the next phase, which is the design phase. In the design phase our
objective is to formulate the implementation strategies for the problem that has been identified.
So now we move to the “how” part of the solution. In the SRS phase or in the requirement
analysis phase, we have defined “what” part of the problem. Now we are trying to address —
“How” the problem should be addressed, how it should be solved? Input to this phase is naturally
the SRS document from the previous step. We now try to consider different technical
alternatives.

(Refer Slide Time: 24:49)

= . N T
S & e

System Design

+ Objective : To formuiate alternatives about
how the problem should be solved

* input s SRS from previous step

= Consider several technical aiternatinees

based on type of technology, automation
boundaries, type of solutions (batchion-ine],
inciuding make or buy

We must remember that SRS is a logical document; it specifies the requirements, without
dictating how those requirements must be implemented. Design phase is the first phase in which
we make a transition towards the solution. Different alternatives may be available. These are
primarily technical alternatives, what kind of technology we should use for solving the problem.
Now after this point we are going to increase our efforts from phase to phase in order to build the

software. It is important to review at this point once again whether the automation boundary that
we have defined is the appropriate one or not. So we look at not only the different types of
solutions which may be possible based on the technology options, but we may once again
consider the business functions which needs to be put in the scope of the system. We also
consider what type of solutions to create, whether they would be batch or online type of solution,
including whether we should make the software or buy something which is readily available in
the market. In fact these are different alternatives in order to realize the goals which have been
stated in the SRS document. So this is a point at which again we consider different alternatives
and these alternatives may have different costs and different efforts.

(Refer Slide Time: 26:22)

System Design

« Ojecirve © To formuiate affternairves about
Now [Me probDlem SNould De Solwed

* Input is SHS from prewous step

= Consder several techmical alternatrees

based on type of technology, automation
boundanes, type of solutions (batchion-line],
e iuding make of buy

They may need different time to complete the project. So it is important to consider these
technical alternatives once again. Whereas, in the feasibility study we did consider various
alternatives which were primarily based on business alternatives, now we explicitly consider
additional technical alternatives. We are doing it again because we have a very good
understanding of requirements now.

(Refer Slide Time: 27:02)

System Design
* Objective © To formuiate alternatives about

Now [he probDlem SHhould De solved

previous shep
| techmical afternatves

type of technology, autormuatson
boundanes, type of solutions (batchion-ine)
ncioding make of buy
Propose a range of alternatives - low-cost
medium cost and comprehensive high cost
solutions

We have completed the requirements specification. This is appropriate point to consider different
technical alternatives. The purpose of coming up with different alternative is to provide user
different options, which may be starting from low cost options to medium cost, high cost options.
Naturally, giving different cost effectiveness, different benefit to the user, in terms of meeting
overall requirements. For each alternative we prepare a system specification we prepare
implementation schedule. And if necessary we carry out the cost benefit analysis, because the
costs are going to significantly rise from this point onwards. Since we understand the scope
better now, we will be able to do a better cost benefit analysis at this point.

(Refer Slide Time: 28:00)

.-__"_. w,"'*- — *

Alternatives

« For each alternative, prepare Mg < E%e
(i terms of architecture, DE

aesagn PrEReE T EaeETmET LA On

schedule carmy oul cost-Derneli ANdly5iS

= Prepare for technecal and management

B

- CosTs rise sharply hereafier
Cotts can be quantified befler 31 e Tiage

- Techrcal revies' UNCOWers amors, Checirs
cortaiency. Compistenett. aflmMatves,

We then prepare the design document and which is then reviewed both by technical people as
well as the management people. The technical people who review the document would ensure
that different technological options considered are meaningful under all important or all
applicable options have been covered. Whereas the management review would be concerned
with identifying whether there are implications on cost, benefits and so on. The purpose of the
review is to ensure that we are within the proposed costs and we will be able to meet the
schedules. The technical review would ensure that there are no errors in the proposed design, that
it is consistent and complete and various applicable alternatives have been worked out. This
phase should end with a clear choice. So the different alternatives prepared in terms of different
system designs are reviewed both by the management and the users, and it ends with a clear
choice which can be taken further into detailed design and implementation. What are the design
goals in this phase? In this phase we are trying to define or do a design of the processing
component, because the requirements are clearly defined in the processing needs of the user. So
these processing components will be converted into software. We have a functional approach as
well as we have an object oriented approach. Different alternatives are available for design
methodologies. They may be conventional functional development or it could be object oriented
development. There are different methodologies available for the paradigms.

