
Software Engineering
Prof. Umesh Bellur

Dept. of Computer Science & Engineering
IIT Bombay

Verification & Validation, Inspection, Clean room development

Lecture # 22

Today we are going to be talking about the process of software verification and
validation, and what these terms really mean over and above, what you normally do in
the course of the software testing process.

We are trying to make sure in a way that the software does exactly what is meant to do
and we look at the difference between what validation is and what verification is
specifically and how the process differs from the process software testing.

We will also take a look at what is called the clean room software development process
and this is a process whose philosophy is rooted in trying to ensure that the software can
be gotten right in the first go, as suppose to having iterations where the software is
released, bugs are found, it comes back, and the bugs are fixed and so on.

(Refer Slide Time 01:47 min)

What are the techniques that we can use to get software right in the first go, so that it does
not have to be [c..not clear] and that is what we are going to conclude with in today’s
lecture.
The first question is what is really the difference between verification and validation and
why do we want to take these two terms separately?
Verification essentially deals with the question “Are we building the product right”.

(Refer Slide Time 02:14 min)

In the sense that, there is certain requirement specification that is being laid out, a
requirement document that is being laid out, the documentation is being converted to a
specification for the system and as long as that conversion is accurate you want to go
back at the end of the cycle and check whether you met the specification of the software.
And obviously if you are using automated techniques to generate the code from the
specification then it will obviously match, but in the case where humans are involved in
the process, we have to go back and make sure that we actually met the specification that
we started out in the first place.

Now validation is the question of “Are we the building the right product?” That is, does it
really help the user do what they want to do?
For example if you have a document editor of some kind, let us say it is a word processor
and you do not have a spell check built in to that at all. This may be an issue which is a
missed out requirement and these are the kind of question that you will try to answer with
the validation process.
So you will go back to user scenarios in the first place and see whether whatever you
ended up building at the end of the day, really meets the user scenario that were laid out
to begin with.
This is also process that has to be applied across the lifecycle. So we cannot just do
verification and validation at the end of the life cycle and hope that everything is going to
have come out right at that point in time, because “what if did not?” - is the question.

(Refer Slide Time 03:51 min)

The cost of fixing something let us say that you missed out a requirement and let us say
that you did not conform to the specification because you misunderstood it in some way,
then the cost of finding that out in the end of the cycle is very high and the cost of fixing
it is also high. The earlier you catch that problem and fix it will be cheaper for the
software development process.
So it is a whole life cycle process in other words. It cannot just be done towards the end
and it has to be applied towards every state within the process.

The principal objectives of verification & validation, much like testing for example, is the
discovery of defects in the system is the first one; that is we find out all the bugs in the
system and may not all be bugs that we want to fix and that is the second question that we
should try to the answer. You should assess whether these are the bugs that affects for
example usability of the system or that affects the user scenarios which the software is
most likely to be used for.
So, if you had a feature in there, for example that was only going to be used for say five
percent of the time or it is some kind of a complex configuration feature and is going to
be only used for five percent of the time, even if there are 1 or 2 bugs pertaining to the
feature, then it may be okay to release the software at that point in time and that is the call
we will have to make and this process helps us to make that call.

So what are the goals of verification and validation?
The basic goal is that it establishes the confidence that the software is fit for the purpose
for which it is being built.
Going back to the first slide that we saw on this, what is trying to do is to ensure that we
are building the product right, it is meeting the specifications or meeting the requirements
that were laid out for the users and also it is going to try to ensure that this is the right
product for the users in the first place, so that the software is fit for the purpose.

(Refer Slide Time 05:15 min)

Obviously it does not mean that the software is completely “defect free”. What it means
is that, this can actually accomplish the task that it is set out to do. It must be good
enough for the intended usage of the product and it will determine the degree of
confidence that is needed as far as this particular software goes.

Depending on the systems’ purpose in this case, user expectations, marketing
environment etc, what are the factors that influence the confidence level of a particular
piece of software?

(Refer Slide Time 06:18 min)

It is worth looking at that, because those are the factors that we have to end up attacking
within the verification and validation process.

The first factor is that of the software function. What is it this software itself does? How
critical is the software to the organization? What is the software function within the entire
organization that this is meant to serve?
What is the expectation of the user is a second thing that would have to be considered.
The user may have very low expectations of certain kinds of software or they may have
very high expectation with the degree of automation that the piece of software is going to
bring to them.
For example, if you are going to put out a word processor kind of software, it is not going
to write documents on its own. It is unreasonable to expect something like that to happen.
Whereas in enterprise automation software, not desktop software, basically the kind of
ERP systems for example that exists within enterprise, the expectation is that it will
largely automate the business process of enterprise and it will take the human touch away
from most of this process and it become much more efficient to the result.

