Software Engineering
Prof. N. L. Sarda
Computer Science & Engineering
Indian Institute of Technology, Bombay
Lecture - 2
Introduction to Software Engineering
Challenges, Process Models etc
(Part 2)

This is second lecture on introduction to software engineering. Let us start by
summarizing by what we saw in the first lecture. We understood the challenges in
developing the large software. We want to do it in given time, within given resources and
meet user’s requirement. This is indeed very challenging. We then saw the benefits of
engineering approach which consists of defining different milestones, different stages in
the development and carrying out periodic review and having a well-defined
methodology for the development. Then we have talked about different types of software
processes. These are processes for development of software, for project planning and
management, for configuration management and then for managing the software
processes themselves, because they are not fixed and static. They keep changing. So any
large software development organization will need to invest time and resources in
keeping the software processes up to date and state of art.

(Refer Slide Time: 01:52)

.-+_'-_. 1‘1:’_-"—_ =

Summary of lecture 1

= Challenges in large sofftware development
= Benefits of engineenng approach
= Types of soffware processes

Then we defined a typical step in a software development process we identified that the
step will consist of some entry criteria, exit criteria, it will have some specific task to do,
it will take certain inputs, it will provide some outputs and also the step will be under
management control. So this is a very important definition of the typical step in the
software development process. Then we also saw characteristics of good processes. And
one of the most important characteristic was that it should be predictable, it should be
well defined, and it should be repeatable. This is primarily what we focused on in the first
lecture. And towards the end we began to look at the waterfall model for software
development. We briefly introduced this last time. We said that a waterfall model
consists of many steps organized in a linear order. So that one step produces the right
kind of outputs for the next step.

(Refer Slide Time: 03:34)

o7 PR sarflm e

Waterfall Model for Development

* Mere, Sieps (pRases) ane FFTanged i Inear
oroer
A siep take mputs from preows sisp, gives
output o rext =g (il amy)

Exif crtena of 3 SiEp Mmust maich with entry
criena of the SLCTeeEI D
= it follows ‘specify, design, buid” sequence
that is ntuitively obvious and appears
ratural

There is a linear or sequential order in which the different activities are performed. It
follows what we may call; “specify, design, build” sequence of activities, which should
appear to be quite obvious. What it really means is that, you cannot design something
which is not clearly specified. And if you have not done the design, naturally you cannot
build. This is like going to market without knowing what you want to buy. Naturally you
can’t buy them or you can’t compare different products. You need to have clear
specifications in mind before you go and want to buy something. Similarly when you
want to build something, you must define what needs to be build, what are the functions
that need to be performed, and then carry out a design which is efficient, effective. And
finally only when the design or the blue print is done, we start building. So we say that
this sequence of activities appear to be obvious and natural. This is what the waterfall
model tries to do.

Waterfall model produces many intermediate deliverables. There is a deliverable at every
step in the model. For each of these, proper standards have been defined. Most of these
deliverables are actually documents which have a standard format.

(Refer Slide Time: 05:00)

~7 ' n’t,'?-l_‘_—"_ g .-_.‘I,.-

Waterfall Model ...

* Produces many misrmediate delverabiles
usually documenis
Standard formats defimed
- Act as ‘basshine’ used as reference (for

contraciual abikgabons. for mamtenance)

- Important for guality 3SSurance. progect
FTENFERCpErTrTE, air

Many of these documents will act as a baseline for future reference. In fact some of these
baselines are in the nature of contractual obligations. You may be an independent agency
who is doing software development for a client. So there has to be a baseline, there has to
be a reference which clearly defines what your obligations to the customer are and what
kind of product you should make for him. So such kind of baselines would be produced
in the process of development. And waterfall model defines such baselines or other
deliverables or other documents which are required for subsequent steps. One important
point about this deliverables is that, once a step is completed, the output of that step is
clearly defined in the form of a document, which can be then handed over to people who
will perform the next step. So this model facilitates change of people from step to step.
We are not making it necessary that the same people who have done the analysis should
do the design; the same people who have done the design should do the implementation.
In fact we saw that in the example of civil engineering, we have different people with
different expertise and different people are called upon to do certain specific things at
different points in the life cycle of a project. Same thing happens in a software
development. We define these documents, they are of certain formats, and they are
handed over to the next team who will perform the next step. So there is an
interchangeability of the people and different steps can employ people of different skills
as necessary for that step.