So if it is a functional paradigm you may use structured system analysis and design
methodology, which is based on taking data flow diagrams and converting them into software
architecture. Taking entity relationship diagrams and converting them into database design. Or it
could be an object oriented paradigm and the associated object oriented methodology in which
you convert it into an object oriented implementation. So the kind of design methodology you
choose would depend on the paradigm that you want to employ for implementing the software. If
you are designing the functional components separately you also need to design the data
component. The data component is generally handled by designing a database for the given
application. A database design consists of multiple steps.

(Refer Slide Time: 30:52)

Design goals

* Processing component: main alternatives
Herarchical motular strechere o funchonal
b le wlge= g
:ﬁ!ﬂ{ﬂ'ﬂ’"'ﬂ moce{ and Fmphermerriahon

-
3 F

» Lhifferent design methodologwes for
functional and DO
« Data component
- Normailired dats base design wsing E7 modsl
- De-nonmalization for perfomancs
Phymcal design - indexes

For example the first step is generally the step in which the normalized database design is
worked out from the entity relationship model. Now all database systems have a particular data
model such as the relational database model. We will study this issue in some more details
subsequently. But when we prepare the entity relationship model to understand the information
domain of the user, this is a conceptual data model and this needs to be converted into a database
design. After doing a normalized or conceptual database design, we modify that if necessary for
getting good performance from the system. This often is called de-normalization. And finally, a
step in database design is consisting of choosing the right storage techniques through which data
can be accessed efficiently. This might consist of creating different indices to the data stored in a
database. So in general the design of software consists of designing the processing component as
well as designing the data component.

These two components may be designed separately or they may merge into a single design
dimension when we use object oriented technology. Usually large complex software will be
decomposed into what we may call partitions or layers. We do not implement large software as a
single module or a routine. It consists of different segments or partitions as shown in the diagram
here in front of me.

(Refer Slide Time: 33:13)

As you see here the overall software represented by a boundary as a rectangle consists of layers
in this case. And these layers have different functions and they pass messages or they make calls
on features provided by a lower level in order to carry out their tasks. Similarly you may also
decompose the software into partitions, where each partition carries out a specific responsibility.
So the overall complex software is built by decomposing it into partitions and layers. And each
partition and layer is given a specific responsibility. We define different subsystems at the
software level. We also define modules; in fact modules are the building blocks of the overall
software. Each module has a specific function to perform. Module may be a piece of code, which
when executed carries out a specific task. Such modules together make a subsystem. Multiple
subsystems like this will make up the overall system.

So a subsystem may be representing a partition or may be representing a layer. So this vertical
and horizontal decomposition of the overall software is necessary in order to divide it and to
break it into realizable components. These modules will naturally make a call on each other; they
will pass data and collect results.

(Refer Slide Time: 34:47)

System Architecture

* Decompose a complex Tysiem
Pargbors (verbcal)
Layers (honzomrtad)

= Define subsystemsimodules as buikding

DIOCKS
= Modules make calls on each other
- Pais data. obitamn results

So module is a building block and the different modules are interrelated in terms of execution. A
module may invoke another module and pass certain data to this module and expect certain
computations. For example, a module may solve the data in an ascending order or it may
compute the tax for a given employee. Now this module expects certain data to be given as input
and it produces results. Such a module will be called from another module. So we are now
talking about the execution architecture of given software which is defined in terms of the
modules and the calls that they make on each other. Now these modules are important elements
as we just now said that these are the building blocks. Good software architecture should make
these modules as independent as possible. An independent module is one which has a clear
responsibility, which has a well defined task to do. It does its function, which is a cohesive kind
of a function.

So modules should be independent. They should have minimum interdependence. These
characteristics are important from the maintenance point of view. This is a basis for handling
complex tasks. Complex tasks must be broken into sub units. These sub units must be cohesive.
They should have little interference from other modules. There should be minimum
interdependences, so that a module can be replaced by an equivalent module without disturbing
the overall functioning, and this replacement may be done for various reasons during the
maintenance. We decompose the modules or subsystems until we reach units which are
implementable, which can be coded and tested. The software architecture that we tried to define
in terms of modules and interrelationships among them can be captured through a notation or a
diagramming tool called structure chart. Structure chart is used in functional methodology.

