
Software Engineering
Prof. Rushikesh K. Joshi

Computer Science & Engineering
Indian Institute of Technology, Bombay

Lecture - 15
Design Patterns

Today we are going to talk about an important aspect of design, which is reusability of design.
We are going to see how much our old design can be reused in our new context. A few years
ago researchers in object oriented software engineering realized that there are many commonly
occurring patterns which repeats again and again in different domains. Even if the
requirements are different, the class level design has lot of similarity. They thought why not
look at them carefully and document them as reusable pattern. So we are going to talk about
these patterns called as design patterns.

They are called patterns, because they repeat again and again. A pattern is something that
repeats. This lecture is about design pattern. If we look at reuse in software engineering in
general, we can see that reuse at code level is very common. In this slide we can see that reuse
in software engineering can be obtained at various levels.

(Refer Slide Time: 02:19)

The most commonly occurring reuse is at code level. We reuse code, for example the C
standard libraries such as math.h stdio.h and GUIs in java or even the user defined library such
as bank.h library.h. If you are developing banking software or library software, you might
design some of those classes and implement them as readily available implementation and use
them in your code. These ‘dot h’ libraries in C provide the prototype definitions, and the actual
code or the implementations of these prototypes are available in their corresponding
implementation. The ‘dot h’ files that we include in the code represent the reusable code.

These are typically shipped by the designers of the software. Along with the language, you get
these files bundled with the language environment. This is an example of reuse of code. What
about reusing old design solutions and not just the code? We should be able to reuse the design
solutions and not just the code. For example we have designed a class diagram a typical way of
interaction among the classes. Can we use those results? That is what we will now talk about
patterns in software engineering or specifically patterns in design.

(Refer Slide Time: 04:16)

Studies in other disciplines are very helpful in software engineering apart from computer
science which is its basic discipline. The research in design pattern was motivated after
patterns in other disciplines such as architectural patterns. If you look at building architecture,
you see patterns everywhere. For example, houses with two bedrooms, three bedrooms, one
bedroom, kitchen, basic sitting spaces, the hall etc. All these are patters for building
architecture. If you look at temple architecture, there are patterns and there are different kinds
of architecture. So there are patterns belonging to every kind of architecture. As you see the
pattern in real life and in different disciplines, software engineering researchers also thought
that one can have these patterns in software design as well.

Object oriented software engineering has benefited from object orientation which enables us to
represent these patterns as collections of classes and interactions amongst them. So what are
design patterns? These are solutions to commonly occurring design problem, object oriented
design and not the code in any specific programming language. We are not talking about just
the reusable code as in libraries which you use through ‘dot h’ files or in java you import
adjusting classes reuse them as it is.

(Refer Slide Time: 06:05)

We are talking about design. Typically if we look at design patterns, they involve a few classes
may be three four sometimes even two classes. We are talking about collaborating classes. If
you have a design of such collaborating classes, we should be able to use that design in a
different domain. How do we represent these patterns? They are represented abstractly. You
identify roles with every class and then explain them with concrete example and then this
abstract design is mapped to a concrete problem. You can imagine a pair of design patterns,
say for example, you have a pattern library in which all these abstract designs are documented
and when you document them, certain template has to be followed.

When you look at these abstract designs, each class is given a role and it has a specific set of
member functions which are defined very generically, so that you can map them to concrete
problems which are different. In the concrete problem, you have different class names,
different function names etc. These are all very specific to the problem whereas in a design
pattern description, you do not have to document the exact name and the exact specifications of
a given problem. But it is necessary to document them very generically and then it can be
assisted with the help of an example. There are various kinds of design patterns. For example,
there are creational patterns, structural patterns, and behavioral patterns.

How do you describe a design pattern?

• First you specify the generic problem that is to be solved.
• Motivate the design pattern solution with the help of an example.
• Provide the structure for the pattern.
• Discuss collaboration between classes.
• Discuss other issues related to the pattern such as trade-offs, implementation techniques

etc.

(Refer Slide Time: 08:22)

These are the things describes a design pattern. What is generic problem that you want to
solve? If a designer has a specific requirement, he can just go through this list of existing
pattern and see whether his requirement matches with any of these generic problem specified
by the pattern. Then he looks at the example and sees whether the example is also similar to
what he has in mind. If that is the case then he can go through the structure and then implement
it in his domain. The specific template followed by Erich Gamma and the team who wrote
famous book on design pattern is as follows.

