
Software Engineering
Prof. R.K. Joshi

Computer Science & Engineering
Indian Institute of Technology, Bombay

Lecture-14
Software Design - Primary Consideration

The topic of this lecture is software design, primary consideration. We are going to
discuss what the preliminary considerations are when we design the software and what
the ingredients for the design process are. The first question that we have to address is:
What is design? We have used this term in real life often.

(Refer Slide Time: 01:03)

The first question that we have to address is: What is design? We have used this term in
real life often. We first want to model the actual and it is a conceptual model that we call
a design. This design has to be then converted into implementation. So it is very
important that we design such that the design can be easily converted into
Implementation. Let us look at some of the examples of design in real life. We often see
blue prints for a building architecture. If you have gone to an architect you would see
blue prints in front of him.

(Refer Slide Time: 01:55)

 (Refer Slide Time: 05:15)

In your early engineering drawing classes or lectures you must have created blue prints
for few designs, your plans for a building for example. Or in electrical engineering you
design your machines. Design is not the actual implementation or design is not actual
machine. It is the model of the machine that we want to build where its considerations go
in to this design process. The design then gets transformed into the actual
implementation. The blue prints for a building architecture is an example and this
manifests in the actual building later. The actual project has to be executed as per the
design.

Another example of a design is; a plan for conducting a workshop. You are conducting an
event and the actual event is your actual project or you can say it is an implementation.
But first you want to have the design of that event and then as per the design you want to
execute it. We have an example here for the plan for a workshop. This is a conference
program. This is a program for a national conference on object oriented technologies
which was conducted last year.

(Refer Slide Time: 04:00)

This has time slots and various sessions have been organized into these time slots. There
is a time slot for ‘Tutorial on model between the developments’ and there is a time slot
for papers and there are time slots for tea breaks. There is also an evening 2 and day 2
plan and there are slots for other papers and so on. This is an example design which is a
plan for conducting a workshop. It is also a design and it is not the actual workshop that
we see. First we have to plan for it and then we have to execute the workshop according
to the plan.

This design is slightly different from the design of a building architecture. This example
is about events, building architecture is about structure. Designs have to be built for
various kinds of activities with the dynamics, static and throughput. Another example
design is the ‘course syllabus’. We have course syllabus for all the courses. That is the
design of the course and then the course has to be taught accordingly. The course is
taught to cover the syllabus. The design then gets converted into implementation, which
is the actual teaching of the course. These are some example designs in real life. Designs
are not actual implementation. Designs have to be converted into implementation. Now
we will focus our attention on ‘Design in software engineering’. We can talk of the
software development process as such and also the product that we want to build. The
process of building a product, sequence of steps and the iteration in building a product,
documentation, testing and verification, review process etc are the process followed for
software development in general.

(Refer Slide Time: 07:57)

In the process of software development, one of the processes you have is the design
process. When do you actually design software and where do you start? How many
people work on the design? In order to answer these questions, we have to design this
process itself. Any process for that matter in the entire life cycle, first you have to design.
Process design is an important discipline. Process design talks about design for the
process of carrying out software development.

Designing a software process is just like designing a product itself. The process is the one
that brings out the product, but you have to also design the process. When you actually
carry out the process then that is the implementation of the process. Similarly you plan
for the product and you actually build the product which is the implementation of the
product. So you can talk of process design and you can also distinguish product design
from process design.

The process design is the design of the product to be built. In this lecture, we are going to
focus on product design. But we will also look at some examples of process design, so
that you will have an idea about the ingredients of a process design. Methodology
Selection: You have to select the methodology that you want to apply in your processes
and you should select the tools that you are going to use. When you select the
methodology your tools also might follow your selection. Project Planning by Execution
Plans: The entire project planning and how it is going to be executed.

(Refer Slide Time: 09:30)

Process and documentation standards: The process by documentation standards that you
are going to follow in your entire software development lifecycle. Resource allocation
chart: Different things that will be considered in resource allocation chart. For example,
allocation of specific software engineer, when they will be deployed? Where are they
going to work? In which site they are going to work? Which are the machines that will be
kept aside for the development? Which cabins that are going to be allotted for the team?
Where are they going to discuss? Etc

Quality and Reliability methods: How to ensure the quality of the software development
process and reliability of the product? And what are the different methods that would be
employed for quality and reliability. These are all different ingredients of the process
design. So when you design your process you should take all these considerations into
account. Finally when you follow this design and follow this method in your software
development you would get the good quality product which implements the desired
requirements specified in software requirement specification. Now we will switch on to
product design. We have seen process is different from the product. The process is the
activity that you carry out to build a product.

