
Software Engineering
Prof .N. L. Sarda

Computer Science & Engineering
Indian Institute of Technology, Bombay

Lecture-12
Data Modelling- ER diagrams,
Mapping to relational model

(Part -II)

We will continue our discussion on process modeling. In the previous lecture we talked
about functional decomposition as a first step in process modeling.

(Refer Slide Time 00:56)

Given a complex process we should try to decompose it into sub processes or smaller
processes which can be better understood in terms of what actions they do. We will now
continue with the process modeling and look at another important tool called data flow
diagrams. Data flow diagrams are a very popular tool for describing functions which are
required in a given system and these functions are specified in terms of processes as well
as the data used by these processes. There is one important difference from function
decomposition diagram where we do not show data explicitly. Whereas in the case of
data flow diagrams both the processes and the data which will flow among those
processes would be shown. That is why they are called data flow diagram.

(Refer Slide Time 02:55)

We may do function decomposition diagrams before doing data flow diagrams. However
we may also do data flow diagrams directly. But it is better to think about function
decomposition before hand and it could be a good practice to do function decomposition
before, because this function decomposition would be anyway required when we do data
flow diagrams. Data flow diagrams have more content than function decomposition
diagrams because we will be explicitly showing the flow of data. Data flow diagrams are
very simple pictorial tools. They represent the functional and the dataflow in a form of a
diagram and therefore they are very easy to understand by the normal users as well as
managements. So they have become very popular in the analysis phase for representing
the functions performed by a particular application. Data flow diagrams are also
unambiguous and concise. They can describe processing both at the physical level as well
as at the logical level.

Remember that at the physical level we describe the way things are done rather than what
needs to be done. In fact usually when you are studying the existing system you are
studying it at the physical level. Therefore if you represent this in the form of a data flow
diagram, the diagram will be at the physical level representing both what is done and how
it is done currently. After doing this, you will move towards preparation of a logical level
data flow diagram, where we emphasize what needs to be done and not necessarily how it
should be done because the ‘how’ part is really the part to be addressed during the design
phase. DFDs facilitate top-down development. In fact that is the strength of the tool, so
that you can introduce more and more details as you do step by step decomposition of
these diagrams. They permit outlining of preferences and scope.

(Refer Slide Time 04:30)

When you are discussing different alternatives with the users or the management you can
clearly mark those alternatives on the data flow diagram itself. This will help the users or
the management to understand the scope of the application software that we are
proposing. Here is the notation that we use in diagramming the data flows. In the diagram
you show the data flow through an arrow. Usually the arrow will be labeled with the kind
of the data which flows on that.

(Refer Slide Time 05:00)

We show the sources of the data or the sources which use the information. These are
generally the external entities and these entities are shown using either a rectangle or it
may be a double edged rectangle. I am giving here two different representations and both
are used in the industry. You can choose one of them. The one on the left is simpler to
draw when we are doing the data flow diagrams by hand. But when you use tools for
doing data flow diagrams, any one of them could be used. So, sources and sinks of data
and information typically are users of the system and these would be shown as external
entities.

Then the processes are either shown as a circle, which is also called a bubble or a
rectangle with rounded corners and we label them with some number for easy reference.
Then finally we also show data either through a pair of lines or by a small box which
represents a collection of data and that box may also be labeled with a number for ease of
referencing. Primarily the data flow diagram provides only four symbols:
• One is the arrow for flow of data.
• The next one is a rectangle that represents an external entity which would either
supply some data to our application or which will receive some results from our
application.
• Then we have the processes represented as bubbles.
• The last one is the data store which is represented by a pair of lines. These are the
simple notation that we will use for drawing data flow diagrams. Let us begin by an
example and you will also appreciate how simple they are to read and understand.

(Refer Slide Time 07:17)

In this diagram, we see two rectangles both are labeled same, which means it is a single
entity called a traveler. Traveler is an external entity which will be using this application
which we have called as ‘Air line reservation’.

Some data flows from this traveler and comes to a process called ‘make reservation’.
That data would be the date and time and destination where the traveler wishes to go and
he wants to buy a ticket if it is available. The first process which handles this data is the
‘make reservation’ process. If you look at this process, this process not only takes the
input from traveler, but it takes another input from a data source called flight database.
The direction of arrow indicates that the data is being taken by the process; it is an input
of data. So we take two inputs here, one is from the traveler about his time date and
destination, the other is the flight database. And then prepare a suitable reservation, the
reservation is also recorded. We may have to consult the existing bookings and see
whether there is a space available. If available we make a reservation.