(Refer Slide Time: 09:28)

There are many patterns which are described by Erich Gamma and other researchers. There are
patterns descriptions given by many researchers. There are few books available and I will be
giving their references at the end of this lecture. Coming back to the pattern description
template provided by Erich Gamma and team; first start with the pattern name and then classify
the pattern. Classification means, we need to specify what kind of pattern it is and what the
main focus of the pattern is. Is it a creational pattern or is it structural pattern or is it a
behavioral pattern? etc. Patterns can also be classified according to the technological domains.
For example is the pattern meant for distributed systems? Is the pattern meant for real time
systems? Etc.

There are patterns in other lifecycle phases as well. For example there are coding patterns,
analysis patterns and so on. Then one should specify the intent of the pattern. Which means,
what kind of problem, a generic problem that the pattern could solve? Then give the motivation
for the pattern and talk about its applicability. Then give it structure, participants,
collaboration. Participants are all the classes in that particular pattern and then how do they
collaborate with each other? What is the protocol? And then various other important aspects
about the pattern are also discussed. For example what are the consequences of using this
pattern? Are there any limitations? What kind of implementation it needs?

If you look at implementation of patterns, there could be different independent programming
languages and same pattern can be implemented differently in say C, C++ and Java. Object
oriented language C++ and Java or Smalltalk. If you implement the same pattern the
implementations will look slightly different from each other, because every language has
different construct or they vary from each other. For example multiple inheritance of classes,
concrete classes are not supported in Java, whereas they are supported in C++. So the
implementations vary a bit.

Then you have to also talk about the known use of the pattern. Something becomes a pattern
only if it has been used in different domains. There must be multiple uses of it otherwise it
cannot be a pattern. You might have a very specific solution in your application domain or in
your specific application and you cannot call it as a pattern unless you establish its reusability.
You should show its existing known uses. Then you have to also talk about the related pattern.
One should be able to distinguish among the closely related patterns and apply or use this
specific pattern and should be able to choose it correctly. We have just seen that there are
creational patterns, there are structural patterns and there are behavioral patterns.

(Refer Slide Time: 13:07)

The creational patterns are concerned about the ways to create new object. The Structural
patterns are concerned about the composition of objects and classes. How objects are
connected together and what kind of composition? Basically the main focus is on the structure.
The behavioral patterns are concerned about the ways in which object interacts. How do they
interact? Is the message sent from one object to another and from that object to another object
and so on in a sequence? Or is it a broadcast kind of message? Or is there a handshake
protocol? There has to be a structure if the objects have to collaborate. But in behavioral
patterns, the behavior or the collaborations are more important.

Similarly in structural patterns there may be collaborations, but the structure is more important
and in creational pattern what is more important is the way you create the object. The simplest
way to create is simply use the class and instantiate the class. But then there are other ways to
create object and we will see some example subsequently. These are examples for creational
patterns. There is a pattern called singleton pattern. It talks about creating a unique instance of
a class, the sole instance of a class.

That means firstly the class should be able to create an instance and secondly it should be able
to create only the sole instance. If it has created the instance earlier, any other request will give
you only the old instance. One should not be able to create more than one instance of the class.
Then you have another pattern called prototype. Prototype pattern gives us a solution for object
creation from a given object. How do you create a new object from a given object? I have an
object handled with me but I don’t know what is the class of that object and then how do I
create an object similar to the existing object that I have? Prototype pattern gives us the
solution to that problem.

(Refer Slide Time: 14:33)

Builder pattern creates an object from an existing representation that is something existing
from which you have to create an object. Factory method defers instantiation to subclasses so
that you can have polymorphism on creational methods. And abstract factory provides
interface to create families of object without specifying the concrete classes of the objects.
These are various kinds of creational patterns. We are only going to go through one or two
examples in this lecture. Then there are various kinds of structural patterns. Some examples are
mentioned on the slide. The first one is adapter pattern. It converts an interface to another. Just
like AC to DC adapters, the adaptors in your software tool converts one interface to another.