When you want describe the design of the product, what are the considerations? The first
one could be the product architecture. Architecture is an overall design. It is a high level
view of the design. Product architecture might be in terms of sub systems and its
components or various layers in your software. How to describe the architecture would be
a separate topic of discussion which is not covered here. On this slide we are going to
look at different aspects of design and the first one is architecture. Then we have
individual sub systems. You can design individual sub systems, the ingredients of
individual sub system and how they are interconnected.

(Refer Slide Time: 12:25)

Another design consideration would be different modules in the software, packages and
the libraries that we are going to develop as the part of software. Your design might
consist of module design, package design, and design of the libraries below the sub
system. At top level you have high level product architecture. Then you can also talk of
the design at the level of components and at the level of classes. Basically, about the
specific individual classes that can be used, how they are connected and how do they
collaborate, what do they do etc. You can also talk of file level design and executable
binaries. When you want to actually deploy your software, you talk of executable binary.

(Refer Slide Time: 14:15)

In a typical UNIX system you would have by bin, by user, by include and so on. You
distribute or deploy these software binaries and sources under different directories and so
on. The deployment architecture or the specific design of your different files and how
they are interconnected, how the executables are organized etc are very important. Then
you can talk of low level entities such as functions, data structures and also algorithms.
You have to design your functions, data structures and algorithms. This is different from
actually implementing them. Design is not a code in fact it should not be coded. Design is
a high level specification of the implementation that you are going to build.

If you have a very data centric system where you have persistent data in a typical
business application, for example, you are developing your library information system or
you are developing your academic system, then you have lot of data and there are again
relations among them. For that, you would need to have tables, you can convert your
models into your relational table, you would design them, and the data design is also an
important aspect of your product design. Then at the high level of the product which is
the user level, how does the user interact with the product? What is the design of that
interface layer? That is an important aspect to see how the interfaces are organized and
how the user is going to interact with the software. Interface design is an important aspect
of your entire software design.

(Refer Slide Time: 16:37)

The other important considerations are concurrency, parallelism, etc. Which are the
concurrent activities in your software? Are they also parallel and is there distribution?
How are you going to distribute? What kind of architecture you have for the system? Is it
a bus architecture or do you have ring architecture or do you have mesh architecture? If it
is a parallel computing system, you may have further architecture such as hypercube,
specialized grids and so on. Basically the aspects of design from the point of view of
concurrency, parallelism distribution, we can add to it the application for tolerance and so
on then another consideration is networking.

How are you going to network your systems? What are the protocols that you are going
to follow and also the physical and logical layer? What is the security architecture? Apart
from the very core functionality of the software, these are all very important aspects. You
have to design for all types of requirements of the software, both the functional and the
non functional requirements. Functional are those which are related to the actual
semantics of the data and operations on data. And the non functional requirements would
be requirements such as distribution, parallelism, networking architecture, the security,
how the user will be allowed to login and what would be the encryption mechanism and
so on.

All aspects of software development should be considered in design process and
everything has to be designed so that at the implementation time you do not get any
surprises. It is very important to design everything before you actually implement.
Sometimes it may not happen in practice. When you are implementing, you have to
change your design or you have to perhaps redo some part of your design. So your
designs should be such that one should be able to refine them and modify them. Now we
will look at those aspects of the design. How should the designs be? What are the
properties which must be satisfied by your design?

(Refer Slide Time: 20:48)

Before that we have to note that the designs should be done after the analysis. You have
to come to design from the analysis and from the design you should go on to
implementation. During analysis you have these products such as the entity relationship
model or a data flow model or a use case model for the high level functionality point of
view. The entity relationship model identifies the entities in the domain and the
connectivity and relationships between them. Data flow model identifies the data and the
flow of the data through different processes. Use case model identifies how the user is
going to interact with the system. There also other different methods of analysis I have
included one here, which is agent oriented domain analysis model.