These documents also play an important role for quality assurance, project management
and so on. This methodology is also very widely used. There are some variations
possible, but it is commonly followed because of the natural development cycle on which
it is based. Especially when the requirements can be clearly defined, waterfall model is an
ideal model for development software. So let us see what the different steps are.

(Refer Slide Time: 07:35)

.'T""— . "

Waterfall Model

—y o e

This diagram identifies different stages in the waterfall model. Let us look at each one of
them briefly. Then later on we will look at each of them in some more details. So the first
step is the system engineering step where you try to understand the overall problem and
identify which of the problem elements are to be handled through the software. It is
possible that certain requirements of the problem may need to be done manually, because
automation may not be possible whereas some other functions will be performed by the
software. So one of the goals in system engineering is to understand the overall context of
the problem. And then identify what would be the responsibilities to be met through the
software. After doing that we undertake the analysis phase. In the analysis phase we
understand the problem domain of the user in more detail. We understand what kind of
information is involved what kind of data is involved, what functions need to be
performed, what are the performance and interfacing requirements. This part is the
analysis part whose purpose is to identify or clearly define the requirements which are to
be met thru the development of the software along with.

In the analysis we also try to carry out project planning either as a part of the same step or
if it is large project, the project planning step may be made as a separate step. And the
purpose of project planning is to identify how we will carry out the project what are the
different steps, what are the deliverables, and what would be the time frame what could
be the resources allocated. That is what a project planning is all about. After the analysis
is done, the next step leads to the design step. In the design step we translate the
requirements into the software architecture when we prepare the database design and so
on. So this is a primarily a technical step and in this step the requirements are translated
into an implementation framework, which will be implemented in the next phase that is
the coding phase, in which the actual programming and implementation will be done.

So you have a design and the design is followed by implementation. In fact as it notes
here the design itself may be divided into two stages called high level design and detailed
design. Again this would depend on the complexity of the task. After you have done the
implementation or carried out the programming phase, when the individual units of the
software are ready, you would get into the next phase called testing phase and integration
phase. In this all the individual pieces of the software are individually first tested, and
then the whole software is put together. The objective is to test first the logic of
individual modules. And then when we put all of them together we want to test their
interfaces, so that they work collectively in a manner in which they were intended to
work. This is the testing and integration phase and this is followed by actual deployment
of the software. Now the software is ready. It is deployed and implemented. The user will
take control and will start using the software.

After the deployment there is an ongoing maintenance phase. In the maintenance phase,
we have to make the necessary changes; if any errors are encountered we will have to
remove the errors. If the software is not meeting the performance requirements we may
have to review the software, maybe we have to go back and look at the design whether
the design can be modified or if there is something else that can be done in order to
improve the performance. So this is an ongoing step which may generally be called a
maintenance phase. And in this phase, the software is either enhanced or is perfected or is
ported to new hardware or new machines. This is an ongoing activity which needs to be
done throughout the life time of the software. These are the different phases through
which a typical software development goes through. We have identified here the main
steps. Each of the steps has certain deliverable. Let us enumerate the different
deliverables which come out in a given sequence when we perform these various steps.

One of the important deliverable is the project plan. We will be carrying out the project
according to the plan that we make. Of course the plan needs to be revised periodically as
we progress through the project. One of the deliverable could also be the feasibility
report. The feasibility report is a report which defines the cost effectiveness of the
approach and the whole software project, whether it is a good investment we are making,
whether the software will be cost effective, whether it will give the kind of benefits we
are expecting from the software.