(Refer Slide Time: 16:26)

The composite pattern: It composes objects in a tree structure. Say you have tree structure
objects and you want to represent design for such trees, so that you should be able to create an
arbitrary tree satisfying given properties. Decorative pattern allows you to attach additional
responsibilities dynamically. Facade pattern provides a unified interface to a set of interfaces in
a sub system. Bridge pattern decouples abstract from implementation and it lets them vary
independently. Abstractions can vary independently and implementations can vary
independently. These are some examples of structural pattern. We will again see one or two
patterns in this lecture. Now, here are some examples of behavioral pattern. Template method
which lets certain steps in a super class be defined by the sub class. Look at the keyword
‘steps’ in the above statement.

(Refer Slide Time: 17:45)

You may have a member function implementation in the super class and some call in that
member function implementation or some function calls in that member function
implementation in the super class may not be concretely implemented in super class itself.
They have to be provided by the subclasses. Such a method that is implemented in a super
class in terms of non implemented method which needs to be implemented by the sub process
is called template method. We are going to see an example of template method later. Strategy
pattern encapsulates the family of algorithm and make them interchangeable. You can apply
different strategy at different times.

Iterative pattern provides accesses for iterating over the element of an aggregate. Say you have
a collection and you want to take a specific action for all elements in that collection. You have
to go over the collection. In order to do that, what is the solution, how are you going to iterate
over a given collection? Iterative pattern gives us the solution for that. Observer pattern allows
us to design the observer or the producer/consumer kind of network or the event generators and
action listener’s kind of collaboration. If one object changes the state its dependents will be
notified automatically. The observer keeps track of the observed.

And there is another pattern called state. It allows an object to alter its behavior when it
changes its state. These are some examples of behavioral pattern and we are going to look at
some of them in this lecture. Now let us start with a concrete pattern. Let us start with the
problem, let us read the problem statement.

(Refer Slide Time: 20:04)

“In a graphical editor, by clicking on an object one can obtain a copy of the original object.
Obtaining a copy of an existing object is the common design problem in online compositions.
We can provide a design solution to solve this problem and reuse this design whenever similar
situation arises.” All of you must have used one or the other graphical editor. You know that
you can click on an object or a part of the figure and by right click you get small menu on the
editor to copy the object and then you can use that copy. Let us say you want another copy of a
rectangle, you can simply right click on it and then you get a copy of it.

You can apply this kind of technique to any shape on your drawing board. You can apply the
same click and copy mechanism to lines, square, and to all shapes that you have drawn. That
means a graphical editor is able to treat all these shapes as clone able one. In whichever
application you have this requirement that the user have identified the object and the user want
a copy of it from the object, the user is not going to specify the class of that object. The user
just identifies the object and he can obtain a copy of that object. So whenever this requirement
comes, the solution that you adopted in the graphical editor can also be used in that specific
domain.

Now let us look at this solution. On this slide we see that you have organized your shape
objects in a hierarchy. You have the super class which is titled as shape prototype. It is a
prototype for all shapes and it supports a member function called clone. You have a circle
prototype and you have a rectangle prototype. These are actually your circle class and rectangle
class and they have to implement this method clone.

(Refer Slide Time: 22:10)

And there is a client code, which is the part of your application. It accesses all shapes and asks
for clone of the selected shape. So client has this link into this ‘Shape Prototype’ hierarchy.
Through this link from ‘Client’, through the polymorphism, you can point to any of these
instances of the sub classes and ask for a clone of it. The client code does not need to be aware
of the exact type of the object, whether it is a rectangle or whether it is a class when it is asking
for a clone. So what happens here is that when you click on the mouse, the object handle is
returned to you and on that object handle you simply invoke this clone operation and the clone
operation gives you in return a clone of the object that you have selected.

The creation of a clone is done by the object itself. But the client code or the application code
while asking for a clone is not aware of the type of object that the mouse click has selected.
The mouse click just gives you a handle to the object that was selected by the mouse click and
then once you have the handle to the object, that handle is of type say prototype, so treat it as
an instance of type shape prototype. But the actual instance is from the subclasses. This is the
solution that is adopted in by our shape hierarchy or our graph editor. These small boxes called
‘copy self’ show the implementation. How is the clone implemented?