What are the agents in the system and how they carry out different activities? What
activities do they carry out? Agents are mainly the animate agents; basically the human
being. If you want to automate an activity say business model, then you have to first find
out what are the different entities and agents, how is it carried out currently and then you
have to analyze the system. Then you can go on to design your software to automate that
system which is already in existence. Based on the existing system, analysis models can
be produced and then using these analysis models you can build the design which you
can translate into software implementation. Design models are built from analysis
models, so analysis model is very important. The design models can then be easily
mapped to actual implementation of the software. Now we will come to the factors that
we have to consider during design.

(Refer Slide Time: 21:05)

First and the most important factor is this: Does your design meet the functional
specification first of all? Is it complete? Suppose in your library information system you
want that the fines must be automatically calculated and design does not account for it,
then the design is not complete. It is the most important fact that you have design for
everything. How do you make sure of it and who is going to test the specification which
may be in say plain English or in the IEEE software requirement standard? Somebody
has to review and find out whether the design is meeting the requirement. There are
review processes to make sure that design meets your specification and whether it is
complete.

How close is the design to the problem domain? This is an important aspect of a design.
If the design is very close to the problem domain itself, say for example you have objects
such as books, racks, users, different floors, journals, CD ROMs, videos CDs in your
library system. In the design of the software, you could also have objects which have the
same name. Then it will be very easy for even for the implementer to view and
understand what the system is going to do. It is very close to the actual real life system.

This is an important aspect and this makes your design more understandable because it is
very close to the actual system and this is also sometimes called seamlessness.
Seamlessness is a property of having no bump between two different stages. If there is a
seamless transition from one activity to another you do not experience the bump or feel
the difference in the activity. When the design is very close to the actually real system, if
you have a real life system and if you have the software domain even the domain experts
or actual users who are currently operating the real system will be able to understand the
design or will be able to review it or will be also able to comment on it. The abstractions
that you have used in the design have been taken directly from the real system. If it is
close to the system the real system or the problem domain, then its easy to understand the
design, easy to comprehend it and also it is also easy to come up with the design.

Many times you can have very similar entities and the connection as you see in the real
life. But this is not always true. For example you have abstract classes in your design,
where do abstract classes come from. You are seeing some commonality amongst many
different types of objects and that commonality are capturing your design, but it is not
there in the real life. But the actual object, the concrete objects are there. The concrete
classes will be the corresponding entities and real objects can be mapped to the specific
concrete classes in the design which are very close to the actual object.

The abstract class which might be a super class of your many subclasses, that abstract
class you do not see in the real life which is mainly in your mind, which is at the level of
your logical organization of the object. Some of it might get manifested in the library
system through your classification system. The designer adds these additional
abstractions in the design which are not there in the real system.

Whatever is there in the real system, if you find corresponding entities in the design, it is
easy to comprehend such a design, to understand design and also to build the design and
then to convert it to an implementation. Another factor that you need to consider in the
design is performance. Is your design, the best possible design from the performance
point of view? You may not always get the best design because your resources are
limited you have a deadline in front of you. So you have to make a best attempt to get a
high performance design which does not have performance bottleneck. For example there
is a server that accepts request from across the internet. Everything has to come at the
server and the server itself executes the responses and sends them out. This one server
which accepts all the requests and computes the responses will be a bottleneck.

Instead you could have gone for parallelism and also distribution. So that in parallel you
could have carried out many activities and responded to many requests simultaneously.
You can make sure that your low level data is in consistent state and you must get a high
performance design even with your resources and time constraints. In fact, expected
performance of the software would be considered at the stage of requirements
specification and you have to design for it. Performance is an important criterion. Again
to summarize, the completeness of the design, closeness to the problem domain and
performance aspects should be taken into account when you design.

Another important factor to be considered in design is, is the analysis model traceable
into corresponding design model? For example, you have done data flow analysis and
you have done entity relationship. Can you trace them into a design?

(Refer Slide Time: 36:50)

Can you show how an entity in the entity relationship model has been mapped on to
another design entity? You should be able to show whether it has gone as an attribute in a
class or has it become a class itself or some collections of entities and relations being
mapped to tables or they being designed as separate table. In your data flow diagrams or
the data flow model, are the processes being mapped to functions or they processes
servers which are active servers? A server typically goes in a loop. It is open for request
as soon as it gets a request it operates on the request and sends response back. So you
have to trace this analysis into your design.

