
Software Engineering
Prof. Umesh Bellur

Department of Computer Science & Engineering
Indian Institute of Technology, Bombay

Lecture - 27
Software Reuse, CBSE

Hello and welcome back to the course on software engineering. Today we are going to be
talking about a subject that has been receiving increasing attention of late of software
reuse. If you take a look at the traditional engineering methodologies for building other
kinds of systems for example hardware, for building civil engineering, construction,
mechanical etc you will find that a lot of work that has been is going to be done to build a
new system component, artifact, entity whatever borrows a lot of the ideas the design
ideas, borrows a lot of….. even prebuilt components from other from previously done
work but in software because it is a relatively new field that practice of reusing software
what goes into making the software in the software itself is not very well established and
we will try to take a look at some of the notions in the field of software reuse; now what
is reuse, what are the problems of reuse, what are the advantages of reuse, what are the
different ways of…… what can be reused, what are the different ways of doing it is the
main objective of this lecture.

(Refer Slide Time: 1:57)

So, design with reuse is a frame phrase that is often used and there are actually two
phrases that are complimentary phrases to one another designed with reuse and designed
for reuse. Designed with reuse essentially focuses on building software from reusable
components. So, instead of trying to write software from scratch what I will do is take
components that have code built into them that embeds certain algorithms within them

that I know that I also want in this new project that I am trying to put together and I will
simply reuse these components.

On the other hand, design for reuse is essentially the reverse mechanism. So when I am
designing a component that I am going to use in my project I consciously make an effort
to design it in a more generic in a more abstract manner so that it can be reused across
multiple projects. So, in one view the software project that is currently being undertaken
is a sink for component and it is a sink as far as the reuse process is concerned; the other
case it is the source as for as the reuse process is concerned.

So what we like to look at today essentially are what are the benefits of reusing
components; although it kind of seems obvious it is worthwhile discussing what exactly
are we going to get out of this because it is not been adopted very widely if you take a
look at software projects in the 70s and the 80s it is only in the mid to late 90s this notion
of reuse really picked up and effects are being made to design with reuse.

(Refer Slide Time: 03:41 min)

We will also take a look at some of the different reusable levels the levels of reuse that
can occur. So, for example, you can go all the way from the notion of reusing a
requirement specification that has already been written or all the way through to reusing
the entire systems that have been built so reusing what are called as common off-the-shelf
system or cot systems and the entire system can be reused in another instance.

We will also look at the intervening levels of reuse. so application framework for
example is a way of reusing architecture, reusing design and reusing some code although
some additional code would have to be written in this particular case; design patterns are
a way of reusing designs only there is no code that typically comes with that, no clauses,
no abstract clauses or anything of that sort and there can be component based reuse or
functional reuse where an algorithm certain amount of code that have been written for a

specific function can be reused; example of these could be math library, graphical user
interface libraries and so on and we will take a look at the different levels of reuses as we
go through this lecture.

So like I said earlier in most disciplines; in most engineering disciplines reuse is the way
of life, you know; if you take a look at a typical design for a bridge you do not design the
entire thing from scratch you basically understand the trusses that make up the bridge that
are kind of prebuilt designs for all of these things. So if we know the type of bridge that
you are going to build you are going to borrow designs from existing bridges which have
already been done and there are parameterized.

(Refer Slide Time: 05:22)

So, for example, if this bridge is to be 1 kilometer long instead of the previous bridge that
was built which is going to be 2 kilometers long you can appropriately scale things down
they have already been parameterized and therefore arriving at a design for the new
bridge is not going to take as long because you are simply reusing bits and pieces of the
design of the older bridge. Indeed this can extend to things beyond design; the entire parts
of bridges may be prefabricated and kept when you are just using prefabricated
components and more and more of that is seen when you are building mechanical
devices, when you are building robots for example even when building computer
hardware and you know the chips are pre-manufactured and whenever a computer is to be
put together you do not start by making your own chip you buy a chip that is available
that embeds certain capabilities; the CPU is a chip that embeds the processing capability,
there are memory chips available of various kinds. So, depending on your needs you pick
the set of appropriate components.

For example, if you need a 40 Gig hard drive or a 80 Gig hard drive you pick the
appropriate component and you assemble everything together so you unify all of these
and you may have to do some gluing work. In this case you might have to make your

own motherboard which allows all these components to interact with each other
appropriately using the standards that have been specified. But if you take a look at
software engineering traditionally it is been more focused on building all the core all the
way from scratch every time unless it is in the same company.

