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We will continue with our study of algorithm design techniques. We had looked at some 

examples or which we used this divide and conquer strategy. We also looked at sorting 

the strategy, applied to sorting to give a lower bound of n log n for certain sorting based 

algorithm. We continue along the same way. In fact we look at yet another problem 

which some meanable to divide and conquer. This problem comes from computational 

geometry. So, it has the basic is bit different, but the same strategies, algorithm design 

strategies applied even to field. So, the problem is this.  
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The input the set of points in the plane say the output I want the closest pair of points. 

So, given some points, I can compute the distance, we can compute the distance. And 

among these points, that you have given in the plane, you want to find the closest way. 

For instance, the points could be given with the x y coordinates, that what we will 

assume. 



So, for each point, I give you the x and y coordinate. And actually there are n points and 

given these n points, with their x y coordinates. I want to find a pair of points, which are 

closest to each other. So, given any two points the distance; the distance is square root of 

x 1 minus x 2 squared plus y 1 minus y 2 square. So, the usual notion of distance that 

you have in the plane. 

So, for each plane of points, there is a distance and among there are n choosable 

distances. So, between these pairs of points, if I have n points, there are n choosable 

distances. I want to pick the minimum distance. And the points, which actually witness 

this minimum distance. So, there is an obvious way to do it. It is to compute for each pair 

a distance, for each pair you compute the distance. 

Now, you have n choose to distances and you find the minimum, so that takes n 

choosable time, can you do faster, can you do better. So, for instance, do you really have 

to compute all distances to find the closest pair. Well, that is the big question there, and 

the answer is no. If the answer is yes, then I guess I would not be discussing this problem 

here ((Refer Time: 04:30)). So, the answer is yes and in fact, we will do it much faster 

than, then n square. 

So, somehow you do not really need to compute all pairs, distances of all pairs, that is 

the moral of the story. Let us see how we go about designing. Well, on the face of it, if 

you would think a bit. You start wonder, why should I need to compute every pair of 

distance. What can I mean, can I for instance, look at geometry of the points to certain 

distances, maybe there are many ways of thinking about it. 

We should also be thinking of an inductive approach, which is... Supposing, I remove 

one point to compute a distance, shortest distance between the other points. Now, adding 

this point, can I get rid of some points, may be yes, may be no. I mean, so let us look at 

this approach. This will not be the approach finally follow, but this is something that I 

wanted to think about for every problem. So, that is the reason I wanted to go over this 

again. So, the classic sort of inductive approach to this any such problem is remove a 

point. The recurs some the rest, put the point back and see what you get, good. 
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So, let us see this is the point I have to move, here the point set in this, let us say in this 

region. There are other points, this huge big star, this dot is what I have remove. Now, I 

find the smallest distance, now what can I do? I mean although I compute, what is 

distance. Well, it looks like, I mean the obvious thing is to compute distances from this 

to every other point. But, well that is not true way. You are back to the original to where 

you started. 

Because, there are n minus 1, such other points and you will compute n minus 1 

distances. And this recurrence you will see, will lead to in order n square solution, 

because your recurrence will be T n is n minus 1 plus T of n minus 1. This will lead to 

order n square, so you can check this. Well, can I get rid of some of these points now. If 

you could do the following, suppose in the minimum distance here, over the entire set, 

except this point this is delta. 

The minimum distance, you have calculated recursively is delta. Then, you know that 

any point, the points that are actually in contention, are points in a circle of radius delta, 

around this point. Only points in this circle are in contention. The other points are well 

too far away. If you can quickly compute these points, then you are in business. I took n 

minus 1 times to extra time, but supposing I can do this much faster, somehow I do not 

know how. 



But, if you can compute this much faster, then you are in good shape. Then, you can may 

be reduce this n minus 1 somehow to something else. For instance, if you reduce this to 

log n, your n really good shape. Then, maybe you can push this further, so your think is 

should be along these lines. How do I cut this n minus 1 log. 
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So, before we go further, let us do this in one dimension. So, what is this? That mean, 

you are given a line and some points. You are given some points. And you want to find 

the closest pair along this line. You want to find the closest pair, how will you do this? 

Well, I think some of you should see that, you do not need to really calculate all the n 

chooseful distances. 

There are n points, there are n choose to sort of distances this. May be you do not really 

need to do n chooseful, look at all n chooseful. So, how will you sort of do this, well let 

think to notice. In all these things, you need to notice something about the problem. 