Then there maybe market conditions, the market conditions may drive the fact that the
software product has to go to market early.
It may be at some point in time, if you are aiming for a “zero defects” kind of software,
you may not be there in a year. But market condition maybe dictating that, unless you
release the software in a particular window of opportunity, then there is no point in
releasing the software at all. Because a competitor has probably beaten you to the market
with pretty much exactly the same piece of software with somebody else is building or
the need for software like this may not exist outside that window.

So it is either driven by competition or it is driven by the need for such a piece of
software. It may become obsoleted because the fact that some other environmental
conditions change and the software is no longer needed in the first place.
So getting to market early may be a concern and this is also something that is going to
end up driving the confidence building process too: What is the level of confidence you
need to have and what is the amount of risk that the organization is willing to undertake
in order to release the software product into the market?

There can be two kinds of at the highest level [dec..not clear] of verification methods.
The static and dynamic verification is that what we call them.

(Refer Slide Time 09:34 min)

Static verification is essentially something that is done with the code base and not with
the actual product. For example you may be using the code base, you may be using the
documentation, you may be using the design diagrams, and you may be using the
specification and so on, but you are not actually playing with the built product, you are
not testing the product in other words in any kind of dynamic sense.
Largely it has to do with software inspections. Software inspections can be supplemented
by code analysis and so on. And all of these belong to set of methods which are static in
nature. So code analysis through programs like ‘lint’ for example for C programs and
there may be equivalent program for java as well. So software inspection is manual
inspection of the code, the document and so on.

Then there is software testing. Testing is a dynamic verification process. In testing you
actually write some test cases, drive the software through the condition that should be
expected to encounter, and depending on how the software behaves, you determine
whether the software is functioning properly and it meets the specification or not and this
is completely dynamic. Basically it is actually executed.
Whereas in the static method it is not executed and purely some set of inspections either
an automated inspection or manual inspection is done to determine whether the software
is being built right.

Program testing can typically reveal the presence of errors; it cannot reveal the absence of
errors. So how do you make sure that errors do not exist?
Certainly when you test the program, it can never be completely exhaustive. There can be
hundreds and thousands of test cases for a program that can take say 10 inputs which can
take in a variety of values and impossible to test every single set of values.

(Refer Slide Time 10:41 min)

So the tests reveal certain errors that may exist. For example you may do a validation test,
give it a wrong kind of input; it is a date and date is always expected in the day; the
month and the year format and you feed the date in a different format and see whether it
throws up an exception. That is one thing that you have to test, but certainly the other
thing that you have to test is that variety of correct format that it accepts is also
something that it is going to go through. So is there an absence of errors under certain
conditions is something that you have to test for as well and program testing does not
reveal the absence of errors, it only reveals presence of an error.

And as non functional requirements are concerned, the only validation technique is
execution. It is dynamic in nature. Because performance for example, you can never
predict although there are predictive or analytical techniques for predicting performance
largely something like reliability or performance has to be determined only by running
the software under certain conditions: How does it behave with hundred users in the
system executing concurrently? Is it reliable if it ran for thirty days under this kind of
load conditions? Etc.

So software or program testing which is the dynamic technique not something that we are
going to go in here because you have already seen dynamic techniques and how to do OO
testing etc. But it is obviously used in conjunction with the static verification techniques
to provide complete coverage or complete validation.

So testing can also be of multiple type, defect testing or basically tests that are designed
to discover system defects as indicated here. And successful defect test is one which
reveals the presence of defects in the system.

(Refer Slide Time 12:11 min)

For example, if your test was checking to see whether you are accepting only the correct
format of the input and the test actually showed that you are taking in some format that
are not the correct format as well, then there are two things that can be tested there.

The first thing is that you give it a correct format in and it actually accepts and does not
give out an error.
The second thing is, you give it a wrong format and ensures that it generates an error. So
a successful defect test is one which actually reveals the presence of a defect or presence
of a bug in the software.
The validation testing is basically intended to show that the software meets its
requirements. If there was no requirement for example to validate the format of the input,
then there is no point in having a test that checks the format of the input. Yet the system
may kind be unusable really if you did not validate the format because different people
would be entering these dates in different formats.

So here, a successful test is one that shows that requirements have been properly
implemented and the system is usable and that is something that needs to be added to
validation testing. Because in validation, “Are we building the right product”, is what we
end up asking. So here it is not just that it reveals the presence of defects, but it is a test
that shows and that it conforms to the requirements and the requirements are complete in
nature.