After making the reservation, this process produces outputs for two other processes. One
output goes from make reservation to a process called ‘prepare ticket’. Ideally we should
be labeling all these arrows. The label of the arrow will indicate the data which is sent by
make reservation to the prepare ticket. But from the context we can easily make out that
in order to prepare the ticket we will have to obtain the travelers data as well as the flight
data. The ticket is an output of this process-‘Prepare Ticket’, and it goes to the traveler.
This is the physical output produced by our software for the traveler. There is another
process to which the ‘make reservation’ process supplies some output and that process is
the billing system. Again we can easily see that the billing system must receive some
inputs from ‘make reservation’. So that the cost of the ticket can be calculated and this
billing system will produce a bill for the traveler. The billing system will also note that in
the accounting file and subsequently it will also handle the payment from the traveler.

So, in this airline reservation we have defined three processes called make reservation,
prepare ticket and billing system. We have identified one external entity who is the user
of this software or this application and we have identified the data stores. These data
stores contain the data relevant to the application; these data may be related to the flights,
these data may be related to the customer himself for the system to keep the billing
information for him and also the data about the bookings that we have made. Hence, the
data flow diagram can be read in terms of external entities, the data that they supply or
the result that they receive. Based on the names that we have selected for these processes,
we can try to understand what happens in this application.

Again the naming is very important. The name for the bubbles as well as the data sources
should be given properly. This will ensure that a data flow diagram can be understood
easily without any additional explanation from the analyst. This is the advantage of the
data flow diagrams; they are understandable on their own. When we start the designing or
developing the data flow diagram, we can generally show the entire application as a
single process itself.

(Refer Slide Time 12:50)

This is the first step in preparing the data flow diagram and such a diagram where the
entire application is shown as the single process is called a context diagram. It identifies
all the external interfaces of the application we are developing. Context diagram is a very
important step and the focus here is not so much in the details of the process itself but its
external interfaces. Context diagram will focus on, the external entities that the
application is going to interact with, the outputs it will produce, the existing data stores
that it might have to interface in terms of obtaining the data or updating that data. This is
usually the starting point and it is also called fundamental system model or the level zero
data flow diagram. So you do the data flow diagram in steps by successively refining the
different processes or by successively decomposing those processes and in this you add
more and more details. But the starting point is always the context diagram in which the
focus is on the external interfaces of the software. Here is the simple example of a
context diagram, in which the whole software application that we are developing is
shown as a single process or a single bubble.

We identify the users, the inputs and the outputs that system either receives or produces.
We also identify existing sources of data. These existing sources contain the data which
is useful for our application, but they exist outside. By showing it in the context diagram
we are clearly saying that this data store will be assumed to be an existing data store and
it will not be part of our development and design effort. Hence we are defining clearly the
boundary of the software that we want to develop.

(Refer Slide Time 12:55)

We also identify other external sources which may be necessary for interfacing our
application with other applications. These may be messages or they may be data stores
which will be interfacing with external system. So context diagram is a very important
first step in preparing the data flow diagram. After we have done the context diagram, we
decompose the process in to its sub process. Here is the process decomposition now
coming in the picture.

(Refer Slide Time 17:30)

When we do this, we replace the process by its constituent sub processes. In this, we may
reveal additional data stores or additional external interfaces. So we are adding now more
and more details and we also develop some simple kind of a simple numbering system
through which we can readily show the constituent processes of a process which we have
decomposed. Generally we use the decimal numbering system. If we are decomposing
process1, then the sub processes of that would be numbered as 1.1, 1.2 etc. This is for
ease of understanding the decomposition relationship between the processes. At each
level of decomposition, we should complete the data flow diagram in its all respects. We
must clearly understand the data which is flowing. We must know what exactly goes
from one process to another process or what goes from one data store to a process. These
processes must be properly labeled and meaningfully. In fact, we had earlier mentioned
that processes are best named by a verb and object. We had seen examples of this while
talking about function decomposition.