For example, if I were going to build a graphical user interface for an e-commerce
website there have been hundreds of e-commerce websites that has been built; a lot of
these user interface notions are already available as prebuilt components. But typically
the tendency is to build the entire e-commerce website from scratch; you take a HTML
editor and sit down and start building the e-commerce website and over the last five to
ten years how the realization has definitely come in that this is an expensive process the
first thing and it is prone to errors; every time you end up writing new codes you are
likely to introduce errors so the way of reducing the error rate or increasing the
robustness of the software that you are going to produce at the end of a project would be
to try and reuse proven code try and reuse proven components that have been written
earlier that have been tested thoroughly and have been used in previous production
situations. So, if you are just able to pick that off and reuse as it is then you not only save
time but you also provide error free code.

We will look at some of the advantages of reuse as we go along. So reuse based software
engineering can be done at different levels like I talked about. It can be a functional level
that is, a single function can be reused. For example, in a mathematical library they may
provide functions for calculating the factorial of a number, for calculating square roots of
numbers and so on and so forth in the simplest level and all of these functions can be……

(Refer Slide Time: 08:39 min)

When you are writing a program that requires calculating the factorial you would not
write your own code you will simply call this function of a library and this is a common
form of reuse this has been done from quite a while but a higher level of abstraction for

reuse may be that of a component. So the component embeds a certain set of related
functionality into it and a good example of a component may be a text frame within a
graphical user interface that is a good example of a component or it can be something
much of a higher level; the component may embed a more series algorithm such as
optimizing a certain function so optimizing a set of related functions and therefore you
can reuse the entire component because you may need more than one interface of that
component within your program and yet a higher level of reuse like we have seen before
is that the entire application can be reused called cots reuse are common off-the-shelf
applications that are taken as a whole and basically reused by adopting it to meet the
business processes and the needs of your particular project.

(Refer Slide Time: 09:47 min)

In practice basically common off-the-shelf reuse is becoming quite common. The
functional reuse paradigm has existed from quite a long time. We have seen libraries that
were written in C, we have seen libraries that were written for Fortran, there are common
libraries available for engineering design problems that you can pick and use that have
been available from the last two to three decades but component based reuse creating
both creating components as well as creating systems out of components is a relatively
new science, it is only becoming solid now; it is only over the past five years that
component based software engineering as it is come to be known has become a science in
its own right and people have developed ways of describing components which are quite
abstract of gluing together components in a visual manner and so on that makes software
engineering much simpler and much more reliable more importantly.

(Refer Slide Time: 10:52 min)

So, just to summarize the different benefits that we can get use that we can get of reusing
at various levels it does not have to be at any one level; the first one is obviously that of
increased reliability that the component, the function, the system whatever it is that you
are reusing has not only been thoroughly tested because that has been the specialization
of the person who has written that component but it is also been used in other situations
before in production situations and it has stood the test of actual systems. So, that
increases reliability that has got out of reusing components and is something that is hard
to beat.

Also, there is a reduced process risk and this kind of goes along with the accelerated
development bullet that you see on this particular slide.

The process risk is that it takes away some of the uncertainty because you may not know
for example how long it is going to take to develop a particular say user interfaces to
develop a particular engine to do something. So, for example, it may be an ERP system
that you are developing and you need a database design for the ERP system to store a set
of to store a set of data. But if the database schema is already available and can be
entirely reused from another ERP like project that was being done before then you will
you know that at that amount of time you do not have to budge it into your process and it
takes a risk of estimating the software development effort, it brings it down significantly
and at the same time it accelerates development so that is also a process related benefit
that you get out of reuse because you can proceed much faster; there the thing is that you
do not have to do by hand that are already available, you may have to verify that indeed
does what is it that you wanted to do. Those are some of the conditions as we can see to
reusing components.

There can be compliance to standards because typically when a component is built to be
reused in multiple situations it is built to some kind of a standard because that is the

easiest way of ensuring that it is applicable across a wide variety of situations and across
a wide set of systems and therefore when you reuse such components you automatically
become compliant with the standards without having to make an additional effort and
what you are essentially really bringing to the fore in case of reuse is that you are reusing
that intellectual property that went into creating the component in the first place instead
of having to bring the people who built that component and make them build it again.