Now debugging and testing are also slightly different processes, again very dynamic in
nature. Here, you are putting the software through the phases and trying to determine
whether it is meeting certain requirements.

(Refer Slide Time 14:22 min)

But, what is the difference between debugging and testing. They are distinct processes.
Testing is meant to indicate that there is a defect in the system and debugging is a process
of determining localizing the defect and removing the defect.

So while verification validation is concerned primarily with establishing the existence of
defects, debugging is concerned with removing the errors, locating and repairing these
errors.
Typically you end up forming a hypothesis. The way you go about debugging is; the
system for example, is failing with this set of inputs. Let us say that you gave it a value
greater than 10 for a particular integer value that it is expecting to take and the system
fails after some point in time.
So you form a hypothesis saying, here is how the value is processed, here is what was
done with the value. You kind of know the control flow of the program and how the
inputs are getting used in the control flow. And based on that you form a hypothesis and
then you test these hypotheses to figure out whether there is system error.
So you might sort localizing these. There maybe four modules in the system, you test the
first module for example, because you feel that the validation of the input is not being
done right and it is passing a piece of input that it should not be passing down to the rest
of the program. If that is the case, you kind of just test that module by testing whether it
is doing the validation. That is how the hypotheses do if the validation is not being done
right.
So you form a set of such hypothesis and that is how debugging ends up getting done.

Here is the diagrammatic view of the debugging process. You have a set of test results to
start with typically. You have to locate where the error is. The test results also typically
indicate the software fail, not just that the software fail but where it is failed, typically the
line number in the program is something that is indicated as part of the test result. You
take that and then you take the specification along with that and figure out where you

ended up deviating from the specification: What is the specification and why is the test
failing this particular specification?

(Refer Slide Time 15:55 min)

So you then design the error repair around that and you repair the error and then you have
to retest the program with the same set of test cases that caused into fail in the first place.

An important fact here is that set of test cases have been generated, the program failed in
those test cases, you fixed the failure and now it may or may not be just sufficient to
rerun the original set of test cases in the first place. You may need to add certain tests,
because you made certain changes to the structure of the program itself. Some of the tests
may now become invalid because of the changes to the structure. So you have to be
careful about that. But certainly the cases which caused the system to fail in the first
place have to pass and then if any new additional test cases are added those have to run as
well before you are done with the debugging process.

So having seen the difference between debugging and testing, these are all the dynamic
methods of verification/validation that we talked about. Remember the static methods
which focused on inspection, either manual or automated inspection, then there is
dynamic method focused on testing. So we kind of looked at different methods of the
testing, the difference between the testing and debugging process at a high level.

And the question is what else should be done? What is the overall process of verification
and validation? What is the kind of planning that goes into making this process happen?
First thing is obviously planning is required in order to get the most out of the testing and
inspection process.

(Refer Slide Time 17:37 min)

Since you are also doing manual inspections of the code base of designs, discussing the
design document before you move on, there is some degree of optimality that can be
achieved by focusing your attention on specific pieces of the system.
Say, if there is a very critical part of the system, maybe only you want to do a formal
specification and go down that route. Or may be there is a piece of the system that is
being thoroughly inspected and you have a high degree of confidence in that part of the
system may be the testing does not have to be that exhaustive in that particular module of
the system and so on.

So, the planning is something that has to be done and it should start very early in the
development process. In fact the V&V development process, the verification/validation
development process emphasizes that you start writing test cases as soon as the
requirements are written, as soon as the specifications are written.
So, the testing process does happen in parallel with the development process. We should
take a look at the process itself in a little while.

And certainly there should be a balance between the static verification methods and the
testing methods or the dynamic verification methods, just like we talked about little while
ago.
And finally test planning is all about defining standards for the testing process. For
example what is the test environment going to be like, what degree of scalability testing
are you going to end up doing?
Say, if this system is going to take hundred thousand users at any given point in time and
you are not going to be able to test it for hundred thousand users. So you have to have
some means of building a confidence that when tested for hundred users, you can some
how extrapolate those results to ensure that the system is going to work with same level
of performance with hundred thousand users.

Is this system going to scale? - is the question that is going be asked. And so in test
planning you try to build confidence that the test that you are doing are indeed going to
let you know that the system is going to scale or not.