The same kind of naming rules or guidelines should be used for labeling these process as
well as the data stores and data flows. All components which appear in a data flow
diagram must be named meaningfully in order to convey the purpose and the meaning of
the diagram. We should continue decomposition, add more and more details. When the
decomposition can be stopped? We should stop decomposition when the processes have
become quite well defined and are not too complex. They can be developed, understood
and can be briefly described. We can also stop when the control flow starts surfacing. On
subsequent decomposition if it is going to introduce looping or repeated execution or if it
is going to introduce conditional execution, then naturally the control flow has started to
surface. At this point we can stop the decomposition. Because the data flow diagrams do
not show flow of control. It is assumed that processes are executing and they are
receiving data and they are producing outputs. There is no flow of control that is shown
explicitly in the data flow diagram.

Let us say, we have refined the processes until they were well understood and were not
complex. All the important data stores have been created and we have identified what
they need to contain. Once we have reached this level, we say that the process refinement
is now complete. Hence, in this successive decomposition we may go through multiple
steps and at each step we would be creating a data flow diagram for the process which we
are focusing on, for the purpose of decomposition. We must remember a very important
point that the DFDs do not show flow of control. DFDs also will generally not show one
time kind of things like initializations. They do not show processes which initialize or
create files or create databases. They instead show processes which are running in a
steady state.

(Refer Slide Time 19:42)

Data flow diagram can be imagined in terms of processes which are continuously
executing. As soon as they receive the data, they produce their output and hand over that
to the next process or update a data store or some such action takes place. We do not
generally show the one time kind of activities, but show processes in their steady state.
DFDs show only some important exceptions or errors. These are shown in order to
introduce some specific business requirements to deal with them. For example if the
inventory has fallen below a certain level, this may be treated as an exception which is
associated with some business rule, that some reordering has to be done because our
inventory has fallen very low. Such exceptions would be shown, but otherwise routine
types of errors are generally not shown in the data flow diagram.

For example we will not show things like the airline number which is given by the
customer is wrong or the destination city that he has given does not exist in our database
etc. We assume that such errors will naturally be handled by our software, but they are
routine type of errors where data validity has to be done, these are not shown as a part of
data flow diagram. We concentrate on main functions and main processes rather than get
distracted by routine type of exceptions. Process must be independent of each other.
Again here we refer to our thumb rule that cohesion and coupling are the guidelines we
always use for any decomposition.

(Refer Slide Time 21:00)

When we define sub processes, we should ensure that the new sub processes that we have
created are cohesive in terms of what they do and there is minimum interdependence
between them. In fact, the only way the processes or sub processes interact with each
other is through data. Work of a process should depend only on its inputs and not on the
state of another process. So processes are independent in that sense and this is an
important point we must observe when we are doing the refinement. Only needed data
should be input to the process. This is again an obvious requirement that a process should
receive inputs which it needs for producing the outputs which are the responsibility of
that process. As we do refinement we must also ensure consistency at different levels of
refinement. Here is an example where on the top we show a data flow diagram in which
process F1 has been defined as having input A and producing output B

This process F1 itself may be fairly complex and this process may be decomposed into
different sub processes. Let us say we are decomposing the process F1 into 1.1, 1.2, 1.3
and 1.4 as four sub processes with relationships among them. This decomposition here
shows that a complex process such as F1 gets decomposed into four processes which
have been named as 1. 1, 1.2 and so on, to indicate that they are part of process 1. In this
case the consistency among the levels requires that the inputs at the sub process level 1. 1
should match with the inputs in the process F1. Inputs and outputs must match even after
decomposition. On the other hand new data stores may be shown. For example, for the
process F1 in the top of data flow diagram, we did not show the data store but when we
decomposed F1, a new data store have surfaced (ex: level 1.3), because it needs to supply
some history data or past data to one of the processes.

(Refer Slide Time 22:55)

Important point in refinement is that there must be consistency among levels in terms of
inputs and outputs. On level 1 should be same as the inputs and output at level two. A
physical DFD indicates not only what needs to be done but it also shows how things are
being done. It shows some implementation details.

(Refer Slide Time 25:12)

These details will naturally depend on the environment of the application. For example
you might show the names and locations of places where things are getting done or how
the data is actually stored.

For example the data may be stored in a library in terms of card indexes which are
stacked in drawers. This is a physical way, but that will be shown in a physical data flow
diagram. In physical data flow diagram, along with how things are done at present, you
may also indicate the way the tasks are divided in terms of being assigned to different
people. For example two different persons may be dealing with undergraduate and post
graduate students. This is a present way of doing things and that is why this may be
shown in a physical data flow diagram.