Some property of the problem, that sort of pushes you up. That let us you do things 

faster. 

So, in this case, well the thing to notice is that, supposing I am looking at this point, the 

only candidate points are the adjacent ones. These are the only candidate points. If for 

each of these points, I can identify these candidates. Then, I am done because, for each 

point I need only to check two distances. So, that leads to 2 n. For each point I need to 

check two distances. So, for n points I need to check 2 n distances. 



But, which 2 that is a big question. For this point, how do I find these two, which are 

neighbors in some sense. If I can do that, then just 2 n distances, then well looks linear. 

Well, how do I find these two, may be just solved them, so in one dimension, sort. Well, 

once you sort them, look at them in increasing order of from left to right. And for each 

point look at the previous and then, the next one. 

Compute these distances and choose the minimum. Then, you choose the minimum by 

scanning these points, sorting takes order n log n. So, we started out with n chooseful 

distances, but really time taken is order n log n. Sorting dominates this procedure and if I 

sort of first sort it and then, I do this then it takes the time taken is n log n. I have reduced 

it from n square to n log n. There are some morals in this story. 

First one is you should always try a simpler problem. You are given this problem in two 

dimension. It always pays to first check out what the problem means in one dimension. 

You will learn a little bit, that is the first thing. And you at least now know that, may be 

it is possible to do it in less than n choosable time. Because, one dimension certainly you 

can do it in n log n. 

Question one asks now is about what about two dimension, can you do. Is there 

something like sorting that I can do, which will help me out. The answer is actually, yes 

and let us see how this is done, it is quite a smart algorithm. So, we will try and apply, 

divide and conquer approach, reasonably blindly. But as we proceed this fact we use 

some some trick that speed up ((Refer Time: 13:16)). 

So, the first step is something you can think of, I want to divide the point into two parts. 

Find the minimum on the left part, find the minimum on the right part. Then, once you 

find the minimum, now I am going to use these minimums to compute the overall 

minimum. Will this help, will this not help, well will have to see. Before, we do this I 

think it is possibly illustrative to do this on the line. We first sorted in founded the 

minimum, that was n log n. Let us see what this gives, this divide and conquer strategy 

gives on the line. 
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So, I am given these n points, can I get something, can I do something better. What 

would the divide and conquer strategy be, well divide the points into two parts. One on 

the left, one on the right and recurs on the both; and what? Once we get the minimum 

distance from this and that. Now, the only sort of thing that we have not check, is if the 

minimum distance between points on the left and point on the right. 

I find the minimum here, I find the minimum there. And then, the only distance I need to 

now compute is the point on the left, the last point on the left. The first point on the right, 

find this distance and check this against the minimum, that I have computed. So, I found 

let us say, delta L, delta R and this is delta. So, I need to find this minimum. So, once I 

compute delta L and delta R and delta, I just check the minimum of these and return the 

minimum of these three. 

I need to make sure, that I find this point on the left recursively. And I make find this 

point on the right recursively. So, again this, if I want to do by divide and conquer. Then, 

I need to strengthen in ((Refer Time: 15:39)), which is that not only do I find minimum 

distances. But, also to find the last point, right most point and the left most point. Once I 

do this, then I can sort of put these two things together to get a solution. 

I do not want to get into with this in detail, because the problem here is again splitting 

the input into two parts. Now, how do you split this into two parts. Well, we need to split 

it into two equal halves, then you need two halves. Then, we need to find the median, 



that takes linear time. So, if I look on the recurrence, it looks like T n, this is 2 T n by 2 

plus order n. And this we know is n log n. The solution to this is order n log n. 

This is the time taken to find the median and divide, this is the divide step. So, this does 

not really use sorting in any sense, except to find the median. So, this is another way of 

doing this, using this plane, divided and conquered on these points on the line. Let us do 

this to points in the plane. You have given points on the plane and I am going to divide 

this into two parts. Let us say based on the x coordinate, the first n by 2, the left most n 

by 2 points, it will form one set. 