You are basically capturing that intellectual property, you are you are making effective
use of the specialist knowledge that existed so it may be a domain specific component
that you are reusing; so, for example, something that would build a business process
flow, automate a business process flow, this could be a backend server side component
that knows how to control workflow; this can be reused in several…. it can be embedded
as the workflow engine and the workflow engine now becomes the component that can
be used across any project that requires the workflow.

You do not build your own workflow engine any more just like you would not build your
own database; you would not even think about building your own database today, you
would always buy a database and you will just build your own schema and insert it into
the database. So, just as we have taken infrastructure for granted almost today the
question is can we raise that level of abstraction and take application components,
frameworks and indeed entire applications for granted and then build on top of that
instead of doing all that all over again.

(Refer Slide Time: 14:34 min)

Now at the same time we have seen all the benefits it certainly comes with certain cause,
there are some requirements for design with reuse. The first thing is it must be possible
and easy to find the appropriate components to reuse. So there must be some kind of a
component repository that has been set up, it must be easy to search that repository, the
components must be very very well documented otherwise you may not be able find the

components at all and even if you do find the likely component you may never realize
whether it fully solves your problem. And there only two ways of going about doing this:
one is you test the component thoroughly to figure out and you can kind of take it apart
and figure out whether it meets your need or it comes with appropriate documentation
and when it comes with the documentation then you do not have to spend as much time
in trying to figure out whether it is appropriate for your need and that is the real benefit
that you are going to save time at the end of the day and certainly you need to have the
confidence that this component is complete, the component is solid in terms of in the
terms of the capability that it provides; it has been thoroughly tested and that it will be
reliable and it will behave exactly as has been specified and that confidence can come out
of various means it can be for example certified by some kind of a Standard’s Body that
can say this component has been certified, it has been tested independently other than the
persons who developed the component. The other way of gaining confidence is that it has
been used in several situations production situations to build real systems before you are
picking it up and using it in your particular project.

So what is the flip side of this?
So far we have seen all the things that are great with reuse and how you can save time
and how you can save money and how you can build more reliable systems and so on but
reuse comes with its own (…16:15) so why do people not adopt it is the question; if it is
so great then why was not this something that was that had been adopted say twenty or
thirty years ago. There can be increased cost of maintenance.

(Refer Slide Time: 16:43 min)

The one thing that you can point to is that if something goes wrong and now you
suddenly end up losing confidence in the components that have been reused you might
have to go, figure out whether you know this component is indeed the one that is
responsible for the errors that are being caused, how do I fix this at this point in time
because you will not have access to the source code of these components or the

frameworks that you end up using, it is typically a black box kind of reuse that happens
and there may be lack of tools support also. Most IDs today typically do not support the
notion of visually gluing components together as opposed to writing codes; most IDs or
Interactive Development environments are targeted towards allowing you to write code
efficiently not necessarily targeted towards building systems by gluing together prebuilt
components today. So the tools support is still not very good; lot of IDs today do have
some level of reuse support built into them especially at the level of user interface
components. But when you go into the backend server side part of the system you would
not find much available in terms of tool support.

The third thing which may be one of the hardest things to deal with which is just because
it is something that is hard to get your hands around is something called as not invented
here syndrome or the nix syndrome. This basically deals with the programmer’s attitude
that they want to build everything as opposed to using something that somebody else has
constructed for them it stems from several sources and we will not going in to that
discussion here; this has kind of being well studied, several papers have been published
in this area as well.

Then the cost of maintaining a component library there are there is no well-known place
that you can go to buy software components; certainly applications are fairly well
advertised but if I had a particular need for a component there is no universal component
repository or a library that again goes and searches for and find one of these things. So it
may be something that you have maintain at your own site and the cost of maintaining
this kind of a library becomes quite expensive and the same thing is what this last bullet
here is talking about is finding and adopting reusable component.

So adaptation is a different problem in the finding one. So you may find one but it may
not it may not be something that suits your needs exactly and you may have to adapt to
that component you may have to in object oriented terms you may have to redefine some
of the interfaces of that component which means you have to understand how the
component is put together internally that implies that it is no longer black box reuse that
you are doing; you are not kind of taking the whole component as it is and plugging it
into your system but you have to take it apart to understand what it is doing and then
redefine some of the pieces of ex-functionality so that it becomes appropriate for reuse.
At the same time you might be deriving some benefit out of the whole thing because the
component exists and it has done some work for you already.