(Refer Slide Time: 14:48)

|

= l'-"rr:r-r: plan and feastnidy repaort

= Regurrements documend (SRS - Saffware
Aeguremeni Specihcations)

- 5"1=F'-| e o B plale =i oy

= Dt asled desagn document
« Tagt plans snd test reports

So the project plan is one deliverable, feasibility report is another deliverable. One of the
important deliverable is requirements document which is also called software
requirement specification or SRS for short. SRS is very important baseline and defines
the functions that the software will perform for us. Obviously the SRS comes from the
analysis step. The next step is the design document. It defines the different components of
the software and how they will be implemented. You may have a detailed design
document. This document may specify individual units which will be implemented by
different programmers. We may have then specific test plans and expected test reports.
What it implies is that testing is not a on the fly kind of the task. Tests are planned well in
advance. They define what inputs will be given to the system and what outputs are
expected and whether the expected outputs are correct and the performance is as
expected. So test plans are made well in advance and as soon as the software is ready the
test plans are carried out and the workability of the software is demonstrated through the
test plans.

Of course the source code is an important deliverable and a deliverable which is in
executable form. Unlike other deliverables which are documents, this is a deliverable
which actually would be loaded on the computer and will be executed which actually
defines the software contents. And then we will also have different types of manuals or
documents which will be important for users and for administration of the software, for
installation of the software and so on.

(Refer Slide Time: 15:49)

.;f ﬁt#_'-"-f " F WARE INEINEERIN

: - . E ENGINEE
Deliverables in Waterfall Model

= :"r:!rr! plan arm heastmidy repaort

= RBegurements documend (SRS - Safftware
Aeguirement Speciications)

= System degagn co e

= Dt anled design docurment

« Tiegt piang and test reporis

= Source code

= Software manuals juser manual, retaliation

muaril)

So these different types of deliverables are identified from different stages or different
steps in the waterfall model. At the end of each step, if you recall we had said that every
step ends in a validation and verification step. Similarly in the waterfall model when we
move from one step to another there would be such reviews. Each step would end in a
review. These review reports are very important inputs for identifying whether the
development proceeded as per the plans, whatever the short comings whether the defects
will were detected and were properly addressed.

So review report is basically a catalog of how the development went through and it is an
important input to the development team as well as to the management. So these are
different deliverables. Many of them are important of which SRS is obviously one of the
baseline. Design document is also very important for future maintenance. Source code
definitely is important as it is executable and without this user manual, installation
manual, some administration manuals and the system cannot be effectively used. So as
you see here these different documents are essential part of the software. So software is
not just the source code but all this documents which accompany software. Now as we go
through this waterfall model and we perform the different steps, naturally we are
investing more effort. The diagram shows the cost effort distribution as we run through
the different steps in the waterfall model. So there are different steps are shown here.

(Refer Slide Time: 17:41)

- e - T": e = T8 _:-.'
Cost'Effort Distribution

.

As you see that some of the earlier steps have smaller effort than the subsequent steps.
For example the detailed design implementation is very effort intensive steps. The line
here is a cumulative task and as you see it increases rapidly as we progress in the
development. Accumulated cost increases dramatically as we go from initial steps to later
steps. Because as we move along the steps we are committing the time of programmers,
technical people and computer time, all this is naturally a cost factor. This effort
distribution is important for us to understand. Because it clearly brings out that we must
take all efforts to remove errors as early as possible in the lifecycle. We must discover
and fix these errors as early as possible.

Because fixing them subsequently will be a very costly operation. So suppose there is a
misunderstanding or the analysis phase has not clearly identified the functional
requirement, now that if it is not detected at the review phase of the analysis, it would be
carried over design, detailed design and implementation. And it is possible that we
discover that mistake during the operational part of the software; when the users have
started using the software. In order to make the correction we will have to undo the code
design etcetera and go back right up to the analysis phase and identify what was missed
out what was wrongly understood, and carry out the design and implementation and
testing process again. So it is important that such errors are captured as early as possible
and they are not allowed to slip into the subsequent steps. So in any software
development approach it is important to understand, how the cost and efforts are
distributed, not only for project planning, but for emphasizing an error free activity in
each step.