When you analyze the physical data flow diagram in order to develop your application,
you will notice that these are implementation details which are the details about the
existing scenarios and you do not want to carry them further and bias your design and
implementation subsequently. You would like to convert such a physical data flow
diagram into a logical data flow diagram where such implementation details are filtered
out. As we said earlier, physical data flow diagrams are useful for describing the existing
system. It can be readily validated with the users.

This needs to be converted into a logical data flow diagram after we have validated. The
purpose of converting the logical data flow diagram is to remove this implementation
biases and to consider different ways of implementing the things that are required for the
application. One example of data flow diagram is to clearly show the boundaries of
automation. When you have a large data flow diagram like this you can clearly mark the
scope of the system that you propose to develop.

(Refer Slide Time 25:30)

The users clearly get the idea of what exactly they can expect from the software system,
which functions and processes would be automated and how they would interface with
the rest of the requirements or the rest of the environment of the user’s application. So
boundaries can be conveniently marked on a data flow diagram. Let us now take one
example where we are addressing the payroll application.

(Refer Slide Time 26:06)

We will assume that we have already done the context diagram and we are now
decomposing that first level context diagram or the zero level DFD into the first level
DFD where we are shown five sub processes. We have numbered them as 1,2,3,4 and 5.
We have identified employee as the external entity and while doing the first level DFD,
we have identified a few data stores. If you look at the data stores and what the data they
contain, it will be clearly understood that such data would be required for a payroll
application.

We have a data store which contains the data about the employees. Another data store
which gives details of taxation, tax rules that are applicable. And the third data store
which contain the payments which have been made to the employee. Let us now look at
the sub processes. We have employee who supplies data which indicates his working
hours or working days. We indicate that through the data called time card. Time card
goes from employee to the validation process. The validation process would send this
data to a process called calculate pay. The calculate pay may refer to tax tables and it
produces the payment output. The payment output is send to two processes.

The first one goes to process 5, whose responsibility is to print the pay cheque. So cheque
is printed and details of payment are stored as well as the physical cheque is handed over
to the employee. The second one goes to the process 4. This process is supposed to
update the year to day kind of a data. So the employee data here will also contain the
records of all gross salaries which have been paid to the employee in whole year. It will
keep accumulating the payments as well as the deductions which we have made. The
process is called ‘update YTD’, where YTD stands for ‘Year to Date’. These are the
employee details relating to payments which this process will update.

We can see the direction of the arrow which goes from the process ‘Update YTD’ to
‘Emp Data’ data store. The arrow is going towards the data store it means that new data is
being added to the employee data. The validate process, after getting the time data in the
process of validation, it sends the employee id to a process called get employee data. The
process ‘employee data’ gets the employee data and sends to the validation process, so
that the validation can be completed. Both the time data as well as the other useful data
can be sent to the calculate pay process. These are the five processes that we have shown
here which do the payroll at some organization based on the various rules of the
organization. Here is another example. This refers to a second hand car dealer who buys
and sells old cars. Let us first understand the application requirements.

(Refer Slide Time 33:30)

The purpose is to assist the owner of the dealer who buy and sell old cars. He has fairly
large number of these cars in the stock. There are different types of models, make, and
the year of manufacture and so on All the details need to be kept. After the owner buys a
car he does some repair work to get better value for that car. Records for all the repairs
have to be kept. This old car mart has its own garage where these repairs are done.
Naturally the repairs have cost associated with it and nature of changes made also have to
be kept for future reference. This owner also advertises periodically in newspapers to
track customers for the cars that he has put on sale. He has hired a few sales people on
some commission basis who will handle the customers visiting the shop and who would
negotiate a suitable price based on the various factors such as, the cost of the car when it
was purchased, the repairs that were made, how long it has been standing in the garage or
how long it has been waiting for sale etc. You may have to appropriately decide the
selling price for a car. All these things are done to some extent manually based on the
guidelines that the owner would give to the salesman.

Besides keeping all this data and helping the owner to advertise and paying commission
to the sales people and also helping sales people to find out what kind of price negotiation
they should do, we also need to prepare some regular reports for the owner of the car
mart so that he can get a good idea of what kind of profits he is making, what kind of
payments he has to meet etc. All these details are important part of application. We have
to prepare a data flow diagram and an ER diagram for this. When you are developing the
application like this, after you have done the analysis and you have understood what is
happening in the user’s application domain, you understand the processing, you
understand the data, and you would now convert these understanding into the models.
And you will prepare a suitable data flow diagram and a suitable ER diagram.