It depicts different modules and their calling relationships. There are techniques available to
arrive at such a design consisting of modules and calls among them and produce a structure
chart. There are techniques available to go from data flow diagrams to structure charts. A
structure chart basically is a hierarchical chart. The modules can be organized at different levels.
So that module at level I calls the modules at level | plus 1. A hierarchically structured set of
modules, have modules organized at different levels and the control flow is not shown, only the
calling relationships is shown. Here we are putting some kind of a discipline in the software
architecture that we are designing. The architecture will have a hierarchical structure, and
modules at one level will call modules only at the next level and there will not be arbitrary calls
among the modules. This ensures a systematic architecture for the software and is a very
important design guideline. Here is a diagram which shows an example for structured chart.

(Refer Slide Time: 38:40)

Structure Chart

* Used in functional methodology o depict

Mmodules and Ther calhng redatbonsnips

* Techmgues are available o go from OFD o

structure charts

= Hierarchical structure: module at level § calls
modules & level /41 control flow not shown

As you see, we have ‘Task one’ which is shown as a module at the top. This task has been
written as a software module or a unit. It calls on three modules at the next level. These three
modules have been named as, “get input”, “processing” and “produce output”. The lines which
are connecting these modules basically represent the call that the module Task 1 makes to “get
input” or “processing” in order to perform its own job. So the structure chart basically shows
modules as rectangles and links among them representing the call relationships. These modules
call each other to perform their own overall tasks. As you see here the Task 1 invokes the get
input module.

(Refer Slide Time: 38:55)

Structure Chart Notation

There is a data item named x which is flowing from “get input” and going towards Task 1.
Basically here, what it implies is that the Task 1 needs this x and it has given this responsibility
to the “get input” module. So it calls the “get input” module and receives from this model. The
data item x which it may then pass to the “processing” module. As you see here, the x data item
is traveling from Task 1 to “processing”. The y data item is actually being produced as a result
from the “processing” and it is being sent back to the Task 1. The Task 1 is then passing this y to
the “produce result” module.

So in general the modules which call each other may have some data items flowing from the
calling module to the called module or there may be some results which are going back to the
calling module. This is the data which flows as parameters between the modules when one
module executes or invokes another module. As you see here again the modules are organized at
different levels. The Task 1 is a module at level one and the other three modules are at level two.
The module at level one, which is the Task 1, is the one which invokes or which calls the
modules at the next level and not the other way round. This is the hierarchical structure that we
enforce on the software design. Software design then therefore consists of identifying these
modules and the hierarchy of the software. This hierarchy represents the architecture of the
software.

If necessary the modules on the level two such as the “processing” module can be decomposed
further. So the hierarchy can consist of multiple levels. Depending on the complexity we can
keep decomposing till we arrive at a module which is clearly specified, and which can be
implemented in terms of a coding “code module” which can be converted into a program. The
modules at higher level generally do the coordination and control, whereas the modules at the
lower levels do input/output and computations. This is exactly what we saw in the previous
diagram. The module at the higher level which was the Task 1 is the one which gets work done
from the modules at lower level. So it obtains inputs, it obtains computational results and it
passes them from one module to another module. So the task of coordination and control usually

gets done at the modules at the higher level, whereas the modules at the lower level you can
think of them as worker modules. They actually perform the tasks such as the input/output tasks
and the computational tasks.

(Refer Slide Time: 43:25)

= "t_"m- : —....__.‘_._.:.

Structure Chart ...

= Modules at h Ner Eyes QEneraly oo

dination and control; modules at lower

evels do Vo and compulalions

= Structure char may show mportant data

passing bebwesn Mmodubes and 3so show
main terations and decsion-making wathout
much details

Structure chart also shows important data. As we just now saw these data are shown as flowing
between the different modules. There may be either data coming into the module or the data
going out from the module to the calling module. Usually you do not show the control flow in
the structure chart. However some important control flow or structures such as decision making
and iterations may also be shown on a structure chart without giving too many details.