(Refer Slide Time: 19:46 min)

So let us start taking a look at the different forms of reuse that can exist. Remember we
said that you know there are different levels of reuse and this is related to that. The first
one is that of generator-based reuse and these magnifies themselves in the form of
program generators, code generators and so on.

The second one would be component based software engineering. We have already
mentioned this. So you are reusing components; you are creating and reusing reusable
components so that it is both sides of the equation designed for reuse and designed with
reuse then there are frameworks that we can take a look at; application frameworks which
are basically ways of reusing high level designs of architectures and some level of codes
so there are abstract interfaces that are provided that have to be completely defined in
your project but largely it is possible to reuse a lot of the design complexity that has been
solved by somebody else.

Then there are what are called application families or product lines and these also end up
reusing lot of the underlying infrastructure in the core ideas and finally we will take a
look at fairly recent phenomenon called design patterns which basically allow you to
reuse designs and just designs by themselves not necessarily code or not necessarily the
entire systems.

So what is generator-based reuse is the first thing. We find the notion of a code generator,
a compiler for example is composed of a parser, a lexical analyzer, a parser and a code
generator (….21:16) once it analyses whatever has been parse it is able to generate the
appropriate piece of code.

Now if you extend this notion to being domain specific for example then we can generate
entire program out of some kind of a specification and this in a way is the reuse of
algorithms, the reuse of notions of designs as well because you can write out let us say a

specification and if you take a look at financial systems as a vertical segment then
suppose there is a program generator for financial system which very well understands
some of the elements of the workflow some of the algorithms that are embedded within it
so for example if an invoice has to be generated in a financial system tax has to be
imposed on that invoice so there is an original amount to be billed and there is a taxable
amount so that notion can be embedded within the program generator itself. It can also,
for example, have tax tables that are built into it that it finds out what the tax is and then
just plugs this into this particular program.

So the notion of reusing algorithms patterns that exist in certain vertical domains and
embedding these within the program generator itself leads to what is called generator
based reuse. This is possible certainly when there are domain abstractions and the
mapping to code can be very clearly defined. Eventually what needs to come out of the
program generator is executable code and when you can map these abstractions that you
are feeding into the generator to the executable code pretty cleanly then you have a way
of reusing lot of stuff that is specific to that particular domain.

There are different types of program generators, parses and lexical analyzers are very
very common once that you end up seen lex and yak…. are the two common examples
that you would end up using on building compilers so you would build a lexical analyzer
or a parser; you would just write a grammar or you would write a piece of lex input and
what the lexical analyzer now knows is it knows is how to recognize all those symbols
that you have fed in as input. Same thing is the parser; once it reads the grammar it now
knows how to parse anything that can be reconstructed out of the grammar. So the parser
is being entirely reused the notions of building an abstracts, syntax tree out of the parser
is an algorithm and the algorithmic reuse that is happening at this point in time.

(Refer Slide Time: 23:30 min)

Also there are several cases where code is generated. So, if you take a look at distributed
object technology which is a fairly new technology and core bugs is one of the standards
that is available in the space there is something called an interface definition language in
core bug.

An interface definition language allows you allows you to specify program interfaces in a
high level specification language. So, for example, a bank account has two functions that
are available on it: one is a withdraw function, one is a deposit function and the third
function may be that of a querying function to find out what the available balance is at
any given point of time.

Now you write out this high level specification without writing the code of what the
withdrawer has to do and then it generates the backend code; at least the code framework
can be generated. So you do not have to, for example, write the specification in C
language, in Java language or anything like that; you write out in this high level English
like language and then it translates it into a framework within a specific programming
language say C or Java and at that point of time you will just fill in the details of the
business logic and not worry about writing the code for the rest of the framework itself.

In that case, for example, the account has to be published so that somebody else can
access it and all those functions are automatically generated by the code generator in this
case. It is obviously a very very cost effective method of doing things but program
generators are very specialized they are not generically usable everywhere so a few
things that are fairly general as things like lexes and parsers but otherwise you take a look
at code generators and case tools and things like that they are pretty pretty specialized
and it is not very often used.