We always should keep in mind that these two diagrams are really complementing each
other. ER diagrams show the data which is there in the application. It identifies this data
in terms of entities and relationships. The same data that we see in an ER diagram should
also naturally be seen in the data flow diagram in some form. Data flow diagrams
actually indicate the data stores. What we store in the data stores in a data flow diagram is
the information domain or the data domain of the application and that is what should be
modeled in the ER diagram. So the two models should be compatible in terms of data that
they show and this is the important part that we need to address as we prepare these two
diagrams. Generally you would do them sequentially but you will also cross check each
of them with the other. Let us look at the data flow diagram for the car mart. Ideally we
should have started with the context diagram.

(Refer Slide Time 34:11)

But let us go to the first level data flow diagram where we see the entities, the data stores
and five processes that are shown. Let us first look at the entities. These external entities
are;
• Person who comes and sells a car to us, from whom we are buying a car.
• We have garage and it can be treated as an external entity because the only thing
that we need from garage is the data about repairs.
• We have the salesmen as the external entity.
• We have a buyer who comes to the shop for buying a car.
• We have a newspaper as an entity to which we send new advertisements that we
want to release. Let us now look at the processes and data stores.
• The first process is concerned with buying old cars. So we sellers supply the
inputs about the car that we are buying from that person.
• Data about all the cars purchased are stored in the car data store. Car data store is
almost the central data store in our application which contains data about all cars which
are available for buying and selling. The data about the seller is stored in ‘seller data
store’. This may be an important requirement, even the legal requirement that we should
always know from whom we have bought the car.
• Then we have a process called ‘do repairs’. This is running periodically and it
looks at the data of the car ‘in car data store’ and decides on repairs to be done. The
repair details are obtained from the garage. A detailed record of the repairs is also kept in
‘repair details’ data store.
• Then there is a process 3 which is an important process that decides on the prices
at which the cars can be sold. It takes into account the purchase price. The purchase price
should have been there in the ‘car data store’ and the repair cost is obtained from ‘repair
details’ data store. Based on these data, the ‘decide price’ process which is process
3would decide the selling price.

As you go through the data flow diagram, you start getting good idea of what these data
store should contain. The car data store should contain not only the car details but also
the price at which it was purchased. The repair details should contain not only the
different repairs that were carried out, but the price or the costing of those repairs. We
take all these details into account and decide on the price.
• Then there is process 4 which periodically creates new advertisements. It has to
refer to the cars which we have for sale. It has to look at the past advertisement, so that
you do not advertise the same car again and again and keep you know advertising those
brands which receive lot of attention from the future buyers. These advertisements are
prepared and sent to the newspapers.
• The process 5 which does the selling. It interacts with the salesman, buyer and
naturally it has to obtain the car data from car data store and it may have to obtain the
repair data from repair details in case the buyer wants to get the repair history. After the
deal has been made when the car has been purchased by the buyer at some negotiated
price the buyer details will also be stored in the buyer data store. Again this may be for
future requirement or may be even a legal requirement to know whom we have sold the
car. We may also update the car data store when the car has been sold and can also keep
the selling price in our data store. These five processes together describe all the
processing requirements of the car mart organization here.

As you can see, these five sub process taken together carry out all the application
requirements. You can think of these five processes as a running together and performing
their tasks, as and when they are required. So a diagram like this with proper naming of
all the elements of that diagram conveys the entire processing scenario to the reader of
the diagram. As I said earlier, as we go through the diagram, we understand the data
stores well in terms of various details. In fact if you use a good tool, you can use that tool
to describe each data store that we had identified in the diagram.

(Refer Slide Time 40:30)

The purpose of the data store, all the different data items it contains can be clearly
defined. Besides defining the data store you should also clearly mark the data flows
indicating what type of data goes from one point in the data flow diagram to another
point. Some of the processes here you may want to refine further and decompose and
draw a second level data flow diagram. Here is an example. We might want to
decompose the process 5 which we had shown in the previous data flow diagram. This
process achieves a sale. It is making a sale of a car. How can we decompose this, what
does it consist of? So we have listed the sub processes which make up the process 5 –
‘Making a sale’ Using these sub processes which are listed here you should be able to
draw a decomposition of this as a data flow diagram of second level. The constituents of
process 5 would be the following.