(Refer Slide Time 19:49 min)

Here is again a diagram of what is the verification model of development.
You start of with the requirements specification in this case. With requirement
specification you can start writing the acceptance test plan because the requirement
specification is done by the customer and the customer is ultimately the one who is going
to accept the system.
So the requirement specification will lead to the acceptance test plan, which in turn a lead
to actually doing the acceptance test when the software is ready to be acceptance tested.
Then the system specification is written, system specification can also go towards the
acceptance test plan, because in some cases the user maybe involved the system
specification, but more often that it will take the rights side arrow (Refer Slide Time:
20:33) of this particular box coming down into a system integration test plan.
Because once you specify the system as: Here are the four different modules, here is the
specification of the each one of the modules of the system, that is what the functional
specification looks like. In that case you have to have some kind of an integration test
plan that is built around this specification and design.

And then the detail design or the system design and specification together go into
creating the system integration test plan. Because the design is also responsible for
modularizing the software, it is responsible for breaking it up to say that, we are going to
use these components, we going to build these modules and the modules themselves or
the components themselves maybe individual units of work that are put together by
different people.
Even though they may be tested individually, there has to be some test that covers the
cohesiveness of these different modules. Once they come together, is it clearly fulfilling

the specification even though they work very well at unit level? That is what system
design at specifications end up driving the integration test plan.

And finally the detail design may typically ends up driving the unit test plan, which is the
last box on the right side of the diagram. But it may also contribute to some subsystem
integration test plan. So, if you hierarchically breakdown the system into subsystems of
lower and lower complexity, then there maybe some subsystem integration, but at a high
level you may not end up seeing the subsystem integration test plan box. What you see is
acceptance test plans box, a system integration test plan, and finally the unit test plan and
pieces of it.
So, the detailed design will drive the unit test plan, and as soon as the code is done the
unit test around on the code for each module; this is done on an individual module level,
and once the code has been unit tested or the components have been unit tested, then
subsystem integration and system integration testing is done using the appropriate plan;
either subsystem integration test plan or a system integration test plan.
And once this is done, it then goes into acceptance testing using acceptance test plan that
you have already created before.

So it is kind of like a V-process, start from the requirement specification and goes back to
the product or the service that is being delivered to the customer and what are the
different stages of testing as it is integrated with the development process itself is what
this is trying to show you.

Now, this is something that you might have seen during the software testing part of it, but
here the structure of a software test plan.
The software test plan primarily focuses on what is the testing process going to be.

(Refer Slide Time 23:23 min)

For example, how are we going to test software?

It is also focuses on things like: What is the test environment going to look like? Are you
going to have a full scale test environment which exactly duplicates what the production
is going to be like? Are you going to have a scaled down version of this? If there is a
scaled down version, then is there a process to extrapolate the results to get at what this
software is going to behave like in the fully scaled up version under production
conditions?

Then it is typically going to have to test every single requirement, so there needs to be
some kind of requirement traceability. Let us say as; here is the test that tests the
requirement 1.2, here is the test that tests the requirement 1.3 and so on.
Because, at the end of the day, you have to have confidence at every user requirement has
been tested and works.

So, what are the different items that are being tested? What is the testing schedule? - is
one thing that it puts together.
If there are 450 tests that need to be done because there are 450 requirements and each
test kind of breaks down into 10 other sub tests, then what is the schedule?
All these are going to take time and going to take resources. Now, what is the plan going
to look like? What are the recording procedures? It is not just sufficient to do the tests,
but you have to record the results from a test in a very systematic fashion, so that you can
go back and analyze the results at a later point in time. So, what is the recording
procedure going to look like, what exactly in fact the template of the test results is going
to look like, is very important to specify upfront.

And then what are the hardware and software requirements for testing? Do I need just
one server? Am I going to simulate the system or I need a bank of servers, because I
wanted to run the real system on here? Is there a software test harness that is required
etc? Or there any constraint from the testing for example, you cannot test a particular
requirement because it is testing let us say the degree of user friendliness. It is a very
subjective kind of a requirement and maybe it is something that cannot be tested
objectively.

So, we just went through the testing process. Let us come down to this software
inspection again.
We have seen in testing remember, we broke up the entire verification/validation into
static and dynamic process. Static process dealt with inspections and dynamic process
dealt with testing. And we have gone through the dynamic process.
Coming back to the static process, which is inspection either by manual or automated and
it is a very key feature of how this is done.

So software inspection essentially involves people examining the source representation.
By source representation we mean, the code, it can mean design documents or it can
mean specification which is used to generate the code, or it means an architectural
document etc.

(Refer Slide Time 25:51 min)

The main goal of this is to try and improve the design, improve the code, improve the
architecture, improve the ways specifications are done, and so on.
So the aim is to discover anomalies or defects within the source representations. It is
typically done before implementation so that you can catch things upfront. And earlier,
you do it within the process, the more beneficial this is likely to prove because, a bug or
software defect or an error that is caught up early in the cycle is going to be much
cheaper to fix that we have already seen.
It can be applied to any representation like we have already seen before and it has been
shown to be an effective technique for discovering program errors. It cannot necessarily
mean the coding errors; there could be a fundamental design flaw in the system for
example that shows a security breach occurring in the system.

