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The three of them are first 1 is induction. Then, ordering the input and the third is storing 

old values. So, let me sort of let us talk about all these three once more. Induction 

essentially says, supposing you can solve the problem for smaller inputs. How do you 

solve it for larger inputs? So, this is the first term design principle. So, supposing you 

know, you can put together, these solutions for these smaller inputs. And somehow 

generate a solution for the larger input. 

Then, your algorithm is clear. You sort of recurse on the smaller inputs solve them. And 

when you get the solutions back you put them together. And get the solution to the larger 

input. That is induction, you could use either recursion or it could even be once you 

know what the smaller inputs it could even be ((Refer Time: 02:42)). The next point is 

ordering the input, which is you look at the input in some order. For instance, if it is an 

array you look at it. Let us say, in increasing order of indices. 

For other structures it is could be different. If it is a list again, you will have to look at it 

element by element. For other data input and other data structures, you could this could 



vary. The other thing is store values, which you may use later on. If you are not going to 

use a value, which you have computed later on then you can of course, discard it. 

Otherwise, this very simple principle will help us design algorithms in the future good. 

So, we have seen, some algorithms simple algorithms for simple problems using these. 
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The paradigm, that we considered last time was divide and conquer. So, the basic idea 

was this, if I have an input let us say an array. But, it could absolutely anything. Divide it 

into two parts. Solve for the left, solve for the right say. And then, put the solution back 

together. So, you divide input. Solve each part and put them together to get a solution for 

the big problem. And well often it pays to divide it into equal parts. We will in fact, see 

an example why this is so… 

But, even in the previous cases for instance max min or finding the second minimum. 

The two examples that we saw, you could try breaking at breaking the input up into 

unequal pieces. And then, try and solve the recurrence. And see, what answer you get. 

So, you should I sort of encourage you to try this out. So, the next problem, we are going 

to consider is the very familiar, should be very familiar to all of us it is sorting. 
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Only we are going to look at it now from the new sort of design principles, that we have 

learnt. And we are going to try and apply those to sorting. So, let us take the simplest sort 

of case. You have an array. An array of n elements and you would like to sort the 

elements in increasing order. Let us, assume that elements are distinct. This is not going 

to change any of our design principle or that or the algorithm we come up with, but it 

will just, it is just to keep your mind less cluttered. 

So, you have an array of let us say, n elements and you would like to sort them in 

increasing order. Let us put the first design principle into practice. Supposing you can 

solve it for a smaller array, how do you extend it to a bigger array? And the most natural 

smaller arrays let us say, the first n minus 1 elements. Supposing, I could solve this 

problem of sorting the array for the first n minus 1 elements. How do I, now extend it to 

the bigger array. 

So, here the problem, here is what the input looks like. This will be first n minus 1 

elements and this is the last element. So, you first sort this is by recursion let us, say and 

now I want to place this in the right position. Now, I guess most of you know binary 

search by now. So, the position is very easily identified. So, let us say, this is now sorted. 

So, this portion is sorted and this position now is identified. Let us say, they are you do a 

binary search. And identify exactly where this goes in. 



Well now, what you have to do is to insert this in the right position. You have to move, 

you have to make essentially make space. So, from this point onwards, you need to move 

everything one step to the right. Every element here, you have to move one step to the 

right. Move one step and then insert the element in the right order. So, here is an 

algorithm. So, let us go over this again. You recursively, sort the first n minus 1 

elements. Figure out where the last element sits and then put it in place. This is called 

insertion sort. 

So, in you previous courses, you have dealt with this algorithm. You have learnt 

insertion sort there people I guess told you what insertion sort is all about. Here, we are 

trying to understand, how it is that people come up with these algorithms. So that, when 

you are faced with a new problem, you can come up with an algorithm of your own. That 

is the idea. So, this is how you come up with an insertion sort. It is just putting you know 

the principle, we had into practice. 

((Refer Time: 09:03)) how much time does this take. Well, if we just look at number of 

comparisons. If just want to find out the number of comparisons. The last element, you 

use the number of comparisons is log n, because you are just doing a binary search. So, 

and every other element use less time. It was for the i th element it was log i. The time 

taken was log i. So, the total time is in fact, roughly order log n, order n log n. I mean it 

is order log n per element, there are n elements and it is n log n. 

But, the mains step here, which takes time is not comparison, but this movement. Let us, 

look at the last step. The last step says, once I find this place I have to move everything 

to the right. Now, this place could actually be the beginning of the array, in which case 

you are going to shift the entire array by 1. So, while you just took log n time to find the 

place to move elements, you may take you know n units of time. This is the expansive 

step in insertion sort. 