• Take buyer requirements add other details about his name and address and so on
and validate this.
• Then list cars which match the customer’s requirement. For example, he may
want to purchase a zen with red color. So you should be able to make this query to your
database and list all cars which are matching in their age, color, make, manufacturer, and
so on. Out of these then the customer will consider a few.
• The third sub process is showing the repair history and the car history.
• The fourth sub process is registering the sale and negotiated price.

• The fifth process is computing the commission for the salesman.

These are the five sub processes which make up the process 5 which we had shown in the
previous first level data flow diagram. I will leave it as a simple exercise for you to
prepare the decomposition of this process into a second level data flow diagram where
these processes would be shown as 5.1,5.2 etc. We also need to prepare the data model.
Now we have completed this model and you should be able to understand the ER
diagram which is shown for the same car mart example.

(Refer Slide Time 42:24)

Let us look at the entities here; We have a car as the most important entity. We can also
create various required attributes for this. From car we are having a specialization called
sold car. Then we have advertisement as an entity. We have repairs as an entity and we
have customer as an entity besides also having salesman as the entity. Car and
advertisement have a relationship called advertised cars and it is shown here as one to
many which means that an advertisement may contain many cars. It also means that a car
is advertised only once.

This may be what the real world is in this case. But it could also be many to many, that
means a car may be advertised multiple times and a single advertisement may indicate
many cars which are available on sale. Then a car may have repairs. So between car and
repairs entity, it could be one to many type of a relationship. Then a car is purchased
from some customer. We must remember first from whom we have purchased this car.
This is captured by the purchase relationship. And finally we have the sale relationship
which shows customer, salesmen and the sold car as being related for not only to whom
the car was sold, but also who participated in its negotiation and who needs to be paid
commission. This is the ER diagram where activities are not shown, only the data is
shown. The entities are in way related to the different data stores that we had in the data
flow diagram.

You should validate this ER diagram on whether it actually defines the same content or
the same information domain that was present in the case of the DFD or the data flow
diagram where ‘data stores’ were shown, containing the same data. Of course there need
not be a one to one match between the ER diagram and the data flow diagram. We need
not show each one of them as a data store there. But essentially all the information that
was implicitly indicated in the data flow diagram should be present in the ER model. We
will look at another example. In fact I will stress here the importance of preparing the
data flow diagram yourself. Data flow diagrams once prepared can be easily understood
and can be used as a good learning exercise. But unless you do a few of them yourself,
you will not understand the challenges of preparing a good data flow diagrams.

(Refer Slide Time 48:02)

Here we are taking an example of a book supplier. He supplies books to customer. In fact
he does not keep any stocks. As he receives the orders, these orders are processed and
they are sourced from different publishers and the orders are met. There is some kind of
an agent who receives orders from customers and he fulfills those by directly sourcing the
books from the publishers. We can start of by preparing a context diagram where the
entire order processing is shown as a single process and we identify two important
entities. They are the customer entity and the publisher entity. We also identify important
inputs and outputs from these two entities. We receive an order from a customer and we
also send a shipping note to the customer when we have dispatched the books to him. The
shipping note will tell the customer that the books have been dispatched and in future we
will receive a payment also from the customer. As marked out in the bottom of the
diagram, all inputs and outputs are not shown in the diagram. Only the few are shown
here. But you can indicate all the other details. Similarly when the publisher is shown as
an entity, we are showing some important outputs going to him.

The order processing will prepare a purchase order and send it to the publisher. The
publisher would send us the books and along with the books we will also receive the
shipment details such as what books and in which quantity they are being sent to us etc
and naturally we will have to make a payment to the publisher. So this context diagram
here identified the important entities and important inputs/outputs from these entities.
Now, we will decompose this in more details and in successive levels. This is the first
refinement, where we have decomposed the whole application into four processes.

(Refer Slide Time 48:20)

The customer and publisher entities are carried over from the previous diagram. We have
created a few data stores also which will be required by these processes in order to
carryout the processing. We must remember that lot of data needs to be stored in this
application and therefore some data stores will have to be identified from one refinement
to another refinement. Let us again understand this diagram in terms of what exactly is
happening here.