(Refer Slide Time: 44:21)

In fact this is only to indicate to the reader of the structure chart, that some modules may be
repeatedly executed, whereas some modules may be executed only depending on certain
condition. The few notational extensions are made to the structure chart as shown in the diagram.
Here the diagram at the top shows iteration. It shows that module A may be repeatedly call on
modules C and D. The diagram at the bottom has a small diamond here which indicates that
module A will call module C or D depending on some condition. In fact the details of the
condition are details of how often the iteration would be done are not given on the structure
chart. It only shows that such an iteration or decision making is present in the software. And
these are the important repetitions or iterations and the important decisions which are made in
the software functions.

On the object oriented approach the software consists of different classes. In fact class is the
main concept in the object oriented approach, where it has both the data associated with the class
and the executable functions associated with the class. So we call these as structure and behavior
for a class. This is a paradigm which combines the data and the processing to get them on a
single dimension and identifies classes which have structural properties and which has a
behavior or methods defined for them. It is a completely different paradigm and we will see
more details of this subsequently.

Object oriented paradigm is very useful and has occupied very important position in the design
of software. And it simplifies greatly, the complex software development. It has not only a new
notion of a class as a unit for organizing the processing as well as the structure, but it provides a
concept of inheritance which allows us to reuse the software from other existing components.
We use class diagrams to show the static structure of the system. The class diagram identifies
what are these different class components.

(Refer Slide Time: 47:02)

i g __ Tﬁ;‘_:: - .'_.:.":f"':

00 Approach

= Design consists of classes
laf §p Rt femdtif Rfeig- = gl 4
Have Dehaveey MethooSoDerIhons]
niventance mape festore 00 for re-uss

= Class diagrams show static structure of the

sysiem

* interaction diagrams are used to capture
dynamic behawor of classes and objects

And besides the class diagram, we use interaction diagram which indicate the dynamic behavior
of the system in terms of classes interacting with each other. So we will see this object oriented
approach subsequently in much more details. The only point we want to make here is that there
are different ways in which the design can be approached. It could be the conventional approach
where the architecture consists of functional modules depicted in the form of a structure chart or
it could be an object oriented approach. Object oriented approach will decompose also large
system into various packages. So the principles are similar that you use the decomposition
technique into convert the large software into smaller components these components may be
modules or they may be classes and we organize the data and processing among these.

Once we have completed the design and also have finalized the approach we can prepare our
design document which also has a well defined structure. The design document will generally
include these different sections which will specify the design completely. We start by giving an
overall introduction when we define the problem for which the design has been prepared. If
necessary we indicate here the different such as data flow diagrams, entity relationship diagrams
or class diagrams which have been prepared by us and we enclose them as appropriate annexure.
Then we define the software structure in terms of the architectural diagrams. We define the data
in terms of various database structures, the files or any other important data structures.

(Refer Slide Time: 49:03)

p——

Design Document Format
T rrrirochaction
Froprs SoecICEGn NoiuDe Bt 1T OEETow
diagramw erfry-reiahorsfun doagrars
Loftware siructure give he fagh-ievel soffeare Sruciure

IRET SETTTRRngG RGP MOOuiEl I RO ZED HETErTS
A iy ieieriares

Data Defindtions for migor S strocture Tikes ana
S all s

& Mooy Speoficatueey ool ApUts DUTDRSE DLUTpEeRE
NG SUDOITINET MDIulEs 100 FAET SOMTWENT MDOuHE

f Rrgquiremeris Tracing ndicalie winch moculies. el
winch reguiresseni

We give the module specification which indicates what input they take, what processing they
perform, and what the subordinate modules they use. Finally we do the tracing of the
requirement. We indicate how these different modules meet the various requirements that have
been identified in the SRS document. So the design document is fairly a technical document. It
consists of our approach towards building the software. We have identified the components
which will be implemented as part of the overall software. This document needs to be reviewed
by the technical people who will see that the document is detailed, it is comprehensive, it is
complete and also that it can be traced and can be mapped to the SRS document. We ensure
through this requirement tracing, that the design document covers all the functions which were

identified in the SRS document. After doing the overall design or the high level design, we
perform the detailed design. In the detailed design, we go towards details of making these
modules implementable. We give the inputs which have been prepared from the previous design
document are made available, which consists of software architecture, the different modules and
the different database and file design.