The right most n by 2 points will form the other set. I recursively find minimum distance, 

closest pair of points in the left, closest set of points in the right. And now I need to find, 

closest pair for the entire thing. And let see if this can be done fast. That is the goal of 

this lecture. 
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So, here let us see my points are points line this blob, divided into two parts. There are n 

by 2 points here, so this is the left and that is the right. There are n by 2 points, n by 2 

points here. Now, I find closest pair points in the left, closest pair of points from the 

right. Let us say, that delta L is the closest, is the minimum distance on the left, delta R 

minimum distance on the right. Delta be minimum of delta L and delta R, this is the 

smaller of these two. 



Now, I need to find closest pair. And I know that, if at all there are candidates or closest 

pair, it has to be that one point has to be on the left and one on the right. Any candidate 

pair has to be of this form. They cannot both be on the left and both on the right. One of 

them has to be on the left; and one of them has to be on the right. What else can be said, 

let us also sort of at the same time the recurrence in place. So, I am looking T n, so T n is 

the time. I have already done this plus what? Well, I would like this ideally to be. 

If this is say order n, then this recurrence is n log n, I mean good shape. So, this is the 

amount of work that I will need, to find the closest pair. One from this side and one from 

that side; where one point is from this side, one point is from that side. Suppose, I do it 

well the natural way is to just pick every point on the left, every point on the right. And 

sort of find the distances, for every pair. This could be as large as, well that could be n by 

2. 

There are n by 2 points and n by 2 points here, that gives rise to n square by 4 pairs. So, 

if I compute n square by 4 distances I am ((Refer Time: 19:58)), that is just too much. In 

fact, we will back to our usual n square. We will be, you can check that, you compute all 

distances, all pairs of distances, the n chooseful distances. So, this is not what we want to 

do. So, how can we speed things ((Refer Time: 20:20)). This is the question, that you 

need to answer. 

Now, at this point, it is left to your ingenuity. It is left to little bit of luck, but there are no 

clear. It is not as if at least I do not know of any thing that I can teach you, which you 

can use. This is left to just, your own intelligence and perseverance. You can try small 

problem, small examples etcetera, etcetera. But, the idea from this point onwards are 

completely new. 

They are problem dependent, depends on the problem. And there are no general 

techniques, that I can tell you which you can use. There are no formulae's that you can 

apply. And this in fact, is the beauty of the speed, that it is not that I pump you full of 

ideas. And then, you are all ready to take on a problem. That is not the way to us. Each 

problem has a flavor of it is own. 

And each candidate also has his own capability. And each person has his own 

capabilities. And is a good chance that, if you try this problem, you will come up with 

your own algorithm, your own passed algorithm. So, from this point onwards, I am going 



to tell you a few tricks by which we will reduce this. These observations are which I will 

make or we will find reasonably simple initially, but these we have to find on your own. 

There is no teacher to teach you this, you have to learn it yourself. It just depends on 

your analytical skills, good. So, let us now get back to this problem. The first thing I am 

going to note is, where do these supposing I have these candidate points on the left. And 

where can they live, so let us look at this. So, this is my dividing line, dividing vertical 

line. Things are the left, where can they live, well they cannot, they all have to be, we 

draw a straight lines here. 

They have to be within a distance delta of this middle point, similarly on this side. If a 

point lies here, then the distance between this point and any point on the right is greater 

than delta. If it lies on this side, this point and anything on the other side, this distance is 

greater than delta. So, I can forget about these points. So, the only points of interest to us 

are points in this small, on these small bands on either side of the middle line. 

Each of these bands as bridge delta, these are the points of interest. That is the first 

observation, ((Refer Time: 23:19)) so far it is all fairly simple. Now, just this is not 

enough. The same problem could apply in the sense that, all n by 2 points on the left 

could lie in this band. And all n by 2 points on the right could lie, you know the other 

band. In which case we are again back to computing n square, roughly n square distance 

is the other smart thing. The intuition is this, so let us magnify this small band around the 

centre. 
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So, here my, this is the centre line and here are the two bands. This is delta and this is 

also delta. So, when I look to the left, if I take any point here, then I know that, if I draw 

a circle of radius delta, around this. There is no point inside this circle. The reason is this 

closest pair of points on the left, this is the left, this is delta. So, there is nothing closer 

than delta to this. There could be something at distance delta, that is fine. So, there is 

nothing closer than delta. 

These points are actually spread, they cannot be a large number of points clustered 

together. They are all spread out nicely, distance delta. Similarly, the points on the right. 

We would like to use this fact, this is point number 1. That these points on both left and 

right are sort of spread apart. So, there cannot be too many points close by, somehow we 

need to use this. What else can be said, well let us look at this point on the left. 