Why is this important? First of all the design is banking on the analysis model. The
analysis has to be converted into design and then whoever wants to understand analysis
and design, has to go through this if it is traceable directly. Again this traceability has to
be seamless. If you use the same methodology for design and analysis you might benefit
from seamlessness. For example if you apply object oriented analysis and design
process, then use the same notations and same meta models for both your analysis and
your design. Then there is seamlessness. When you further refine the analysis that you
have already came up with, it will get transformed into design. So it has to be first
traceable. If possible, it could become seamless which is an additional advantage.

Now, when you design are you designing everything from scratch or are you going to
reuse something which you already have? This is another important factor that you
consider when you design your software. When a software firm takes up a project, it may
not be the first time that it has taken up a project unless it is a startup firm. You carry out
design often for different kind of projects and different products.

So when you get something new, you would look at your earlier results or earlier designs
rather than starting from scratch to design. Are you going to benefit from your earlier
design? If you have encountered similar situation earlier, you have to bank on some of
the results of your earlier design process. But how do you reuse is another question.

If you have designed for a specific protocol, you can simply take that design if the
protocol is recurring. You have to benefit from your old design. There are mechanisms
for reuse. There is a separate discussion on design patterns. Design patterns are the object
oriented design which can be reused again and again for different domains in different
applications. For example, you have a common design requirement that customers
subscribe or consumers subscribe and the publishers publish the results or publish the
events. Whenever something is published, the subscribers must get the results of the
publication or the events are to be delivered.

If there are services built for example abstraction service, it looks at different newspapers
and then it gives you an abstract of what has happened today to the subscriber. This is a
common requirement that there are publishers and subscribers. If you have encountered
such requirements in a design earlier in another project and if this recurs in a different
new project, then you have to now use the results of your earlier design and directly
apply it in the new project. The names of the entities might be different. There might be
specialized behavior, but you should be able to make use of most of what you have
already encountered. So object orientation does allow you to reuse lot of your design
ideas and there is a nice book by the gang of four authors (Design patterns: elements of
reusable object-oriented software). Erich Gamma is the one who actually initiated this
book.

This book talks about reusable design. Incidentally reusable design does not directly
imply that corresponding code is also reusable as it is. But at the level of design, at least
you should be able to reuse and if there is code reuse that is also possible. Most often
your entities might be different and you have specialized behavior. The amount of code
reuse that you can have in your system sometimes is limited because of various
considerations. But the point is that one has to learn to reuse your results of your old
design processes if there are similar requirement. So you are reusing design and you are
also reusing the design processes, because once you do design again and again, you also
develop the process of designing. You also know how to go about decomposition. So the
process also gets reused along with the product. So reuse is an important factor in your
design.

Now the next factor is; is the design well structured? How good the design is? Is there a
good decomposite or is it very haphazard? Is it very hard to understand the design? Are
there are two many interactions? One does not know where to start such designs is not
good. You need to have a well structured design. We are going to see later in this lecture
about what kind of structure they are. Another factor that goes into designing is the
evolvability of your design. Is it evolvable? This is very important because the
requirements also keep on changing quite often

(Refer Slide Time: 40:32)

Sometimes you have not considered all of them in one shot. You will know it down the
line and you need to evolve your design. So when you are designing, during that time
itself you must design such that the design is evolvable and one should be able to make a
change into it very easily. There are techniques to build evolvable a design. For example,
if you have already structured your different entities into a nice inheritance hierarchy, you
will be able to add a new subclass into inheritance hierarchy and evolve the design. If you
already have a modular design, you will be able to add a new module into design. You
have to take into account future additions and future changes.

There are different properties of specific design that goes into these main or major high
level properties such as evolvability, for example coupling, cohesion and so on. These are
actually software metrics and which is not focus of today’s lecture. We are going look at
the basic core properties or the basic considerations in the design. In order to achieve an
evolvable design, it has to be well documented. You must produce all the important
documents of the design. There are diagrammatic notations, you may also have text based
description, and you may also specify your designs. There must not be any dark matter
left out. If you document well, the rest can follow up on the documentation.