We receive an order from the customer. The first thing would be to verify that we are
accepting a proper order. Verification consists of checking the credit rating of this
customer, because we are supplying him against which we will receive payment in future.
So we must be sure about the credit rating of this customer and we keep a data base of
past customers. We also keep their record that they have been paying regularly. So we
give them some credit rating. Credit rating is obtained from the customer data store. The
book details are obtained from book data store. We verify that and the order can be
accepted when it is coming from customers who are having good credit rating with us
and it is for books we are dealing with and we verify the order and we create a data store
called pending orders.

Pending orders will contain the orders which have been accepted. We do not show the
rejected orders because that is an exception which can always be incorporated in the
required processing. These pending orders are periodically picked up by the assemble
order process. This assemble order receives a batch of pending orders and it also receives
the data from publishers data store. These books which the customer wants to buy, we
have to find out the publishers and for that publisher and for this bunch of orders we will
assemble the order for the publisher. This purchase order is then send to the publisher and
the details of the purchase order are also stored in ‘purchase orders’ data store. The
publisher will then send the shipment details to us. Those shipment details will be first
verified against our own purchase order.

The verify shipment is a process which validates the shipment notice that we receive
from the publisher against our own order that we had sent to him. After the shipment is
processed, we have a process which will assemble the consignments for the customer.
We have their pending orders with us and we have now received the material. So we will
form a shipment to the customers. This shipment will be as per the shipping note. This
shipping note will be sent out to the customer. It will of course go to our internal dispatch
section that will send the books as well. These are the four processes which carry out the
order processing for the ‘Book Agent’ application. Together they complete the processing
and we have also identified important data stores for the same. Now we are going to
explode the process 2 which was shown in the previous data flow diagram where we are
preparing the purchase orders for the publishers. What are the sub processes of process 2?

(Refer Slide Time 52:06)

We receive the pending orders and first thing we do is, we collect these orders by
publisher. We gather those orders which are coming or which can be met from the same
publisher. For example it could be ‘Prentice hall’. All orders which can be met through
this publisher, they are gathered together. We process it publisher by publisher.

Then we also have a process which calculates the total copies per title. It is possible that
the same title is ordered by many customers. So we gather them together and get the total
copies. These are then sent to a process which actually prepares the purchase order. For
preparing the purchase order, we need publisher data, such as the address and the
payment term and so on. Those data are obtained from the publisher and the purchase
order goes to the publisher.

The same data is also sent to a process called ‘store PO details’ and this process creates
the purchase order data store. This data store will contain all the purchase orders which
are currently under processing. Finally we have a process which updates the stocks. As
the pending order has been already processed we flag it of in this process saying that we
have placed orders for that particular pending order. This is how you create a level 2
DFD for the process 2 which we shown in the first data flow diagram. You can do some
more refinements on this example. One extension we can do is receiving payments from
the customers.

(Refer Slide Time 56:06)

The customers will pay against the shipping notes that we are sending them. When we
deliver the books we receive the payments from the customer we will have to create a
data store called account receivable and account receivable basically would indicate what
money is supposed to be received from those customers. When we actually receive the
payment the account receivable will have to be updated. Periodically we have to evaluate
the credit rating of the customers again. Because they may not be sending payments in
time or there may be defaults. The payment from the customer is a fairly complex process
by itself requiring us to maintain the account receivable data store. Remember that
payments may be received by a single cheque or by a multiple cheque.

Similarly we may have to extend the previous data flow diagram for payments that we
need to make to the publishers. When we raise the payment order and we receive a
shipping note from the customer, we will also receive his invoice. That invoice will
indicate that we have to make some payments. We will create an accounts payable data
store and we will be checking invoices with our purchase orders. Then we will make
payments based on some kind of payments terms that we may have with the publishers. If
we pay within fixed time we may even get incentives for early payment depending on our
cash flow position and so on, we might release this payment to the publishers. We need to
extend that previous data flow diagram for this additional functionality and I will leave
this as exercise for you. Let us now conclude the process modeling part.

(Refer Slide Time 57:00)

In the process modeling one of the most important issues is to decompose complex
processes into sub processes. Data flow diagrams are very popular tool for this. They
show the data flows, data stores, and processes etc. But they do not show the control
flow. Proper naming is very important. We have emphasized it for ER modeling, function
decomposition diagramming and also for the data flow diagrams you must name the data
stores and processes very meaningfully. And indicate all the important data that flows
from one data store to a process or from process to an external entity. All of these should
be readable and understandable.