Design flaw could be that you are not doing any kind of encryption between two different
processes within the design. This could essentially result in a potential security breach in
one process translating to a security breach in the second process because, there is no
encryption going on between these two. Or the data flowing from one process to another
is subject to snooping by a third party and can potentially corrupt the data, attack the
system and so on.
So, there can be a design flaw or there can be a coding flaw. For example, somebody can
spot a fact that the loop is never going to terminate because one of the conditions that
they can think of which can occur in the program is going to cause it loop forever.

So there can be different kinds of flaw as we should take a look at shortly. Again this can
be an incremental process, it can be a process that take place several times because you
could end up finding defects in the first part of the design that you are discussing or the
code that you stop inspection at that point and you go back, fix these, comeback and
continues the inspection. Or you know typically what may happen and this is to unit
testing one defect may mask several other defects.

(Refer Slide Time 28:20 min)

So, in test when the first defect is found, the test stops at that point of time so that you can
go back and fix these errors. Just like several executions of test run maybe required,
several inspections can be required to actually catch all the defects.

The second point that is important here is, the reuse domain and programming knowledge
that exists and reviewers are likely to have seen the types of errors that are commonly
committed. For example, one of the things that are commonly done in coding is that, a
variable is not initialized before it is used and so this is something that people know to
watch out for when they are doing an inspection. As result of which they are likely to
catch it pretty quickly.

Other thing may be coding standards that are set up by the organization. Typically a
coding standard may say that there is a certain naming nomenclature that has to be used
or a nomenclature that has to be used throughout the program.
So, for example module/method are named by ‘interCap’ notations could be a particular
coding standard and violation of that can be easily be caught by people because they have
been doing this for a long time and they know exactly what to look for in this particular
case.

So once again inspections and testing are complementary process. They are not
something that is mutually exclusive, so both of them have to be done. Inspections are
typically applied at a higher level of design. It can be applied to code, in fact in some
cases it is applied, but it is not trying to catch code errors such as the infinite loop of a
program etc. Typically, it is meant to catch design errors that of a higher level just like
the security design error that we just saw a little while ago. And both of them obviously
have to be used during entire process.

(Refer Slide Time 30:25 min)

So inspections are something that can check conformance with a specification. Actually
the third bullet in the above screen is not completely true in the sense that, inspections
can understand the true intent of the customer when they specified the requirement.
Because there are humans involved who are sometimes doing these inspections, whereas
testing is typically automated. It is an automated process and you have written the test
and it is hard to understand. So in testing, you are going exactly as per the specification
and you may not be able to understand the true intent the customer when they specify the
requirement.
So, in that case again inspections can check the conformance with the specification and
also it can go beyond that. It can be used in a situation where in there is a human in the
team basically an architect, there is a business analyst, system analyst who understands
what the customer meant when they wrote down a particular requirement. In that case
they can bring that knowledge to bear on the inspection process and make that to be that
much more useful.
The disadvantages of inspection are, obviously it cannot test non functional requirements.
So, it cannot test user friendliness, it cannot test performance, it cannot test reliability and
so on. This is because they are not actually playing with the software at that point in time.
They are not executing the software, they are not executing the code in order to test for a
particular property. Whereas in testing you can catch them and there can be test for non
functional requirements as well.
A test for example that will measure the end to end response time of a particular request
and if it exceeds the threshold, you know that you have broken a non functional
requirement very clearly. But that cannot be done during the inspection process. However
there can be hints that the particular piece of program code or a particular design is going
to be too resource intensive.
In other words, say you can make out that an algorithm that is going to be used in
encryption is far too CPU intensive, so given a fact that there could be a hundreds of user
banking on the system simultaneously, then that is the not the right algorithm to be used.

That kind of a decision making can be done with inspection process much earlier on in
the life cycle.
So program inspections are basically formalized approach. They are intended to explicitly
check for defect detection and certainly it is not going to help correct it, but all those
suggestions may come out during the inspection process as on how to correct the
particular defect.
And typically we are looking for high level logical errors, we looking for design flaws,
we looking for architectural suggestions, the choice of particular component, and the
choice of particular data structure on a certain situation and so on.

(Refer Slide Time 32:50 min)

But we are not looking for very small code anomalies such as this is an un-initialized
variable and so on. There can be automated tools which do some of those things as we
shall see in the next part of talk.