You copy the ‘self’, so this is a pseudo code. When you are copying the object you know the
concrete type. You will create an instance of the rectangle prototype and you will copy the
entire state of this rectangle into the clone object and then return the cloned object. If you have
sub objects in this object you have to copy them all. So it could be de-copy if needed. This is a
specific solution in our graphical editor and the classes are named as shape prototype, circle
prototype, rectangle prototype. But where is the pattern? This is concrete solution in a given
application. How do we document and how do we represent the pattern so that it can also be
applied in different domain? Here is the pattern description.

(Refer Slide Time: 22:10)

If you look at this slide, the shapes are gone and what remains is a prototype. You have super
class as ‘Prototype’ and you have ‘ConcretePrototype1’ and ‘ConcretePrototype2’. There is a
client and there is an operation. In the operation you are calling the clone on the prototype and
if clone operations are implemented as copy by copying on themselves. This is your pattern
and then it can be described in abstract using these abstract names. Any application that that
has a similar need can identify its own concrete super classes and sub classes and map them on
to this prototype hierarchy. So we can apply this prototype pattern in a different domain.

Now we are going to look at another creational pattern called singleton pattern. Singleton is a
class that creates only one instance at most. Even if you try to create another instance, it should
always give you a copy of instance that it has already created. So for example in this diagram a
class is named as singleton. One question should come to your mind that if you just use the
creational methods provided by your present programming language, will you not be able to
create many instances of a given chart? Even if you want to make it as a single chart, take for
example class stack, you can just say stack S1, S2, S3, S4 and you have got whole stack in
C++ or you can say stack S1 is equal to new stack, stack S2 is equal to new stack and so on in
Java when you got 4 stack.

(Refer Slide Time: 26:43)

How are you going to prohibit this kind of creation which the programming languages itself
provides these? Solution here is that if you put your constructor in your private compartment,
you first prohibit this kind of creation provides by the language and then support a specific
method which is called as class method and not an instance method. Class methods are
represented by keyword static in C++ and Java. So you can say here that you have a
‘getSoleInstance()’ method that is class method, static method. You have to call it on class, you
may have to use operator, a different operator to call the method on the class directly. When
you are getting an instance there is no other instance available you are getting your first
instance. You have to invoke this method on the class and the getSoleInstance () method
returns you with the sole instance which is also a class variable.

You can see that it is named as ‘static soleInstance’. The data and the operation belong to the
instance are not static. This is your singleton pattern and the implementation that we just
discussed. Let us make use of this facility of compartmentalization of private and public
members. That is hiding your constructor by describing it as a private member. It prohibits the
normal creation mode and then a new instance can only be created through a class method,
which is described as static method. The class method then can be called by an environment to
get the instance.

(Refer Slide Time: 29:24)

And if you call it again and again the method can be programmed to check whether already an
instance has been created or not. The instance is also a class variable. If the instance is already
available, then it returns the same instance which is the unique instance in the class. Here is the
pseudo code for typical singleton class.

(Refer Slide Time: 30:33)

You have singleton that is a constructor and this class singleton which is protected. It is
protected because your sub classes also should be able to benefit from pattern and then you
have a static method called ‘soleInstance’ you have your singleton which is also ‘soleInstance’.

This ‘getSoleInstance’ method gives you this instance and the sole instance handles points to
this sole instance.

(Refer Slide Time: 31:14)

Now, we looked at two creational patterns. First one was prototype, second one was singleton
pattern. Prototype allowed you to create object from a given object. Singleton pattern allowed
you to create a unique instance of a given class. If you look at these requirements these are
very generic, they can occur in any application and now you know how to go about designing
for these requirements. Then the designs are also documented in terms of abstract name,
classes, collaboration among them and the structure among them. Then you also have some
concrete example documented along with the pattern. When you go through a given pattern
dictionary, if you match the requirement with the intent provided along with the pattern
descriptions, you can select a specific pattern and apply it in your application.

Now we are going to look at some examples of structural pattern. Let us look at the adapter
pattern. Adapter is something like you are converting an AC volt to DC volt. This is an
example from software domain. You are building a collection class hierarchy for collections
such as FIFO, LIFO etc. FIFO is First In First Out collection set and LIFO is Last In First Out
collection. This is a collection hierarchy and you may have an abstract class called collection
and then all these are sub classes which you need to implement. Now, you find that there is an
existing class called stack and it can be used for providing the LIFO collection. How do you
adopt the existing class stack to the new interface of the collection classes? This below slide
shows our solution. First let us look at the collection class hierarchy.