 (Refer Slide Time: 25:43 min)

So the reuse through program generation the process looks like what is shown in the
diagram here. You basically give the description of an application and the description of
an application is fed into a program generator; program generator has some application
domain knowledge that it picks up so this is the notion of reuse of algorithms; so, parser
for example here knows what the notion of an abstract syntax tree is, it knows the
algorithm to construct an abstract syntax given a particular parsing technique and so on.
So through this you basically give a grammar in this case in the case of parser and then it
basically generates a program in this particular case that can parse a particular language.
So, for example, if you wanted to write a parser for Java you write down the Java
grammar, you give it to a program generator and it would generate a compiler for Java in
this particular case.

(Refer Slide Time: 26:30 min)

The second form of reuse that we are going to go into is what is called component based
software development or reuse at the component level. This is an approach to software
engineering that basically relies on reuse at its core.

Component based software engineering is the notion of reusing component and building
systems by gluing together these components and often the level of abstraction has been
raised to a point where the components are glued together visually in fact as opposed to
even writing code and the visual gluing together of components generates code in the
backend which will put all these components together appropriately. And components are
slightly more abstract than objects.

It is actually, component based software engineering originated from the notion of object
oriented design where individual classes and individual objects could be reused in the
case of object oriented programming and design but what was needed was a slightly
higher level of abstraction where an entire concept could be reused in the form of a
component. So an example of a component may be an html page which has frames. There

are certain parameters that can be fed into these components; I want frames in the left
hand side or the right side, I want this many frames within this particular page, the colors
of the different background colors of the frame and so on and so forth. But the
component itself embeds multiple objects within it. It may embed the different frame
objects, it may embed certain other notions that can be reused through the parameters that
have been supplied to the user so it is a slightly higher level of abstraction than individual
object; very much like an individual object except that it may combine multiple objects to
perform a single set of functions; it is not a single function typically it is a single set of
functions.

A calculator, for example, could be a component whereas the different objects within it
could be things like a mathematical representation for data then there could be different
functions on that representation for data and so on and all these things have been looped
together in the notion of a calculator that could be a scientific calculator object there
could be an arithmetic calculator object and these two come together within a calculator
component for example.

 (Refer Slide Time: 29:20 min)

Therefore, the components essentially end up providing a service without regard to where
the component is going to end up getting executed. That is, another aspect of component
is that build and there can be many platforms on which this component will end up
executing. So, for example, the Windows verses the Linux platform could be an operating
system classification. So the component has and can be complied for either of these two
platforms and when you install the component it automatically figures out as to what
platform this is going to work on and generates the underlying code by itself and that is
an that is what we mean by it provides a service at a level of abstraction that is
independent of the platform on which it is going to run.

Then the interface, the component typically has two interfaces; the interfaces that it
requires for it to run and the interfaces that it provides for somebody to reuse. We will
take a look that in this diagrammatic representation.

(Refer Slide Time: 29:57 min)

So the component in this case can be considered, let us say this black box is the
component (Refer Slide Time: 30:10) it has two sets of interfaces; one is the set of
required interfaces as they call it and one is the set of interfaces that it provides or
provided interfaces.

(Refer Slide Time: 30:42 min)

So, we can extend this to a particular example and this example can be that of let us say a
printing service component; a printing service component and the case of a printing
service component it has a required interface which is that of the printer so this is a
printing service which is a slightly higher level of abstraction and it requires the printer
interface itself because it has to eventually send documents into the printer and it is going
to provide interfaces which we will put out on the right side in this case where you can
get the queue I will write it outside here so send document to print, one can be cancel
print order and so on.

(Refer Slide Time: 32:08 min)

So here is an example of a printing service component which has a certain set of required
interfaces as well as provides a set of interfaces that other people can use in order to
accomplish and task. So the notion is that every time you want to have a service to print
documents you do not need to build your own code to do this; you basically pick up this
printing service document and embed it in the place that requires it and then use the
interfaces that are been provided on the right side the provided interfaces and then you
can just call them appropriately. You of course need to make sure that the required
interface is also present.

So the analogy is clearly one of building hardware out of using prebuilt components such
as chips. You do not build the gates for example within the hardware design today you
have chips with three built pieces of functionality. For example, you may get a 4-bit
adder, for example, you may get a piece of memory that stores certain 10 5 4 words of 8
bits each or a byte each and you can assemble a larger memory set by taking a bunch of
these memory chips and putting it together; you can assemble a computer by putting
together memory blocks such as this; even there there is a level of componentization.