(Refer Slide Time: 50:50)

T R e st

Detailed Design

+ Specific implementation aiternatrve aiready

Seecied N DREVIOUS SIEQ gving

Cwerall software struciure
Modules io be coded
CatataceTile desgn
= in s siep, sach component = Gefmed
further for mplementation

In this detailed design step, each component will be further refined, so that we make it ready for
implementation. Here the deliverables will include detailed program specification, where we will
indicate the logic or the algorithm for different modules.

(Refer Slide Time: 51:19)

Detailed Design ...

= Deirverables inciude

- Program specfications (e.g. psusdo-code)
- File design (organzaton. acocess rmethod. |

Hardware speaiicatons (s appicabie)
THIIM#H-
mplEmanIDon ToneEulE

We will give the file and the database design, we will give the hardware specifications if they are
applicable, we will make detailed test plans and also we will give the implementation schedule.
So these are the deliverables of the detailed design. And the input to the detailed design is the
design document which comes from the first high level design step. This detailed design
document will be prepared giving all these specifications and it will end in a technical review.
Technical review at this point consists of walking through the different specifications and
ensuring that the specifications are complete for us to begin implementation. We go to the
implementation phase which naturally consists of coding the programs, testing them,
documenting them. After the code has been prepared, we also have the responsibility of
converting the existing data which may be in a manual system and creating initial file and
database. We prepare the operating procedures for the users. We do the overall testing, where not
only individual modules are tested but the whole system is tested. Then we carry out the user
acceptance, where the user will do a functional walk through for the system that we are ready to
deliver to him.

(Refer Slide Time: 52:34)

implementation Phase

- Programs are coded. debugged and documented
- Inittal creathon of data fies and ther verification
Irinariuad mocules 3T wedl 25 whoke Ty T

Tesind
- Dperating procedurss are desagred
- User dows acceptance of the sysism
- Systemn rs irsiaibed and swetch-over affecied

So functionally it should be acceptable to the user. Moreover it should also be acceptable in
terms of performance. In a SRS document the performance criteria were also specified. So at this
point the SRS document will be used by the user to carry out the final acceptance of the system.
Once the user has accepted the system we are ready to switch over. The system can be installed.
And once the system is installed we are ready to use the software in day-to-day operations. The
next phase which is the operations and maintenance phase, we will ensure that the system will
continue to meet the user needs. And in order to do this we may have to take up maintenance
activities. The maintenance activity consists of, removing any errors that the user may find in the
software, or extending the present features in the software for new requirements that the user
may have. So we might make some extensions or we may even add entirely new features.

Occasionally it may also be necessary to convert the software to run on new platforms or new
systems, because the software might have a fairly long life and during this time the hardware or
the systems may change significantly and we may want to change the platform of the software.
So these are the maintenance activities and this generally continues throughout the lifecycle.

(Refer Slide Time: 54:13)

Operations & Maintenance
5'."5‘51"5 sl Comanue D SETVE ST Neeps
cormeciy 3 cominanEThy

- MEairM#aancs SCIHIDeY ComrErsl of
g e

Eafarainng roinr® fuahen
Aoy maea BTt aneey
= Bortarg tg rere plaffore

Let us summarize the various phases we have carried out. We have seen that there are different
phases and each phase has a well-defined task and has a well-defined deliverables. In many cases
these deliverables have a standard format. Now we have seen that feasibility was one of the
important steps. It establishes different alternatives and these alternatives are analyzed for the
cost effectiveness. Requirement analysis is a very important step and also very challenging
where the analyst or the developer has to prepare the complete specifications for the software by
meeting the users and by going through the existing system if necessary. So this is going to be
the first baseline. And we saw that there is an IEEE format which is very comprehensive and
which defines the various aspects of the software which needs to be developed.

(Refer Slide Time: 55:32)

Summary

» Each phase has a weil defined task and a
ZEinveraDee

- Feasih Iy estabirsNes JTMIInves ang
carmes out cost-benefit analys:s

uiremenis anaiysis 3 very challenging

and SHS forms the frst baselre

» Design step conssts of architecture
database and interface design

Then we saw the design step. The design step consists of designing the architecture of the
software, also designing the databases. And naturally it will also consist of designing the various
interfaces that the users have with the software. In the rest of the course on software engineering,
we will take you through some of the details of the design techniques. Similarly we will take you
through details of some of the modeling techniques. In this particular lecture, we have only given
a broad summary of different phases, through which the different steps are carried out in
different phases of the life cycle. And we saw that each phase ends in a technical or management
review.