(Refer Slide Time: 33:33)

You have the ‘Collection’ super class which specifies two member functions called insert ()
and fetch(). You should be able to insert an item into collection and fetch the items out of the
collection. Now, you want to build a LIFO type of collection and FIFO type of collection and
these specific collection or these concrete collections are going to implement the abstract
member functions declared in the super class or collection. When you are implementing LIFO,
you want to use the existing class stack. But you see that it has a different interface on stack.
You are calling it as push () or pop () and you want to map it to insert () and fetch (). How do
you achieve this?

You are trying to now look at the intent of this pattern. We had described it earlier you are
adopting this interface push() and pop() to insert() and fetch(), because the planned application
here is going to use this object hierarchy to this specific interface only, that is insert and fetch.
The client knows collection, which is of type ‘collection’. It might be either FIFO or LIFO and
client application can simply call in certain fetch. But now since we already have something
called stack with an interface called push and pop, why cannot we simply map push and pop
onto this insert and fetch. That means that is to adopt one space to another. So the solution is
adapter.

Now you must have figured out by this time, how we should be able to do that. In your LIFO
class, you have insert and fetch. For example fetch implementation which has been given can
be simply called pop now if you use multiple inheritance, LIFO inherits from this abstract class
collection and a concrete class stack. And implements insert by a call to push and fetch by a
call to pop. If you use inheritance, you can simply make these calls as if the functions are
available on to you locally. The pattern can be described as follows. On the earlier slide we had
the concrete solution, for an example that was collection hierarchy.

(Refer Slide Time: 36:15)

Here you replace your class collection by a more abstract name called target. You have
‘Target’, you have ‘Adaptee’ and there is the ‘Adapter’ which is the sub class. The adapter
adapts the adaptee to the target. The client uses the ‘Target’ and the client knows only the
‘Target’ interface that is request. ‘Adaptee’ has a different interface called ‘specificReq ()’ and
request can be implemented as call to ‘specificReq ()’, if you use multiple inheritance here.
This is called class adapter. You are adopting the given class and to another class. So it is at
class level. You can also have slightly different solution called object adapter. If you do not
want to use multiple inheritance or if you want to change the objects to be adopted dynamically
you could go for object adapter.

(Refer Slide Time: 37:14)

Instead of going for multiple inheritance, you use an instance directly. Now you can see that
the request is implemented as adaptee arrow specific request (adaptee  specificReq ()). That
means you are going to make a call on a given object you could use this object as a part in
adapter. You could use an instance of the adaptee as the part in adapter. This is another
solution or this is a different solution called object adapter. You can use object adapter if you
do not want to use multiple inheritance. For example in this hierarchy if the target is partially
implemented, then if you are using a language such as Java, if you have this as the full class,
you wont be able to use class adapter because you have then two concrete classes.

(Refer Slide Time: 38:03)

And you will have to go for a slightly different solution which is your object adapter or if you
want to change the object dynamically then you cannot go for class level adaptation. If you go
for class level adaptation, then you are stuck with one instance only, which directly becomes
the part in the sub class. These are two solutions used for adaptation and these are the
descriptions of the pattern. We saw that in the below slide which is a concrete example on
‘class collection’. We can describe the same pattern using abstractor. So we have a pattern now
and whenever this adaptation requirement comes to us we can use this solution. Now we will
go for another structural pattern called composite pattern. Here is an example: “A graphic
document is composed of graphical object such as line, rectangle, circle, text, images or other
graphical document.”

(Refer Slide Time: 38:42)

(Refer Slide Time: 39:11)

This says that the graphic documents inside a graphical document or say picture in a picture
can also have shapes inside it. A picture can be composed of lines, squares, rectangles and so
on. Or a picture can also contain picture. You want to represent a design for this. You could
draw different object diagrams, say for example in one object diagram, you could have one
picture at the root level and then it could have some leaf shapes directly and some two three
pictures in it. Now those pictures can also have some leaf shape and one of the pictures in them
and finally you will have leaf shape at the bottom of the tree. So you could construct such
trees.

But then what should be the design? The design has to be closed, it must have finite number of
classes. You cannot show it as a running tree. What is going to be your design for this
particular requirement? Here is a solution. You represent this as composite. You can see that
there are two interesting links amongst classes, one is inheritance and another is aggregation.
Or we will call it composite.