So, let us look at the point on the left, what about points on the right. Where can they 

live, let us draw this line. Well, I know that any candidates for this point will lie over this 

does not look like a square, but think of this as square. So, any candidates for p, must lie 

within either this square or this square. Please strain your imagination and imagine this to 

be a square. Then, any candidate for this point must lie, either in this square or that 

square. 

They cannot be, if it is outside here, then the distance is greater than delta. In fact, 

distance to this line is greater than delta. So, this point is also greater than delta. So, 



everything has to lie here, and that is the first. The second thing we know, that if I take 

any point here, then this precludes many points from appearing in region of size delta. If 

I have a point, I have a point in there. 

Then, in a circle of radius delta no other point appears. So, there cannot be, I mean 

intuitively one feels that, there cannot be too many points inside each square. This is 

delta by delta square, if there are too many points inside this. There are bound to be two 

points which are close by. I cannot have every point as far away as delta. This is what we 

are going to use, but how do we use this. 

The intuitively you feel that, there cannot be too many points inside the square. The 

reason is essentially this, that if I have a point, there is nothing within a distance delta, 

good. So, how do we put this intuition into practice. Well, we use a very simple 

principle, that you have heard many time. It seems very simple, but putting it to practice 

often requires some thought. The principle is called pigeon hole principle, well what 

does it say. 

It says that, if there are n plus 1 pigeons and there are n holes. And you stuff these 

pigeons into these holes, then at least one hole, must have two pigeons. There are more 

pigeons and holes. So, if you stuff these pigeons into holes; and at least one hole must 

contain two pigeons. Very simple principle, we all immediately understand the 

statement, but often very difficult to figure out where to apply and how to apply. Really 

nice problem, solutions based on this principle, which smart people have figured out. So, 

let us go back to this square problem. 
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So, I have this square of size delta. And I know that, if I have any point in this square. 

Then, no other point is within a circle of radius; which means given any two points, the 

distance is at least delta between any pair. So, the distance between any pair of points in 

this square, is at least delta. How many points can I put in inside this square. Well, here 

is the trick, what you do is divide this into four parts. These will be our holes, you have 

to see where the pigeons are. 

Well, what is the maximum distance inside the small square. Well, this small square as 

side length delta by 2. Maximum distance is along the diagonal, which is square root of 

delta square by 4 plus delta square by 4. So, this is the square root of delta square by 2. 

This twice this which is nothing but  delta by square root 2, which is strictly less than 

delta which is what we want. So, if I take one of these small squares, then the maximum 

distance is delta, which means I cannot have two points sitting inside this small square. 

If I take any two points, the distance between them is less than delta. So, at most one 

point can sit inside the small square, which means in the big square I cannot at most four 

points. If I say the distance between any pair of points is at least delta. Inside this big 

square, I can have at most four, this is the big trick, that we will use. So, this is the trick 

we will use, so let us get back to the original picture here. 
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So, I have p and how many points on the right, do I have to really compare. Well, four 

inside this, there could be at most 4 candidates in each square, if at all. 4 or less than 

equal to 4, to be less. It looks like as of now, for each point I need to at most look at 8 

other points and compute this much. And this certainly looks to be linear. For each point 

I need to compute at max, let us say, 8 other distances. Then 8, 10 distances is what I 

need to compute and my recurrence I will have 2 T n plus by 2 plus T n; and this is n log 

n. 

How will we do this, we still not done. I mean, we have all the ideas in place now, it is 

implementation. Smaller implementation details are we need to worry about. For 

instance, for each point on the left, how do you compute these 8 points, you have to do 

this fast remember. You cannot take a lot of time to. We look at all the points for each 

points, then your sort, because that is n square already. But, again looking at this picture, 

you should again get ideas. 

So, let us go back to this picture. So, here is the point, the 8 points are somehow located 

in the neighborhood of this point. They are at distance delta from here delta from here 

delta. These are the points that I need to and this ((Refer Time: 32:44)) I need to pick up. 

So, let me put up another picture and after this picture hopefully the algorithm will be 

clear. 
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So, here is my centre line and here are these various points the left in the right. Here are 

the various points. If I take any point on this side, if I consider this. Then, I only need to 

look at a window size to delta, delta on this side, delta on that side. This is what I need to 

do? As I go up, if I look at this point this window shifts up, it somehow if I can scan 

them upwards, in this order, scan from bottom top. 