Document should not be written for the sake of documentation. It is for the sake of all the
goodness properties that you want to extract from a design such as, evolvability
maintainability and understandability. You have to produce proper documentation. How
to document top down approach must be taken. You must have high level document so
that first quickly you can grasp what the system is. After you grasp the whole system, you
can then zoom on to specific sub systems and then understand the system. Another factor
is; has the design been reviewed? This in fact is about the process of design. You have to
reveal your design so that you must make sure that it is complete and you are not missed
out anything. So this is an important aspect of your design process. Now, we will look at
the important process that you apply in designing complex system.

The important criteria or the important activity that you carry out when you want to
defeat the complexity is by decomposition. You cannot get the entire design in one shot.
You cannot start writing down the lowest level details of your design. Decomposition is
very important and that is the way to beat any complexity.

(Refer Slide Time: 42:35)

Any problem that you want to solve, you should be able to decompose the problem into
sub problems solve them and then connect it back. Decomposition can also be seen as
partitioning, split the system into many components and separate the concerns. You
might split this system into many components, but then there might be redundancies and
lots of overlaps and it might result into a chaotic situation. It has been decomposed and
some of haphazard allocations of task have been done, but then there is no good protocol
or there is no consistency among them in what they do. Such a system is not usable. So
you have to separate the concern to have that modularity. Everyone does some specific
task, it is not repeated elsewhere and then they collaborate with each other.

Of course when you decompose, the decomposed components or the subsystem or the
partitions or the parts must collaborate with each other. There must be methods of
composing them or connecting them or getting them collaborate or coupling them.
Decomposition and composition are very important activities for doing complex systems
design. You have to decompose, you have to separate the concerns and then again
connect all your design artifacts together. Connect the components and let them
collaborate to achieve a systems overall functionality.

(Refer Slide Time: 43:32)

One can take a top down approach to this or can take bottom up approach. For top down
approach, you start from a very high level design description and then break it down into
further different sub systems or modules and then further break it down and go on
designing that way.

(Refer Slide Time: 44:41)

You can also start from very low level module and then build them up put them into
packages and then go on to build the architecture. op down versus bottom up approach
Top down approach is good for starting from a high level description and understanding.
It is good for documentation, but most often if you do not have the clear idea about your
design, top down design also may not be possible.

You may have ideas about the low level module and then you want to connect them.
Then you will go about bottom up design. But usually in practice you may want to go
back and forth. You may want to start at some top level go down and then you get
something new there and then again build up connect it back. So you may want to go
back and forth that is iterate upwards and downwards for different refinement which is
very practical approach. You start top down and if you feel that now you have something
more in the down or lower layers then you want to come back and you want to modify
your top level designs and so on. You can start from both directions. Top down design is
in the practice if you have the top level vision of the design. One important property of
top down decomposition is that it gives you the good understanding of the problem.

For documentation even if you have not practiced exact top down process for your design
you should document from a top down perspective. Top level design document is the first
one that the reader might want to read and might want to understand and then they can go
about looking at lower level module and further zoom on. Top down documentation is
very useful even if you have not followed the top down design. We now know that
composition and decomposition are the two important activities in designing. Now we
will now look at this decomposition activity in detail.

(Refer Slide Time: 47:04)

We have already seen that we need to separate the concerns through the modular
decomposition and we have also seen that there are different ways for decomposition. For
example, the hierarchical structures you can build. The decomposition gives you a
hierarchical structure. You can decompose a system into a part whole hierarchy. There is
a big system and then there are parts inside the system. A part whole hierarchy for
example there is a computer and in the computer there are different parts such as cards,
monitors, keyboard and or different IC chips and so on. You give design in a part whole
and then further it can be decomposed as what are the parts of the card and what are the
parts in the chip and so on.