(Refer Slide Time: 40:33)

In UML there is slight difference between these two concepts. But now we will use them
interchangeably. More generally you can call it as part-whole relation. So there is inheritance
and there is also part-whole relation. You have graphical element as an abstract super class,
which has functions like draw (), also another function called add () and then you have circle,
line and graphical documents etc. You have various functions on graphical elements and you
have different sub classes which implements graphical element. In this, GraphicDoc is a
composite which is represented by a link from Graphic Element.

You have this part-whole relation and hence a graphical document can contain many graphical
elements and through inheritance those graphical elements can be either circles, lines or
GraphicDoc. This is how you can represent the design of your tree structured graphical
document which contains leaf level classes and the intermediate graphical document which are
composite. A client handles all of them as graphical elements. If you delete a graphical
document it should pass on this delete to all the other components. For example, if you want to
draw a given graphical element, if it happens to be a composite graphical element or a
graphical doc, then the draw is implemented as for all g’s in the link from GraphicDoc called
draw. If the parts are leaf, then these draws (draw under ‘Circle’ or draw under ‘Line’) will be
called and if the parts are composite the draw under ‘GraphicDoc’ will be called and they will
be further propagated into the hierarchy.

For example, this is one object diagram which you can construct after instantiating this given
hierarchy.You have this ‘my Picture’ at this root level, it has this ‘has Picture’ which is
basically another picture and the ‘has Picture’ has ‘a Line’ and ‘a Rectangle’.

(Refer Slide Time: 43:05)

The ‘my Picture’ is composed of ‘has Picture’, that is one more picture inside it, ‘a Square’ and
‘a Text’. These three can be generated out of design that we have just seen. We have got a
pattern or composite which allows us to represent such tree structure object diagrams through
class designs or through designs expressed in terms of classes. Here is our composite pattern.

(Refer Slide Time: 43:38)

You have a component and then you have composite. You have a leaf and you could have
many such leaves. Composite is also a component, but a composite has its parts which are also
components. Now through this part-whole relation, the composites can contain a leaf as well as
the composite. This is how you are able to represent this tree structure through a design in
terms of classes and relationships. Hence the two relations are important, that is inheritance
and part-whole. Let us look at another structural pattern which is called façade. It provides a
unified interface for sub system.

(Refer Slide Time: 44:55)

Look at the above picture. The white box is a sub system which has many classes and these
classes are interconnected and collaborate. These outer green boxes are outside classes, which
are outside this sub system described by the white box. All of them are interacting with this sub
subsystem through one class. This class is an interface to the entire sub system and this class is
called façade. Now, compare this solution with the below solution. We have rejected it because
the external classes are interacting with the sub system directly through different classes in the
sub system.

For example, the middle component which is outside the subsystem is interacting with two
classes inside the subsystem and so on. If there is any change here, it is very hard to reflect the
change in entire system as there are too many dependencies. The separation of concerns is
violated. The sub systems must be nicely encapsulated and behind sub system interface which
is called façade. This is one structuring pattern and you should structure your sub system in
this way. Let us look at another structural pattern called proxy pattern.

(Refer Slide Time: 45:31)

It is a mechanism for communication. You imagine a distributed system scenario in which an
object on one machine wants to interact with an object on another machine, can we make the
distribution transparent?

(Refer Slide Time: 46:27)

Can the object that wants to make a call on the remote object be made unaware of this kind of
distribution and networking? If this local object can have an interface, a local interface to the
remote object will simply invoke member function on the local interface. It will not be even
aware that this local interface, the implementation of local interface is contacting the remote
object over the network.

So the definition of distribution transparency: The client is unaware of distributed nature of the
server. In the sense the server is on a different system and the client is on a different system on
a different machine. Location transparency: The client is unaware of the location. Firstly that it
is separately located in a distributed system and secondly it does not even need to know where
it is located. A client invokes a method on object as if it is its local object. And that local object
which represents the remote object in local environment is called proxy. So proxy handles
provide mechanism to implement this communication paradigm.

So here is a solution. For example, you have an account object which is remote object and you
want to make a transaction on the account object. The client program can be given an instance
of this ‘Account Proxy’ which implements the interface provided by the account object, that is,
deposit(). The implementation is given in the small box. You are calling deposit on the remote
actual object which is remote account (remote Acc).