If I can scan this points from bottom to top, somehow this window also keeps you think 

from bottom to top. And it again looks like I can do this efficiently, all we need is these 

things altered by y coordinates. If I have these points altered by y coordinates, then I can 

scan the left side from bottom to top, the right side from bottom to top. And I can 

maintain this window easily, this is the last trick in the algorithm. There is a detailed left. 

So, if I have these points sorted by the y coordinates. Then this is what I do? I start 

looking at the points on the left in the narrow band. 

I look at these points, look at them in increasing y coordinates. And for each point I have 

I also maintain this band of this sort of window on the right. So, when I look at a point, I 

have a corresponding window on the right. When I move to the next point I 

correspondingly move them window up. This is all I do, so somehow I need to move this 

window up. And you can see that, it is not it should not be too difficult, to move the 

window up. 



And the time that it takes is linear with and the very similar to the merge sort idea. The 

window moves up each time. On the left each time, you know a pointer moves up, on the 

right side the window could move up, but it can move up only n time. The window can 

move up only n time, because there are only n points. So, at least the movement, the 

number of times the pointer here moves or pointer here moves, that is linear. 

And once you have fixed a window and a point on the left, I need to compute distances 

in this window. And I know, because of the geometry that there are at most eight points 

in this window, four on top four on bottom. There are at most eight points I need to 

compute these eight distances and choose the minimum that is it. 

So, let us put all this together and see what we get? That is before we do that, I just want 

to point out one thing. So, we need the points sorted on to five coordinate. Now, if we do 

it on the fly, once we partitioned now if we look at points in the each band. And now we 

sort these points along the y coordinate you take n log n time sorting takes n logging 

time. And then, the recurrence looks like this. 
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Your recurrence would look like T n equals T n by 2. Well, 2 T n by 2 plus n log n, 

because this sorting will dominate. Once, we sort we can go over them in linear time. 

But, this sorting will dominate and take n log n time. This the solution to this recurrence 

is still not n long n, the solution you can check that the time to find what the solution 

recurrence is n log n square and it is not n log, we would like to be positive. 



In fact, you would like to get rid of this n log n and replace this with order n. So, that 

overall we get n log n. And again the trick is we tree sort the points in the x and y 

coordinates. We do not do it at each recursive call. So, all I want is the point sorted on y 

coordinate. Suppose, I can do it once in for all initially. And use this effectively and that 

is what I want. To this n log n for sorting along both x and y coordinates I do right in the 

beginning, that is the one time cost I do not repeat this in each literature, it is a onetime 

cost I sort them I am done with. 

And now I have this sorted order each time I make a recursive call. So, each time I make 

a recursive call I have this sorted order in place. In which case, perhaps I can put order n 

instead of n log n and you get order n log n in total time. So, let us look at this algorithm, 

now we have I have told you all the pieces, we just have to put them together and 

analyze the algorithm and see how much time it takes. 
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We first sort to, so input a set of points. First step 1, sort them on both x and y 

coordinates. At this point I would like to make an assumption, which is that each point 

has distinct every point has a distinct x coordinate. And every point has a distinct y 

coordinate, which means if I take any vertical line at most one point lies on it. If you take 

any horizontal line at most one point lie on that. This is not really a big assumption. It 

will not it affect us for instance what I could do is take the initial set of points. 



Now, pert up each points slightly, add a small Epsilon to each point it sort of move them 

around a little bit. So, that the minimum distance does not change, these perturbations are 

very, very small; these perturbations are very small. The minimum distance to change 

was a points do not change. The points participate in the minimum distance will that 

does not change. 

While this perturbation, if I make sure that if I take any vertical line two points do not lie 

on this vertical line. Actually the algorithm I give right now, will assume that you know 

no two points have the same x coordinate or y coordinate. You can, then try and modify 

this algorithm to work even in the case. There are points on with the same ((Refer Time: 

40:36)). So, I sort the points on both x and y co-ordinates. 

So, I have two arrays the first array where points are sorted on x coordinates. Second 

where points are sorted on y coordinates. This is done right at the beginning I am not 

going to do this recursively. Now, the actual procedure starts. So, the input to this 

procedure, the input is points sorted on x and y co-ordinates. Points sorted on x 

coordinates, same points sorted on y coordinates. So, I have two sorted arrays. This is the 

input, what I do the first step, let me call this step 0. This is the initialization phase. 