(Refer Slide Time: 20:55)

Shortcomings of Waterfall Model

= REQUINSMENLS MIy NOt DE Clearty Kmowm.
sgpeciaily tor apphcatns ol avig enstimg
(manual) counterparnt
- Pailway reservabon. manual sysiem ersisd. so

SRS coan e defned
Om-line contner ranagerment for raierays - new
K ncrarieige ManageTen for 3 ceniral Gank - new

There are some shortcomings in the waterfall model. One of the main criticisms of
waterfall model is that it goes linearly and it assumes that all the requirements can be
clearly defined during the analysis phase. There are many situations where requirements
may not be clearly known. This often happens when there is no manual counterpart for
the problem that we are solving. If a manual counterpart exist, that means the function
business function is already been carried out manually and we are planning to automate
that, then in this case it is easy to define the requirements. But in a situation where there
IS no such manual counterpart, when the system is been planned first time, then the
requirements may not be clearly known.

Here is an example. We know that railway reservation has now been automated fully.
Before that, however the manual system existed. We knew what is the role or what are
the tasks involved in the railway reservation. You want to reserve a seat on the particular
train, you may want to cancel it, you may get waitlisted, waitlists have to be arranged and
there is a method for arranging. All those things were already defined as functional
activities. And therefore one can say that as far as the railway reservation is concerned
the manual system existed, and therefore it is possible to clearly define the requirements
in this case. But there can be other examples where there may be no manual counterpart.
For example, say a central bank wants to build a knowledge management system.

It believes that there is so much knowledge that is available with its employees in order

to carry out their day to day task. It would like to capture this knowledge, build a
repository, so that this knowledge is easily available to all other people in the
organization. Now this is something which is quite new and it is difficult to define a SRS
for an application like this. There is obviously some kind of uncertainty involved in terms
of what it will consists of.

So this is clearly one issue when we try to apply for the waterfall model, Which the
requirements may not be clearly known and it may not be possible to carry out analysis
phase once for all and then never come back for revising the requirements. The other
issue is that the waterfall model assumes that the requirements are quite stable and that
they do not change with time. Now, this is not the case because the software development
itself may be a long process, requiring months or years and during this time one cannot
assume that the requirements will not change.

(Refer Slide Time: 24:00)

,-_,": 't,"l';'- T -‘_.

Shortcomings ...

« REQUINFSMETNTS CRANgE WIth IIme SLnng
progect life cypcle e
- s rrary T solunteon of lifle uvse
Befler to devedop in pars o gTaller norements.

thi< i< oo ior packoget Tytiern cofferare

So in the process what may happen is that when the software is finally built, the users
may find that it does not meet their requirements. In such a situation it is probably a good
idea to develop the software in parts or in smaller increments and then release them and
get the feedback of the user. So there may be different approaches rather than using a
strictly linear waterfall model in such situations. Waterfall model is also considered very
documentation-heavy, what it means is that too much documentation is being produced
as part of the project. This may not be really necessary in all types of projects. So other
models have been proposed in order to take care of some of the short comings or to
handle some specific situations in project development scenarios.

(Refer Slide Time: 24:54)

i s i

Shortcomings ...

* REQUINSMEenNS cChange Wil orme Gurnng
progect life cycie ites

Lsers oy fired solubon of e uss
Better to develop 1 pars o Sraller noremens
tht it corerreon for packages. Tyt wofferare
- Consdered documentation-heavy: 3o much
documentaton may not be reguired for ail
tyews of proqmcis,

One of them is the prototyping model. In the prototyping model we try to build a
prototype rather than the final solution. And we do this especially when the customer is
either not aware of his requirements that what exactly he would like to how the software
would do for him. Or the developer is not sure about how to develop the software, how to
implement the business rules which are generally required for the software. So he may
not be certain about the best algorithms that need to be implemented in order to meet the
requirements. Or if efficiency is primary criteria, we are trying to let us say build
software which will give very high response time, then what kind of techniques one
should use in order to guarantee that kind of efficiency or response time. Now these may
be some of the unknowns either to the customer or to the developer.