Continuing on, what are some of the preconditions for an inspection to take place?
We shall take a look at the precondition, then we shall take a look at the inspection
process; what are the kinds of errors that you are going to likely look for in an inspection
and so on.

(Refer Slide Time 33:33 min)

The preconditions are that; a precise specifications must be available because you are
always going to refer back to what is it that this module is supposed to be doing, what is
it that this software is supposed to be doing, what is it that this function is supposed to be
doing and so on.
So a precise specification must be available.

Then whatever standards that is it that you are checking against. Suppose you are
checking a coding standard, suppose you are checking a design standard that the users’
design pattern is appropriately being met etc. Those guidelines must be published
appropriately and must be published in advance and must be pretty clear. And all the
team members involved in the inspection must be familiar with these guidelines.

Also syntactically correct representation of the source must be available. There is no
point in going through a document which is full of spelling mistakes for example. There
is no point in going through a code which is not going to compile. Since the compiler can
automatically check this using machine, there is no point in human sitting down and
trying to figure out whether this code is going to a compile or not. That is not what an
inspection is meant to do at all. Inspection is meant to catch logical errors in the program.
So it should have passed the compiler test already.

The error check list must be available well in advance.
What are the kind of errors we looking for; that categorization should exist.
And we shall take a look at an example categorization. Obviously there has to be
management buyoff in the whole process.
A. Because this is going to increase cost and no question about it, because it is a team of
designers who are sitting there and not actually designing, but reviewing the design of
somebody else. So this is going to cost them, but the cost that is born early in the process

likely to save a lot more cost down the line. And that is a fairly proven fact through
empirical evidence, something that needs buy-in from the management.
The last thing which is probably the most important is that this should not be used by
management as a blame pointing exercise. So in other words this cannot be used to point
fingers at a programmer or a designer and say “see you are doing such a terrible job, you
are going to be fired the next year or whatever”.
It is not mean for that. It is meant to fix the software. It is not an appraisal tool in other
words and we have to be very careful about this, because often this is what ends up
happening within software development.

So what is the procedure itself looks like. Procedure is fairly straight forward. The system
overview is first presented to the inspection team. Not the developer, but somebody else
would present the overview and we will take a look at the roles in the next slide.
So, somebody presents the modules that is being reviewed, what is the overall goal of the
module, what is the specification of the module like, what is the module design look like
that is now been reviewed and so on.
And then, all the documents should have been presented well in advance. Actually this is
not something that takes place after the system overview.

(Refer Slide Time 36:18 min)

The code and associated documents should be distributed to the team well in advance, so
that they could study this and come forward with their opinions already.

Then the process inspection itself takes place. So there is a meeting in which all these
people get together, the design is presented formally by a reader and then reviewed by all
the team members.
Modifications are made to repair all the discovered errors and re-inspection maybe done
in that point.

Now, what are the roles of the people involved in an inspection process?
The author is the first role. This is the person who produces the source, produce the
design or produce the code.
The inspector is a designated role which says that this is the person responsible for
determining defects, determining whether this design passes the standards that they have
set for the organization.

(Refer Slide Time 37:06 min)

Reader is like a third party who presents this to the inspection team, who presents the
design, who presents the code etc to the inspection team. This could be the same person
as of the author. Typically these are roles, remember not the people.

Scribe minutes the meeting.

Moderator essentially makes sure that this is an impartial evaluation process and
somebody is not out there to get the author.

And process improvement person usually from quality assurance who is sitting there to
try and figure out whether the process of inspection, the process of development, the
process of verification can be improved, can be made more efficient and can be made less
costly and so on.

This is typically the roles. So what is the check list of errors that one must have, that one
is checking for. We are going to go through instead of example let us actually go through
the different categories of inspection check list that we can have.

First category is what is called data faults.
Data faults are typically those that can be checked by a compiler. It may not be
something that is done through manual inspection.

Remember, these categories can be applied both to the manual inspection process as well
as to an automated static verification process.
So data faults are the variable initialized. If it is not, then it could be likely result in some
arbitrary error later.
Have all the constants been properly named? Are you using hard coded values or are you
using a constant? This is a stylistic feature or a code style feature. Instead of using hard
coded values, one must always use a name constant. That is something that the compiler
is not going to catch. It has to be caught by an inspection team.

Are the array bounds being met appropriately? For example some programming
languages always start array numbering from 1, other programming language like C starts
from 0. So is the array bound is “array size – 1” or array size itself?

Are the delimiters existent for all the character strings that are being used in the program,
because if it is printed it may not print it appropriately? This is something that testing
might be able to catch or testing may not be able to catch this as well. So this is important
for manual inspection.