Step 1 here is divide, step 2 recurse on both, divide into halves. And step 3 put them 

back. Look at these two solutions and now look at these points and find the minimum 

and ((Refer Time: 42:06)) broadly these are the three steps. So, let us expand on all these 

steps, here is step 1. 
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Step 1 is the divide step, this is the divide step. Well, I have the point sorted on x 

coordinates. So, I can find the left most, so since points are sorted on x coordinates, find 

the left most n by 2 elements and right most n by 2 points, these are points. This sort this 

give you the two points, the two sets. Now, I need to do this even for the points sorted on 

y coordinates. So, I have two arrays remember. 

So, let me call them, let us say A and B. So, A is sorted on x coordinate, B is sorted on Y 

coordinate splitting A is easy, leftmost n by 2 elements and right most n by ((Refer Time: 

43:22)). So, this algorithm that we have just seen is perhaps as you realize is more 

complicated, than what we have seen so far. And we seen all the pieces actually I have 

given you all the details. 

What they are going to now is summarize the whole thing, put them together. And then, 

right out the recurrence, which will not be difficult once we put them on the steps. And 

once we do that, we will see that this actually runs in n log n time. So, let us summarize 

and write down this algorithm in one piece. 
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The first step is initialization, it is initialization. And here we sort the points on x 

coordinates and on y coordinate. So, given the set of input points we form two lists. So, 

we have two arrays. One array which will store the points in increasing order of x 

coordinates. The other array will store the points in increasing order of y coordinates. 

And this will be the input to the procedure. 

This initialization is done before we start the algorithm. And each recursive step will 

pass down this information. So, the next step is the divide step, so it is step 2, it is divide 

step. So, here we first look at the median. So, let the value of the median, when sorted on 

x coordinates, let us say x median. So, now we split the input into two parts, points to the 

left of x median and points to the right of x median. And then, we would like to recurse 

on these two parts. 

To do this, we have to split both the arrays into two parts, both the arrays which sorted 

on x coordinates and the array which is sorted on y coordinates. The x coordinate 

business is easy, because you know where the median is right it is n half the element. So, 

you just split the array into two parts in a very natural rate. For the y coordinates what 

you need to do is go through the entire array. Look at each point, look at it is x 

coordinate and then put it into an appropriate array. 



So, now let us say these two arrays, where it is points are x coordinate. So, these two 

arrays are called, let us say capital X and capital Y. So, split let me write this in a new 

paper. 
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So, split X into X L for X left and X R points in X L have their x coordinate less than 

equal to x median, the median value. And the others are in X R, the other points X R 

contains the other points. Similarly, split Y into Y L and Y R. Remember, Y sorted on Y 

coordinates, Y L and Y R will also be sorted on Y coordinates. Y L contains the same 

points as X L only sorted in Y coordinates. Similarly, Y R. So, Y R contains the same 

points as X R 

So, this actually divides the input into two parts. Initially you had this sorted arrays X 

and Y. And now you have created X L, X R, Y L, Y R. The next step is the recurse step. 

So, let us write that, so pass. So, the input is divided into two parts X L, Y L and X R, Y 

R. These are the same set of points, in X L they sorted in increasing X coordinates and Y 

L they sorted in increasing Y coordinates. So, here is the recurse step. So, you recurse on 

these two, when you get the shortest the distance of the shortest the closest pair on both 

sides, on either sides of x median. 
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So, this is the recurse step. So, step 3 is the recurse step. So, what you get is let us say d 

L is the distance of the closest pair on input capital X L capital Y L. Similarly, d R is the 

distance of the closest pair on the input X R, Y R. On input X R, Y R the distance of the 

closest pair on the right hand side is d R. The one on the left hand side is d L. So, now 

you look at these two distances d L and d R and d compute d as the minimum of d L and 

d R. So, that is the next step, where you compute the minimum of d L and d R. 