In such situation we might rather decide to build a simple prototype and to find out either
the requirements or the techniques for implementation. So prototyping model is an
intermediate model or intermediate kind of a step in trying to define the requirements or
the solution approach. Usually, we will develop a prototype and we will do it in different
stages. And to begin with the prototype that we will build will be based on the user needs
as we currently understand them. Or the solution approaches as we understand them in
the beginning and we will review and refine them.

(Refer Slide Time: 27:12)

Prototyping Model

= WWhen cusiomer of OEvslopeT 13 moi Sure
O rie] usl etV [ifmaS O ipeuts |
Of sigoritivrs. sfficency, emen-mecterne
imETEciamn
= A theowaway prototype buill from curTenitly
known user needs

Prototype might be either a working system or it may even be a paper prototype. So idea
in the case of prototype is to do a quick design and implementation and to illustrate the
approach or to illustrate the functionality to the user when these are clear. So we do not
want to spend too much time and effort as well as resources in building a prototype with
too much detail. We want to do a quick design and in fact those features which are clearly
known or clearly understood need not be implemented. In the case of prototype the focus
will be on what is unknown, or not properly understood. So prototype will be tuned as we
develop it. And when we try to satisfy customer needs, many iterations may be required
to incorporate the changes. Every time we complete the prototype we will evaluate it,
tune it and decide what needs to be done further.

Final product then would be built after the prototype is completed and is found to be
acceptable. This final product may be built using the standard waterfall type of
methodology, where we will go through the design, build and test life cycle. So here is
the diagram which illustrates possible steps in the prototyping model. We start by quickly
gathering the requirements. Then focus on those which are not clear and which need to be
experimented. Then we need a quick design, we build a prototype. While building the
prototype we may not care about doing too much documentation or look at the
maintainability issues or even consider performance issues even if they are not relevant.
Idea is to do a proof of the problem by demonstrating the unknown or un-understood.

(Refer Slide Time: 28:54)

at _ - "’_"-l— Temet ;

Prototyping ...

- Qusc design focuses on aipecis nisibis (o
user fegiures clearty understood nesd not
D imphemmEnied

- ="L'.|'.-?:':||E-'_" s e To 5!-1::5"' Cusiomer eeds

lary terghons may he reoured o ecorporsts
changes and rrw FguIrETETS

* Fanal proguct follows usual define-ge-sign-
bondd twxt e cycle

(Refer Slide Time: 29:49)

T et sufw
Prototyping

Then after we have built the prototype, we evaluate and refine. And if necessary we go
back and repeat this whole cycle. When the evaluation leads to clearly defined
requirements, then we are ready to build the product. And this is done using the standard
engineering approach. So product development takes place once the prototyping cycles
are gone through and we have come to a clearly defined requirements document for the
final product. Now there are of course some limitations to prototyping. There are
situations where prototyping is ideal, but at the same time we need to be aware of these
limitations. First the customer may be happy with the prototype itself and may demand
that the prototype be released for his operations or functions.

This is not really appropriate because the prototype may work in the beginning for some
time, but it may not be maintainable. It may not give the kind of performance and it may
not have the rugged design that is required for sustained operations. The second problem
could be that the process of prototyping. The developer gets so attached to some of the
approach he has used, that he doesn’t try to refine them or look for better way of building
the same functionality. In that case we may actually have difficulties with the quality
performance or other attributes of the software. What it really means is that, we develop a
some kind of blindness towards other possible techniques or better way of doing things,
because whatever way we implemented something in the prototype, we continue the
same in the product.

Good tools need to be acquired in order to do a prototype because we want to complete
the prototype quickly in the minimum cost. So this is an investment we may have to
make which adds to the cost of the project. So one of the problems with prototyping is
that it may lead to a higher project cost and there are other problems that we have just
mentioned. So when we have such difficulties based on the requirements or based on the
situation we might choose some other development methodologies, one that may seem
again obvious is the iterative development.