So these are the kinds of data faults that one can look for. Some of these such as variables
being used before they are declared and variable not being initialized etc can be caught
through a compiler or by a static analyzer. The rest of them typically have to be done
manually.

Control faults are another category of faults that you can look for. Control faults are for
the things like conditional logic: Is the condition correct? Is each loop certain to
terminate? Is there a possibility of an infinite loop under different conditions that this
loop can be entered into?
So in ‘switch’ statement, are all the possible cases are accounted for? Is there a default
case for a ‘switch’ statement that is provided?
Again that is something that can possibly be checked by compiler. A more intelligent
compiler can check for some of these things.

Third category is interface faults.

(Refer Slide Time 40:28 min)

In interface faults you primarily check some simple things such as the number of
parameters, the formal types of the parameters matching the normal type parameters and
so on.
If there is shared memory access which is part of the interface then, do all the
components have the same shared memory structure? Do they have the same view of that
chunk of shared memory? If not, then they could be talking at cross purposes with each
other.

Storage management faults are typically had to do with managing memory which is the
fairly scarce resource in most programs. If a linked structure is modified for example,
have you appropriately released the memory? If you are using dynamic storage for
something like this, are you releasing the memory? In the case of the linked list, are you
patching up the pointers appropriately so that the linked list is still unbroken?
That is the kind of storage management faults that you can look for.

Exception managements: If a function declares three or four exceptions as part of its
specification, then when you call that function are you making sure that you handle every
one of those exceptions that can arise from that? That is the question you have to ask
yourself. Basically, are all exceptions being accounted for?

The next one is coding standards: Are you using the appropriate nomenclature? Are you
using interCap naming for the functions, small letter naming for the variables or whatever
standard that happens to be within that organization?
At the design level, are you using the patters that are mandated that you use within the
design? For example, is the observer pattern being used? Is the singleton pattern, is the
factory method being used to create new instances that have to be created and so on?

(Refer Slide Time 42:01 min)

Then there can be efficiency standard that you are looking for.
Are you are you making efficient use of memory? Are you making efficient use of the
CPU? Is there a better algorithm that can be used which uses lower amount of CPU for
example? Are you using scarce resources such as network bandwidth, IO bandwidth,
memory, CPU etc appropriately? Are there better methods of doing this?
These are some things that can also be checked for and be part of an inspection check list.

The inspection rate: Here are some recommended values.

• 500 statements an hour during overview.
• 125 source statements an hour during individual preparation.

(Refer Slide Time 42:33 min)

• 90-125 statements during the actual inspection process.
What this is meant to show is that, this is a fairly expensive process. A program can
consist of 1000 lines of code. Obviously you cannot inspect every single line of code,
because it is very expensive to sit there and inspect every line of code. Just that, the
formal methods cannot be applied to a large program in its entirety.

So you have to pick the critical portions of the program, the machine critical portions for
example, which can cause a lot of modules to fail if that one module fails, then go ahead
with inspection for just those critical modules. It is an expensive process and therefore
the buy-in of management is very important.

Moving ahead to static analysis; static analyzers are basically program such as ‘lint’. The
software tools that can do source code checking. It can check source text.

In the case of designs, for example it can check whether UML diagram is complete. Or
for example the relationship values may not be correct, it is ‘one to one’ versus ‘one to
many’ and so on.

(Refer Slide Time 43:38 min)

So they basically parse the program text, they build up an abstract syntax notation just as
a compiler would do and then you apply certain rules that has been set up by the user to
do some checking against. We will take a look at some of these examples.

There are very effective as an aid to inspections. They do not replace inspections
completely. There are certain things that cannot be checked with static program verifiers
or program checkers. For example, stylistic guidelines are something that they cannot
check. People have to be involved in the process.

(Refer Slide Time 44:34 min)

Static analysis checks: Data faults.

They can check ‘using before initialization’: very easy check to perform
automatically. So, variable is used before it has been initialized.

Variable is declared, but never used in the program. This can be pointed out by
compiler or a static program checker to say that, “you are declaring this variable, but not
using it anywhere, so why don’t you get rid of it as it is just occupying the memory”.

It is assigned twice. Say, X =3 and X =4; the first assignment is effectively
useless. If before it is used anywhere, if another assignment is being made, then the first
assignment can be completely bypassed. So that is a check that can be done.

Array bound violations. In some cases this can be done statically, in some cases
you cannot do this, because if it is completely dynamic in nature then static program
checker is not going to help.