Now, let me quickly review what we have to do next. Around x median, we look at a 

band of size d on both sides. So, let me draw a picture. So, here is x median around this 

on both sides at a distance of d, we look at the band. This is the on the left side, that is on 

the right side. Now, we look at points on these two sides. And we know that, if you need 

to find points which are closer than d. Then, one point should come from the left. One 

point should come from the right and they must be in this band. So, let us first prove X 

L, Y L, X R, Y R to only points in these bands. 
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So, step 4 is putting them together, is putting the answers together, so that is the next 

step. So, X L prime will be points from X L whose x coordinates are, well greater than or 

equal to x median minus d. So, just look at this figure ((Refer Time: 53:13)). This is x 

median, we need points in this range. So, any point will have it is x coordinate at most x 

median minus d, so that is step 4. So, similarly Y L prime, so the Y L prime same y 

coordinates of the same set of points, as in X L prime sorted on y coordinates. 

So, you get these by pruning X L and Y L. So, you look at X L and Y L and only look at 

these points in the band and you prove, remove some of those points. So, you are left 

with X L prime and Y L prime. Do a similar thing for right hand side, so you get X R 

prime and Y R prime. So, X R prime will be points from X R whose x coordinates are. 

So, these are points from X R with x coordinates, which are less than equal to x median 

plus d. These are points from Y R with x coordinates less than equal to x median plus d. 

So, these are the same set of points, only X R prime is sorted on x coordinates; Y R 

prime is sorted on y coordinates. Our focus from now will be on Y L prime and Y R 

prime. We will only look at these points from increasing y coordinates. So, we are still 

into step 4. So, let me recall what we do now. So, here are the points let us say we have 

X R prime and Y R prime, X L prime and Y L prime. 
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So, I look at, so here is my array X L prime and here is my array, let us say X R prime. 

These arrays could have different sizes, because we have proved points from X L and Y 

L, X L and X R. This should be Y L prime, because you want to look at the points and 

increasing y coordinates. So, Y L prime and Y R prime are what we are concerned with. 

So, maintain three pointers, let us say p, q and r. 

P will point to something there, that is p, q and r will be pointers to Y R prime. So, let me 

quickly recall what we want a do. For each point here, so here is what we are going to 

do. So, recall that, for each point in Y L prime, we will find at most 10 points. This at 

most 10 follows from a discussion that we did earlier. That in a square with 5 points, 

there will be two who are close as half the diagonal. 

So, we will find at most 10 points whose y coordinates are, so supposing this point is, so 

for each point, let us say this point is some x prime, Prime. Y coordinates are in the range 

y prime minus d to y prime plus d. So, we find these points and then, compute the 

distance from x prime y prime to these points. And this will add 10 more distances. We 

do it for every point in this array. Once you do that among all these distances, 10 times 

the size of number of points in Y L prime, we compute the minimum. That is our goal. 
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So, a generic step is supposing, so a generic step is this, so I have... Let us say I have 

computed up to this point p is done, here is the letters q and r. So, between q and r, we 

find the points with the correct range of y coordinates. So, supposing we have done up to 

this. Now, in a generic step, I will raise p by 1, p is p plus 1, so this moves one step, now 

this is your new p. So, now correspondingly q will move and r will move. So, the next 

step is move q appropriately, then move r appropriately. 

What do I mean by appropriately, you increment q till, if this value is not in the range y 

prime minus d to y prime plus d, which means it is smaller than y prime minus d. So, 

increment as long as y coordinate is less than y prime minus d. And similarly you move 

r, as long as it is less than y prime minus d. Finally, when you do this, then you will have 

these two values for the next value of d. And now you compute the distances. Then, 

compute the distances of Y prime L p and all points between Y prime R q and Y prime r 

small r. So, then this is the generic step in the loop, put this in a loop. And once you are 

done, you found these distances, compute the minimum. So, the last step is compute the 

minimum of these distances. 
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So, say it is some delta, then return min of delta and d. And that is, ends the algorithm. 

Now, if you look at the analysis, then there is an initial. So analysis, so the sorting 

initially is order n log n. There are two recursive calls, so that is 2 T n by 2. And then, if 

you look at the whole analysis, the total time is O n. So, we can quickly do this, while 

splitting does not take time. The only problem is this pointer manipulation. ((Refer Time: 

62:13)) In this pointer manipulation, how many times this p, q and r incremented. 

Well p can be incremented at most n times. Q can be incremented at most n times. R can 

be incremented at most n times, so this is order n. The total number of distances we 

know, we calculate is at most order n. So, that is why this is order n and T n satisfies this 

recurrence. And the solution is T n is O of n log n. So, this is the analysis of this 

algorithm, it is pretty simple, and this ends our discussion on divide and conquer. 

Thank you. 