(Refer Slide Time: 32:23)

= T | ity =

Limitations of Prototyping

* Cusiomer may want prototype tsedf !

* Developer may conimue with
MDASTFRETTLENON CfOetS-T P SLerrg
prototyping

- rray not gree recuered quainty. performance.
= Good toois need (o be scguired for gueici
development

In the iterative development we define the initial scope and try to build a product which
will meet the initial scope that was identified and then release it quickly to get customer
feedback. Here iterative development is a good methodology for those software projects
which want to build products, which will be of use to many customers. So here we are
developing a product whose functionality may not be clearly known or there may be too
many features that we may want to provide. But we would rather like to release a product
quickly capture the market and get customer feedback. So this is the situation which is
ideal for iterative development.

Here the development takes place in multiple iterations and many versions of the
software may be released. You must be already familiar that some of the products such as
database products or packages like pay roll or accounting packages are available in the
market in versions. Basically the latest version represents additional features which have
been added from the previous version based on the requirements as perceived or based on
the customer’s feedback. When we develop the initial version we may of course follow
any method. For example, we may follow the waterfall method for the initial version of
the product.

(Refer Slide Time: 34:53)

= T ety =

Iterative Development

= Useful for product development where
drvelopers defirng scope. festures 10 3erve
Mary CUSiomers

- Eir"_l' version with limrted feafure imporiant to

sslEbish marns amd I:Jr! cusiomer lesdiachk
= IMiLEl VerEsDn My Pl | s sy method

- & list of festures for future yersions
mairtamed

We generally maintain a list of features which have to be implemented in future releases
and we will come out with the versions in the future as we implement these features and
release the product. Each version will be analyzed and we will keep on updating our
featured list. So our third methodology is the iterative development. Finally we have
methodology called spiral model. In the spiral model we go through the development in
cycles and each cycle is divided into four quadrants. These quadrants as you see here are
named; the first quadrant, we tried to define the objectives alternatives what are the
constraints. So this is the starting point. Then we evaluate those alternatives and clearly
identify the risks. Now these risks may be pertaining to the interfaces, pertaining to
performances and so on. Based on these risks in the third quadrant of the cycle, we tried
to define what implementation will perform, and after the third in the fourth quadrant we
identify how we will plan the subsequent cycle.

(Refer Slide Time: 36:00)

Spiral Model
AEsryrigd &ie QgL o 3 Sheral Sgrveng My
rycies

- Fouwr quadrants m ssch cyce

1M imcr——— wi—— -,

il il . -l i

So in this case we have development going on in cycles and as we go through the cycles
the different risk issues are addressed and more refinements are done to our strategies, to
the functionalities in the case of spiral model. So spiral model basically identifies risks at
every step and it identifies the ways of addressing those risks either by following the
prototyping methods, or going through simulations, or carrying out benchmarking.

So at every development step we will decide in what way we want to follow. It is
primarily a risk driven approach. The spiral model consists of different cycles. In each
cycle we try to address some risk element that we see. And we plan the development, in
order to identify ways of addressing that risk. So if we have a risk perception about what
kind of user interfaces we should build, then we do prototyping. If a user interface and
performance issues are quite well understood, then the risk may be just the development
risk. In that case we decide to follow the waterfall model.

(Refer Slide Time: 37:00)

S i

Spiral Model ...

* Prototyping, ssmulahons, bemchmarikong may
el OCwMeE IO MESONE UPC T INTIESI Tt S

* Development step depends on rema nesg

! = =0
ST =g

0o protndyoe for rser nterfare rcas
i S witertall mods when cted mieTace
and perffornance e e erchersisod bul ooy
O EsODITENT MK FETEENS
* Hish drrven . allows us mix of specfcation-
ot protofy e-nrented . somulatnon

based or any other approach

So in the case of spiral model, it’s a risk driven model it allows us to use a mix of
different approaches, which may be specification oriented approaches like waterfall
model, or prototyping, or simulation. So unlike the incremental model where we try to
release the different versions in the features of the product, here in the spiral model as we
go through the different cycles, we try to address different risks. This model was
proposed by Boehm and here is a diagram which defined a few cycles of the development
process in the spiral model.