Or you can take a classification hierarchy or inheritance hierarchy or a IS-A hierarchy.
Another way of decomposing is instance of hierarchy, it uses types. For example, a is a
type of b and b is a type of c and so on In languages like Smalltalk, you have objects,
classes and there are Meta classes. This is another way of decomposing a system.
Another orthogonal perspective is that of focus of attention which is zooming. You have
high level design and then you go on to a lower level and zoom on to that and then you
further zoom on to that to get this structured decomposition. These are different ways of
structuring your design. In UML state chart, you can zoom on to a state and give a
separate state chart for the stage. This is the way to decompose your system so that you
will be able to understand request at the high level at the top level and then further go on
downwards and zoom on to your sub systems or your sub design.

We now know the different ways of decomposition. Now we will move on to
composition. What about composition, interconnection or collaboration and coupling?
How do modules correspond with each other? What is the best way for them to
correspond with each other? Should they interact with each other too much or should you
minimize that or should there be no interaction? Without interaction how can they
collaborate?

(Refer Slide Time: 50:43)

How can you have a system with many modules? How good is a given modular
decomposition? What is the goodness property? There are metrics to measure the
goodness of design. There are different ways for modules to interact. You can have
functional interfaces, you can have processes, you can have sockets, or you have remote
method invocations or you have services on internet, or you can call functions, there are
recursions etc. There are different ways of interaction and some of these have been listed
here.

There could be peer to peer interaction ‘A’ communicates with ‘B’ and ‘B’ also
communicates with ‘A’. ‘A’ can send a message to ‘B’ and ‘B’ can also send a message
to ‘A’. This is not about just reply. This is a message that originates and asks for a
service. A asks for B’s service and B asks for A’s service. That is peer to peer way of
connecting.

You can have client server model for interconnection. The client asks the server to
provide specific service. They send out the message and get the reply in return. You can
have specialization-generalization for interconnection. Inheritance, aggregation for part
whole, you have different ways of messaging, message queues, sockets and black boards.
You have synchronization methods such as, signaling, semaphore, monitor etc. Hence,
there are different ways of interconnecting system or composing them. Once you have
decomposed, you have to connect them. So composition and decomposition, or
decomposition and then the composition of the decomposed modules or the entities,
interconnections in the collaborations among them are very important. There are different
ways of making them collaborate and there are different ways of connecting them. Those
have to be considered in your design. Now we will look at the basic principles that you
apply during the design.

(Refer Slide Time: 53:04)

What are these guiding principles? We must have come across these terms in real life or
in your software engineering or in your object oriented programming classes or basic
programming classes. Abstraction, Encapsulation, Refinement and Communication, if
you apply these principles in your design process you will get many of the good
properties of design. Let us look at the properties of these basic guiding principles one by
one. What is an abstraction? Abstraction is an external view of a given system. You want
to understand the system from the high level perspective first and then go on to. Basically
you want to abstract it out. Abstract what the system does from the external point of
view.

The operating specific buttons, for example you have washing machines to operate or you
want to operate a microwave oven. So you have the external perspective or the interface.
There is an external abstraction.

(Refer Slide Time: 55:05)

So the user’s abstraction is different. The person who actually builds the microwave, his
abstractions may be different and the principle of abstraction has to be applied for
different roles. To understand the lower level system through abstraction that is easy to
comprehend and is very important. Any system if it is seen from an abstraction point of
view, that is external view of the system, you can understand your system well. Not only
understand, but also for manipulation abstraction is important. For example, data
structures like stack. You can think of a stack in terms of behavior of its push and pop
method. Whatever is push goes on top of the stack and whatever is pop comes out from
top of the stack.

When you describe this behavior, you do not worry about how it is implemented inside.
For example, what is the data structure used for this stack? Is there a linked list or is there
a static data structure? How many pointers are you using? How are you implementing
them? How are you initializing? Are they automatically initialized by the language itself?
These are the internal views. But when you want to describe the data structure you want
to describe it as an abstract rather than an implementation.

So given an abstraction, you understand the system and then use the abstraction to
manipulate the actual instance of the system for which you have described the abstract.
So we use this principle of abstraction in your day to day programming practice. For
example, types and variables, functions, classes and objects, files and processes,
packages, control constructs such as ‘if..then..else’; ‘repeat..until’; ‘for loop’ or sequel
statements and so on.

(Refer Slide Time: 56:36)

Use these abstractions and then build similar programming which is abstract
programming. But for your given problem domain you have to find out abstractions in
the problem domain. How do you describe these abstractions? You can use abstract data
types, you can describe them into interfaces, and you can also describe the exceptions or
the exceptional behavior that the entity will project.