Similarly, we have control faults; interface faults which are the same category of faults
that we saw in the inspection check list can to some extent be automated. Whatever can
be automated through the use of the software tool falls under the static analysis checks.

Then, simple things like in interface fault; when there is a mismatch in the number of
parameters, let us say, this function ‘foo’ has been specified as taking in 4 input
parameters and when you are calling it, you are only giving 3 and there is no default
value for the fourth one that ‘foo’ accepts. It is an obvious error. And there can be type
mismatch also. For example, the function ‘foo’ is expecting an integer value for the first
parameter, what you are passing it is a floating point value which cannot be cast down to
an integer value. Type mismatches can be easily caught as well.

Just like you have unused variable, you can have unused function. Say, you are
declaring a function and implementing the function never called anywhere within your
program, do you really want a keep this function or move it to be part of some library
which makes more efficient use of the space?

(Refer Slide Time 46:36 min)

The stages of static analysis are, there can be control flow analysis, and data use analysis
and interface analysis. And corresponding to the kinds of faults that it is checking for, all
of these can be used.

(Refer Slide Time 46:43 min)

There can also be more complex static analyzers. There can be complex tools that do
things like path analysis. Things like, what is the complexity of the program? What is the
path of the longest number of hops that the program might end up taking?
So, it can look at entire program as it supposed to do individual module and simple rules.
It is very useful, potentially depending on how efficiently it can do this.

Information flow analysis identifies the dependencies of output variable. For example,
output variable is coming back from a function that you have called, but you have really
never used that return value at all. That is an example here as well.

(Refer Slide Time 47:39 min)

Here is an example. We are not going to go into a great detail about tool called LINT.
You all would have heard a tool called LINT. It does static analysis on C programs and it
can point out some simple things like a variable is used before being initialized and it can
point out that a variable has been declared but never used and so on. But this is something
that you can try out for yourself. ‘Lint’ is meant for C, but the ‘lint’ is available for other
languages as well. It is very programming language dependent. Write a small C program,
and then run ‘lint’ on it and see the kinds of error messages that it ends up giving you.

The next step that we will go into as far as the verification/validation process is
concerned, is formal methods. This is something that we have seen before as part of this
course as how do we do formal methods, user abstract data types and so on.
This is the ultimate static verification technique because if you are formally specifying
the software and then the code generating it because it is executable specifications.

(Refer Slide Time 48:35 min)

Remember the term ‘executable specifications’.
Then, you can always verify that the code that is being generated is meeting the
specifications in some way. The mathematical model can be built of the code and the
mathematical model of the specification as well and see whether that these two things
match.

The argument for formal methods is something that we have seen earlier already. It
produces a specification, the thing that it can really catch errors very early on. In fact, it
avoids the use of errors completely.

(Refer Slide Time 49:10 min)

Because specification can be run through verifiers that basically checks the completeness
of specification, the checks for consistency and so on.

Even before implementation is done, you can do some analysis on this program. So
obviously it is very useful but also very expensive. Even the tools that exist are not very
prone to usage by regular programmers. It requires specialized knowledge and training in
these tools and languages. It is very expensive and it might be possible to reach a level of
confidence in verification and validation without the use of formal methods as well, in a
much cheaper way through inspections and static analysis techniques and so on. So, one
has to be very careful about how you end up using this.

There can be formal methods which is an extreme end of the scale type of process. There
can be static analysis which is kind of a middle of the road process which is automated.
So you do not have to depend on the vagaries of human nature.
Then, there can be inspection processes which do depend on the expertise of the humans.
The added advantage is that, you can get the experience of these people who have been
through this many times before. And therefore they may able to catch things that a
program may not be able to catch.
So that is what the scale looks like. At one end, the formal method is very accurate and
can really save cost because it can catch defects very early on but very expensive, the
other end of the scale is the inspections which are done by humans and which can capture
types of errors and in between is the static analysis part of it.

We would not go into clean room development at this point of time.
In the next lecture we will take a look at this process called clean room software
development, whose philosophy mainly is that if it can be done right for the first time
then that is the way we should go.
We should not try to develop software fast with some errors and then come back and fix
it rather we should take the additional amount of time in order to do it appropriately. The
word clean room is borrowed from the chip development or the chip manufacturing
process in which clean room development is done.
So you start from scratch always and you do not incorporate things from outside and so
on. We will go into the detail of the process in the next lecture.

This is it about verification/validation. It is a very important process that has to be
appropriately put into the various phases of the software development life cycle. It cannot
all be done in the end and it cannot all be done in the beginning. It is something that has
appropriate steps during the development life cycle itself and then care has to be taken to
see that this is part of the planning for the software project.