(Refer Slide Time: 38:28)

You can probably see it on any of the books. In each cycle the four quadrants basically
try to address what we mentioned earlier. They enumerate alternatives, and then they
evaluate those alternatives, try to identify the risks and build a development and carry out
evaluation for the next phase. So the spiral model addresses the different risks and can be
used in large projects where both the requirement risk is present and development risk is
present. We have seen these different development methodologies. We saw three or four
of them the waterfall model the prototype model. Now let us move on to another process
which is equally important and you are going to study this in more details. But at this
point i will only give an overview of the management process. As we said earlier, any
large project needs to be managed. We prepare a project plan and we then manage the
whole project according to that plan. So naturally the project management runs in parallel
to the whole development process. As the development is progressing we are having a
continuous management oversight.

So in the case of project management, we have primarily, activity of defining the project
plan. In the project plan we will identify different activities, resources, deliverables, and
timelines and so on. So once the plan is ready then we will monitor it and also control as
it progresses. A project plan indicates how the project will be executed. And there are
very important things we must understand about the planning. A project plan is
absolutely essential for successful completion of the project. Therefore we must
appreciate some of the points which are important in a project plan. The first is that if you
do not have a plan then there is no management. There is no question of doing any
management if the plan does not exist. Then without making any measurements, it is not
possible to prepare any plans.

(Refer Slide Time: 40:35)

Project Management Process

* Runs m parallel o development process
= Project pianning, moniioring and contml ane
the basic goals
« Project plan indicates how project will be
execuicd successiully
- ‘Wirthout pian, Tere 1S o ManegETet

- Without messsremenl. Aol much planmng
pesibie

- Plan alices progress o be messured
- Fan progueced Defore Sevsiopment Degirs and
Comrstantty updated

This is a very important truth that in order to prepare a plan, you must identify the
activities not only qualitatively but quantitatively.

You must learn to measure those aspects which we want to bring under the management
control. So without measurement, planning is not possible. Without planning,
management is not possible. It is very important that first we learn to make
measurements; we measure those aspects of the project which we want to bring under the
control of the management. Make a plan and then perform the management as we
continue with the development. That plan allows progress to be measured. Since it
consists of different activities, as we complete these activities, and as we know the effort
distribution among these activities, we know how far we have progressed and how much
still remains to be done. So when you have the plan you can measure the progress.

We generally prepare this plan before the development begins. As we said earlier it may
be produced along with the analysis or even before the analysis is completed. So we
prepare a plan as soon as we have a good idea about the complexity of the project and we
start getting a good feel of the requirements. Once we have done this, obviously this plan
needs to be constantly updated. We will get management inputs from the development
team. And based on the progress of the work, we may have to update the plans we have
already made. How do we prepare the project plan? What are the important steps that
need to be taken in this? The first important step is that we must estimate the cost and
effort. This is the quantification that we talked about just now.

We need to measure how much effort is involved in carrying out a project. Now this will
naturally be based on the complexity of the project, the scope of the project, productivity
levels of our people, who will be implementing the project, and also other historical data
of similar projects. We will naturally benefit from the previous experiences. So we
should clearly keep a record of other projects performed by us. Understand our
productivity levels and then estimate the effort or the cost for the new projects that we are
undertaking. There are different models available for cost and effort estimation. And in
this course later on you will learn more about these models. Once we have done the effort
estimation, then we select the right development process.

We said earlier that there can be many different types of processes. So you choose the
one which is best suited for task at hand. You define the milestones and you prepare a
schedule. In order to prepare this schedule we of course need to know how the effort is
distributed over the different steps. We had seen one graph where we had shown the
relative effort distribution over different steps in a typical waterfall kind of a
methodology. We should have our own data from our past experiences. So that the
overall effort estimated by us can be distributed over these different steps and we can
prepare a detailed schedule for execution of the project. And then we decide on project
staffing; who will perform the different steps, how many people will be made available,
what are the scheduling requirements, what are the overall calendar time in which the
project needs to be completed. We will also make explicit quality control plans. In the
overall plan, we will schedule reviews and inspections at appropriate points.