(Refer Slide Time: 57:48)

Suppose you are asking for a service and if the server is unable to provide that service,
what is the behavior that you expect from server is also the part of abstract. It is an
externally observable behavior exception that you are going to expect from server.

Messaging Protocols: What are the messaging protocols? What we send first and what do
you send later and what is expected? The protocol, handshakes are also can also be part
of the high level view. Contracts that are provided, pre conditions and post conditions:
When you ask for a service, what are the parameters that are expected from you? And
what is guaranteed to you in return? Pre conditions and post conditions are also part of
contract or abstraction of the given entity. The next one is principle of encapsulation.

(Refer Slide Time: 58:35)

Encapsulation talks of hiding lower layers. This is for security and also for enforcing the
abstraction. You would hide lower layers on top of the higher level. Examples of
encapsulation is local state within local scope, non exported or invisible variables, private
member functions in your classes or in your object oriented program. So encapsulation is
manifest. You want to hide something to project the external abstraction that you have
thought of to the user and the internal implementations are hidden. You have to enforce
it, it is not enough to simply implement the abstraction, but it is also required that you
enforce the abstraction through the principle of encapsulation. Refinement: Iterative
refinement of a given concept should be easy to achieve without much redo work.

How do you refine? What are the principles of refining? What are the ways of
refinement? How are you going to apply this into your designs? For example, a software
process with revisitable design phase you can come back again and again in the process
and you apply this iterative refinement. You can also apply a refinement to inheritance. If
you want to refine your subclass, your super classes to sub classes. You can apply this
open close principle for components. Implementation is open for refinements but the
interface is closed.

(Refer Slide Time: 59:30)

(Refer Slide Time: 59:59)

A contract is guaranteed that you can change the implementation and you can make it
better. You can refine your implementation, which means in the next version of a
component you give a refined version of the component. The implementation is better or
it might also be specialized through inheritance. So refinement can take place through
inheritance or open close principle by changing the implementation without affecting the
contract that you have exported or guaranteed for the outside user. Another application of
refinement is zooming. You want to zoom and refine that means from macroscopic model
you want to go to microscopic model. A microscopic model is the refined model.

(Refer Slide Time: 1:00:33)

State diagrams for example in UML. They can be refined or can be zoomed on to. There
is fourth way of refinement that is generic description. We have generic classes you can
refine them for specific types. This is different from inheritance. It is template classes in
C++.

(Refer Slide Time: 1:00:49)

Refinement is very important for a change process or even for expansion for evolution
and as well for understanding an organization. The change processes are provided to
carry out refinements. These are also depends on what are the abstractions that we use for
the refinement.

(Refer Slide Time: 1:01:25)

So the examples are inheritance mechanism, encapsulation and separate compilation of
different files, you can refine independent components separately or you can blow up
your models and refine them from macroscopic to microscopic point of view etc. Finally
we are going to see the aspect of communication. Different kinds of interconnections and
you have to note the different types of connectors and how to make use of them
effectively in your design.

(Refer Slide Time: 1:02:12)

Interconnections: They are also called different kinds of connectors; the components
collaborate through these connectors. So we have to use the right kind of connectors. For
interclass connectors, you can use pointers, references etc. For inter process connectors,
you can use sockets, proxies etc. For inter machine connectors you can use TCP IP,
internet and so on. For synchronization there are different kinds of connectors, example,
pipes and filters and some more connectors have listed out here. They are shared
memories, black boards, semaphores, message queues, monitors, signals and actions,
filters and pipes.

(Refer Slide Time: 1:02:33)

 (Refer Slide Time: 1:03:40)

So there are different ways of using these connectors amongst those the components that
you have designed. Finally we will look at this summary slide what we have seen in
today’s lecture. We looked at what is design, and then we looked at some examples of
design. We had seen one example of design of a workshop or a real life process. Then we
learned that the analysis is to be converted in to design. We have seen different factors to
be considered during design. We have seen the advantage of a top down process of
design and we have also seen that you can apply or you can go back and forth in a design
process. Then we looked at the basic principles to be applied during design; the
abstraction encapsulation refinement and communication.

Thank you