Typically you get memory cards which contain let us say 4 mega bytes of memory or 8
mega bytes of memory and each card is in turn built up of smaller chips that contain may

be a kilo byte or memory each and the entire memory card can be plugged in in an
extensible way to create a computer that ranges anywhere from let us say 64 mega bytes
of RAM all the way to Giga byte of RAM and you can extend that and this in turn uses
the other components such as you know an arithmetic logic unit, may be a floating point
processing unit, a CPU and so on and so forth, a disk driver and so on. So that is the
analogy that you should be thinking of when you are thinking of component based
software engineering; can I do the same thing that I do in hardware in building hardware
to building software systems as well and that is what component based software
engineering is all about.

 (Refer Slide Time: 34:37 min)

Components can provide different levels of abstractions as we have noted down in this
slide. Typically most of them tend to be data abstractions or functional abstractions. so
the component either implements a single function such as mathematical libraries that are
available so there can be libraries of you know mathematical functions, there can be
libraries of UI components, there can be libraries of you know communication
components and so on or there can be data abstractions so things like data structures or
lisps and stacks and sets and bags and hash tables and so on so these are data abstractions
so that can exist as well. Rarely is the component of complete system abstraction that
becomes cots type of reuse but for the sake of completeness we have included all the
types of component abstractions that can exist on this slide.

The process is something that we will go into next. It can just be fitted into the existing
software engineering process in the sense that you have a requirement stage and once the
specification is done you typically have a design phase.

Now, here is where reuse really comes into the picture; you can either reuse it at its
specification phase but more often than not reuse starts in the design phase and is most
heavy during the implementation phases. So, given that what typically happens is you can

say that you will extend the normal software engineering lifecycle to essentially have a
reuse activity within the process. By this what we mean is that you have a design phase
but as part of the design phase you first go look for components and if components are
available then you just reuse them and then you design the rest of the system and go on;
the same thing for implementation.

However, one should realize that this may not work very optimally. So, for example, you
might go find a component whose specifications do not exactly match the design
requirements that you have, whose specifications do not exactly match the
implementation needs that you may have so it may be little bit more than what is required
or it may be a little bit less than what is required.

(Refer Slide Time: 36:26 min)

In this case you have an option at this point: one is to put a feedback loop within the
software engineering process and change these specifications of the system; not change
the requirements exactly but change the specification of the system to meet what the
components or the set of components that are available are giving you. So that is one way
of going about doing it and something that is very important is obviously the prototyping
effort in this case because you are getting many unknown what are essentially unknown
quantities from different places and trying to put them together you should first have a
prototyping phase or the prototyping phase becomes very important here where you are
trying to first glue them together possibly using a scripting (37:08…..) quickly put them
together in other words just to see whether there are incompatibilities that may exist
within the different components etc etc and the components really perform according to
specifications and so on.

Now, once that is done and you are kind of satisfied then you can kind of throw the
prototype away and rebuild the system with the same components but now your glue is

much stronger, your glue is may be a real programming language that has typing support
and so on and so forth.

(Refer Slide Time: 37:45 min)

So an opportunistic reuse process like the first thing that you showed by simply extending
the software engineering process would be to design the system architecture to specify all
the components that would be required. The architecture itself is specified in the form of
a set of components that are required and now for every component that is required you
go out and search for components that may be reusable somewhere and if they are
reusable you simply incorporate all the discovered components and then this entire flow
can then be incorporated by saying the rest of the components might just now have to be
built and that is the regular software engineering process at this point.

However, the development with reuse; remember what we said that the components that
you may end up finding may not exactly be a match for what is that you are looking for.
So once you outline the system specification you should really read requirements as
specification in this particular case; once you outline the system’s specifications you
search for the reusable components and depending on what you find you may end up
modifying the system specification according to what has been discovered and in this
case….

For example, suppose you are looking for a lisp component, your system specification
says you need a lisp or singly linked lisp in this case what you really find is only a doubly
linked lisp is available as a reusable component so you basically modify the specification
of the system at this point to say I am going to use a doubly linked lisp because it really
provides all the functionalities that could be required and in this case is an example of the
component’s requirements are a superset of what is really needed within the design that
you have created.