(Refer Slide Time: 45:42)

Project Planning

« Fregaie SrilefTon eLirmginsn
Eamset 5 SFiiphtT tneeEns gy WSk el oty e
T RO S

By ——Sn rrat e

- Select dersliopment process. define milesiones and
pregare soinecude

e "o BT SRR RS Sl SO TR ST
= A
« Derote proger! 2xfing
= Bake gty cornimi pany define renees
ITSpeChons. g STEleges D GEEcTTEnoee
defects

We will define testing strategies, so that we can maintain a control over the defects and
we can ensure a quality product from our approach. These are the different steps in the
preparation of a project plan. You need to identify the effort. You need to know how the
effort is being distributed, you need to commit resources for different steps and you need
to make explicit quality plans. Because quality will naturally have cost implications, you
will need to spend effort in identifying the defects, which might go from one step to
another through the various deliverables that the steps produce. So these are the different
project plan elements.

Once the project plan is in place we will use it for monitoring and control. The plan
defines the various activities we may represent it in different ways. There are Gantt chart,
Time bar chart or PERT by CPM type of activity networks which are used for
representing a plan. Essentially the plan shows the different activities. It shows expected
durations for different steps and what kinds of resources have been allocated to those
activities. In a network of activities like this, we can identify which is the critical path. If
we do not meet the schedule requirements for the critical path then the project may get
delayed. So we identify which are the critical activities and how to keep them under
control. So that they are carried out in the expected duration and in the expected cost. If it
is not done then there is going to be a significant impact on the overall project.

(Refer Slide Time: 47:05)

Project Monitoring and Control

= Mlan defined vanous Schviies: Muary wiys
o represent: Ganit chart, e bar chart
PERTICPM project activity nebwork
Shore sctimibies, erpecie dur SETS. MESOUTTES
alkocated
Crbcsl paths can be identified

So these are important project monitoring aspect and we use different types of analysis
techniques by representing the project plan in a proper form such as a bar chart or as
activity network. Each development step you will recall, will give information for
tracking the progress of the development. We had said earlier that every step produces
input for the management and this information will be used by the management for
identifying possible bottom necks and the reason for delays if there is any. And we will
enable the management to take corrective action. So project plan allows you to monitor
the project and also control over the progress of the project. Let us now summarize we
have in this particular lesson.

We have we have introduced the software engineering topic. We have looked at the
importance of applying engineering approach to development of large software project.
We define what we mean by engineering. So now we should be very clear how we
benefit by applying an engineering approach to software development. We identified
different types of software processes. We defined a stepwise process definition where the
software methodology consists of multiple steps. We made a very rigorous definition of
what we mean by a software development step. It has entry criteria exit criteria
something specific to be done, some techniques to be employed some documentation, or
some other output to be produced which will be used by subsequent steps. So the essence
of engineering approach is to define a stepwise methodology for carrying out the project.

We saw the waterfall model and other models. We tried to understand their strengths and
their weaknesses. We saw that the waterfall model consists of many steps arranged in a
proper sequence and it identifies many different deliverables which are very important
not only for completing the project but for future maintenance of the project. We saw
then limitations of waterfall model and how other models tried to address those
limitations such as the prototyping model or the spiral model.

And finally we briefly talked about the project planning. Key observations we made here
is that if you do not have a project plan you cannot manage the project. And project
management is actually very important in any large project. And another key point was
that, in order to prepare a project plan it is important that we learn measurement
techniques. We keep historical data, we learned how to effort how to do the effort
estimation. We also understand how the effort is distributed in different steps. So once we
have a good understanding about these issues and we also maintain data about similar
projects that we might have done in the past, we will be able to prepare the project plan
with a great amount of confidence and we will be able to carry out the whole project as
per the plan.