(Refer Slide Time: 48:18)

This is a ‘Real Account’ which also implements the account interface. That is deposit and
‘Account Proxy’ has a link to the remote account. This could be over the network. So the client
does not distinguish or client is unable to distinguish between the real and the proxy because
both of them look the same. Both of them follow the super class which is common. ‘Real
Account’ implements it actually. The actual deposits will be implemented here balance will be
maintained in the real account A proxy simply sends the call to remote object and results are
returned to the client. So this is an interesting solution for a distributed scenario, in a
distributed object system which is called proxy. Proxy pattern is represented in this slide.

(Refer Slide Time: 49:37)

You have a subject and you have a ‘Real Subject’ and a ‘Proxy’. The ‘Real Subject’ actually
implements the subject and the ‘Proxy’ simply roots the call to a ‘Real Subject’. Let us look at
another structural pattern called decorator. Look at this object diagram; a client is making a call
and the call is going through different objects and finally reaching its server.

(Refer Slide Time: 49:55)

The ‘text View’ has a scroll Decorator and a border Decorator. So you have different kinds of
borders and view. Now you want to change the border, you want to add different kinds of
decorators on the text view. You should be able to add these decorators.

On a given object you are supporting a member function. When you invoke a member function
on that object, you want to invoke some thing else or something extra in addition to what the
object provides. For example you have a shape and you want to draw border from the shape or
change those borders. In this case you have a text view and additional functionality that you
want to support is trying different borders or scroll bars and so on. Can this be done without the
client knowing about what you are going to add in between and how many such decorators are
you going to add? We are calling it decorator because it is that the pattern suits very well for
user interfaces. But same requirement can also occur in a different application where you want
to add something new on top of what is existing and you want a client not be aware of this
internal addition.

(Refer Slide Time: 51:30)

This is your hierarchy and we are not going to go through all details of this particular structure.
But you can study the structure and the implementations through the reference book that I am
going to share at this end of this lecture. But what you can notice is that, again you have two
kinds of relations. You have one link to the super class and you also have the inheritance. You
can see that there are different kinds of decorators and the decorator has the link to actual
component. The ‘Decorator’ and the actual component or the ‘Text View’ exactly supports the
same interface. Hence the client is aware of exact type of the object which it is talking to,
whether it is talking of the actual server or the decorator. Let us look at one example of
behavioral pattern which is template method.

This is again a familiar example where you have a class called shape and when you want to
implement move operation on shape, it can be implemented as draw existing shape with color
zero that is black it out, then change location and then draw the shape again. This ‘move’
method has been implemented in the super class. But that ‘draw’ method has to be
implemented by the actual shape.

(Refer Slide Time: 52:30)

We have an implementation of ‘move’ which is in terms of abstract method which is not
implemented in the shape. The method move is called template method, where as method draw
is called hook method in this pattern. This is a very generic requirement which occurs in
different applications where you must be able to implement such template method. The slide
below shows the abstract description.

(Refer Slide Time: 53:33)

You have the template method which is implemented in some source primitive method. The
primitive method is what is implemented in concrete class. Now we will quickly look at
another pattern called strategy pattern you should be able to use different algorithms at
different time, different strategies at different time.

(Refer Slide Time: 53:46)

For example: A document is composed of text and various line breaking algorithms can be
used in formatting the document before printing. You could have simple compose; determine
line breaks, one line at a time or you consider lines in an entire paragraph or each row could
have fixed number of letters which is array type of composition. These different strategies you
can use for justifying your text document and this is your solution.

You have a document and you have your sub class, you have various sub classes of your
compositor. The document contains the compositor and the compose is implemented in
different sub classes. This is your strategy pattern and you have many strategies concrete
strategies. All of them implement the algorithm differently. Finally we will look at these
references to this lecture. The first reference is Design patterns by Erich Gamma, Helen,
Johnson, Vlissides, which is published by Addison Wesley.

(Refer Slide Time: 54:30)

(Refer Slide Time: 54:51)

You have another book called Design patterns for Object Oriented Development by Wolfgang
Pree (W. Pree). And there is a nice reading available, it is called pattern handbook by Linda
Rising. There are many papers also available on this subject. You go through all these
materials in order to get more explanation on the slides that I have described.

Thank you