(Refer Slide Time: 39:19 min)

There can be a situations where it is a subset and the component may now have to be
extended a little bit as well and then you do the architectural design at that point in time
using the set of components that have been discovered and now you search for other
reusable components and so on and then you specify all the system components based on
the reusable component. So this is the development with reuse scenario at this point in
time and the last half of this process is not…… the search for reusable components here
is different than the search for reusable components here (Refer Slide Time: 40:03) why;
basically because the first part is referring to design with reuse and the second part is
referring to design for reuse. So, one of the components that you may be building might
look very very similar to a generic component that can be created out of this. So, what
you should do is to then extend the effort to make this piece slightly generate if the
project can absorb the cost because there is certain cost to be paid when you try to make
something more generate and then you specify the system components that are based on
reusable components at that point in time.

(Refer Slide Time: 40:39)

So, some of the problems that component based software engineering face today are that
there can be component incompatibilities; you may get two components from two
different sources and there may be standards in compatibility that may exist; even though
they both provide the kind of functionality that you need one may be talking as slightly
different protocol than the other one and the glue that you may have to write now to bring
these things together may prove quite expensive; it may be in fact in some cases more
expensive than writing the original piece of software from scratch so that is one thing that
has to be taken into account.

The other thing is the old problem of reuse that we already saw which is finding and
understanding these components. So, is there a standard means of describing a
component; there is no component that exists today for example, for describing what a
component does even though there are designs there are defacto standards such as UML
that is available there are no component based software engineering standards for saying
here is a description of a component that can be processed by a machine for example
while doing a search.

The third thing is managing evolution of systems. If your system is largely built out of
pre-existing components and now the system specifications change the system
requirements change, the specifications change now you may end up in a bind because
the existing components may not fit the new requirements that you have, the slightly
extended requirement that you have and if no component is now available to match those
needs you have to write that piece of code from scratch, write that part of the system from
scratch and that can prove quite expensive so in some cases you would find out that
evolution of a system to support a slightly incremental requirement is much more
expensive than the original system that was built and that does not look very good.

So what are the again so those were the advantages and disadvantages of component
based software engineering; fairly well-known methodology that is being adopted today
increasingly; a lot of the IDs end up supporting that if you are using them on any kind of
operating platform. The next level of reuse that we like to take a look at is the application
frameworks.

(Refer Slide Time: 43:05 min)

What is an application framework is the first thing that you have to ask yourself. And an
application framework is essentially a half implemented design to put it informal. What it
provides…. It is a subsystem design and it is made up of a collection of concrete
components that it embeds and some abstract components which have to be implemented
when you use the framework. An example of such a framework is the interviews
graphical user interface framework that is available from Stanford University and here is
where they provide a collection not just of individual components by themselves that can
be reused but there is interwiring between the components as well.

For example, it might provide the MVC pattern that has been partially implemented, it
might provide other design patterns that has been partially implemented and there is some
specialization there is some configuration that would have to be done if this framework
were to be really useful. So you cannot just use the framework as is; if you use the
framework as is it becomes a common off-the-shelf system that you are reusing at that
point in time.

So what distinguishes the framework from a complete system is the fact that one certain
abstract classes might have to be instantiated; you actually have to write some code that
provides some concrete functionality for some abstract classes within the system. The
second thing is it would have to be configured according to the system that were being
used. A good example of this on the business side would be let us say there is an
inventory management framework. What this means is that it is not an inventory

management system; I just cannot take it and instantiate it and start using it to
management inventory, I need to describe to it, the first thing I need to describe to it is
the platform on which it is going to run, the second thing is every inventory management
system embeds within it business process of how inventory is managed within the
system.

So, for example, if the business process may be that of an item comes in it has to be
approved by somebody then it has to be entered into the inventory system at that point in
time and then it is tracked as to the movement of the particular item from warehouse to a
particular store and so on and so forth. So that is the business process that is the control
flow and unless that flow is described to this framework the framework is useless the
framework cannot be used as is and when the flow is described to the framework what
the framework does is it instantiates that particular flow; it makes it concrete, it makes it
usable and that point of framework becomes the system that can be used directly.

There are fairly large entities, the level of granularity in a framework is quite high so it
might act as an entire system for example, it could be a framework of an inventory
management system or an ERP system within the industry or it can be a framework for
GUI designs such as MVC designs and so on so it is fairly large. However, there has to
be some work that is to be done by the person who is reusing that framework. So there
are different classes of frameworks that are available. There are system infrastructure
frameworks, there are middleware frameworks, there are application frameworks and so
on depending on the level in the stack that you add.

(Refer Slide Time: 46:26 min)

System infrastructure frameworks basically are things like communication frameworks so
there may be a socket based communication framework, there may be a multicast
framework that is available that supports multicast based on IP or something else and
things like that. So there can be user interfaces frameworks and so on.

Now, the middleware integration frameworks are typically those that support a certain
standard such as code bar for example it may support a J2E standard, it may support a dot
net standard and it supports communication between components here. The framework
for example, may go beyond simply a piece of middleware such as an ORB by saying I
am going to provide reliability to this piece of middleware by replicating the object in
multiple places. So it is a framework for object replication in other words. That is the
notion of middleware at the I mean that’s the notion of frameworks in the middleware
level.

And finally the frameworks at the application level are those that are developed that
support the development of specific applications. So inventory management was an
application that we just talked about, there can be frameworks that do different types of
vertical domains as well so a framework that does account management for example so
something that have to be fed into that would be the account management, business
process, the tax tables for the account management so it needs a lot of things just like a
component has certain required interfaces and has certain interfaces that it ends up
providing and the framework also has certain requirements the things that it ends up
depending on as well as it has a set of services that it ends up providing.

(Refer Slide Time: 48:26 min)

So, frameworks are meant to be slightly generate because they can be instantiated in
different conditions and different circumstances with different requirements so the
framework can provide an entire family of application if you will, each one characterized
by its own configuration, by its own business process, by its own business rules and so
on. That is another example of the variability of a framework. For an application level
framework there could be a set of business rules that are different within every
component.

So, for example, the discount rules that are to be given when doing invoicing one
company may say that we do not give any discount at all that is the rule, the second
company that ends up instantiating the framework may give a business rule stating that if
the invoice is over a 100,000 rupees then a discount of 5 percent is going to be applied to
this.

The third company may say that any customer who has had business with us over the past
three years to the tune of say 10 million rupees is going to get a 10 percent discount on
any further purchases. So there can be different business rules that have to be provided to
instantiate the framework as well.

Typically extending the framework would imply that you either do some development in
which case you are adding certain concrete classes to the framework that actually
implement some functionality that are provided as abstract interfaces within the system or
you add certain methods that are called in response to events that are recognized by the
framework. So these are called callback methods and every time the framework
recognizes certain events; so suppose your total business volume has crossed a certain
threshold now it is impossible for a framework to figure out what you want to do when
you cross the threshold may be you want to set up an alert, you want to send an e-mail to
a bunch of people saying that his business volume has crossed the threshold, may be you
want to set up a press release etc etc. Now the framework writer who is writing a generic
framework has no idea so what he does is he says that I am going to generate an event of
type business volume threshold exceeded and when this event occurs then I am going to
call one of these functions which is described in an abstract way so there is no
implementation for this function, he has just called one of those functions and it is upto
you as a framework instantiator to implement that particular function. So you have to
write the code to receive that event and appropriately act on that event.

Another example could be that your average execution time for a particular servlet that
was executed in the web [….5052] is suddenly spiked up by 50 percent and the
framework an application management framework may give you the event and say it is
up to do what you want with it; you can raise an alarm, you can try to take auto corrective
action and so on and so forth.

The typical problems that exist with frameworks is the complexity. So the framework is
not like a single component which can be easily understood. The printing service
component was fairly simple in nature it had small set of interfaces typically two to three
interfaces are what makes up a component; it may contain like four or five objects that
build up that particular component. So it is not very large in size and it can be easily
understood and it is also easy to discard and replace that is the other advantage of the
component which is that if you find that the evolution of the system does not support that
component then you can replace it with another one fairly easily. But a framework is a
much larger commitment because of the size; it is almost an entire subsystem all the way
to being an entire system by itself. Once it is instantiated it could form the bulk of your
system. in such cases it is obviously not easy to replace the framework therefore
evolution of the system may become much harder, also understanding the complexity that

goes into creating one of these frameworks and therefore specializing it to meet your
needs to configuring the framework for building these concrete classes that have to be
added to the framework for dealing with events that the framework may end up throwing
out are all very very difficult to do in certain cases. Obviously it has its own advantages.
It is saving you a lot of development time, a lot of development effort, this has been again
well tested so it is a level of reuse that is much higher than that of components but it also
comes with a certain baggage that you will have to deal with. So, going forward what we
are going to take a look at is the remaining levels of reusability (………52:49) we are
going to take a look at design patterns and levels of design reuse and what are the
benefits and disadvantages of doing reuse at those levels.