And if, implemented in this in this manner, each time you take order n steps. For the i th 

step, you take i units of time to move it to the right. You may take I units in the worst 

case, in which case the time will be order n square. So, I will leave it for you to see if 

you can use better data structures. So, that you can sort of avoid this movement. But, 

implemented this way insertion sort takes order n square time though the number of 

comparisons here is still n log n. 



Let us, put our other design paradigms into play into practice. One was to divide the 

array equally. Work one each piece and then put them together. Let us look at this. 
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So, here is my so sorting. So, this is the second algorithm we are going to try. So, here is 

my array. You divide it into two equal halves, two halves. Sort each piece, sort each 

piece and then you have to put these things together. So, let us, write this down. So, 

divide into two pieces. Sort each piece and then put them together. So, the algorithm is 

clear, except for this step. What does it mean to put them together? So, far it is okay. 

Dividing into two pieces no sweat, sort each recursion. 

You recurse on each piece you sort each. Well, here is the crucial step that we need to 

implement, which is putting two sorted arrays together. Let me, also say that this you 

could work with other data structures. Instead of arrays you could have list. And you can 

apply the same design principles to list too. In fact, we will do this with arrays. But, you 

it is really does not matter. So, when I mention array, you could you could put a list there 

equally well. Especially, for this method, so we divide into two pieces. 

We sort each of them by recursion. And then we put the solutions together. What does 

this step entail? Well, this let us focus on this step. Because, once we implement this the 

algorithm is ready. And you can program it at your leisure. So, this step entails the 

following. I have two sorted arrays, we sort it. I need to combine this to get one big 

sorted array. This is what I want. I have these two pieces, which are sorted. This piece is 



sorted, so is that piece. We need to put these two sorted pieces together to get a big 

sorted piece. So, this is the problem that we would like to solve. So, this is called 

merging two sorted arrays or lists. It does not matter. 
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So, we are given elements. These are sorting let us say, sorted in ascending order and I 

would like to build a bigger structure, which is which contains elements in both of them 

and which is sorted. So, I guess the procedure should be fairly natural. And most of you 

should have gotten this by now. Which is well, what is the smallest, so here is my new 

list or array. This is my output. What is which element will occur will occupy the first 

position. Well it has to be the smaller of these two elements. 

So, what I do, I first compare the first elements of these two lists or arrays or sub arrays. 

And put the smaller of them here. So, I can have two pointers or two temporary 

variables, which point to some places in the array. I compare these two put the smaller 

one here and move that corresponding pointer. Let us, call this A and B, supposing A 1 is 

smaller than B 1. Then C of 1 I should assign the smaller of 2, which is A 1. And I 

should move this pointer. 

So, let us call these two pointers something. So, small a and small b. So, c small c is 

small a and then I need to increment. So, increment so a, which is pointing here will 

point to the next element and so on. So, I just keep doing this at any stage. So, what is 

the generic step at some stage I have these arrays A and B. 
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I have pointers small a and small b. And then I have pointer small c. I compare these two 

elements, put the smaller of them here and increment the corresponding pointer. This is 

the algorithm. So, I just essentially, somehow scan these two and keep filling in these 

elements in this big array. So, this is merging. I hope you can write code, if need be. If 

the idea is very simple and if they are less of course, it is it is trivial, you just you have 

these two pointers you sort of compare these two values. 

Put the new value in a new list and increment this pointer. That is the way it is done. And 

arrays if you want to you may actually, have sub arrays of the original array, where you 

are doing this work. You could have a temporary array, where you create this merge list 

and then write it back into the original array. So, this is the algorithm. So, the merge step 

is also now done. This is the algorithm. How much time does this take? This algorithm is 

called merge sort by the way. So, it is called merge sort. And how much time does this 

take. 

Let us go back to this ((Refer Time: 17:52)) scribble piece of paper. So, here is merge 

sort. It says, divide into two pieces sort each of them and put them together. This is 

essentially, essentially merging two sorted sequences into one big sequence. That is the 

third step. The divide step well does not take any time. Sorting each is a recursive step. 

We sort on roughly half the array. And we need to figure out how much time does it take 



to put these things together. Good. So, what is the time taken? Supposing T n is the time 

for an array of size n. 
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By time again, we will focus on the number of comparisons, because even here. Every 

other operation is big o of number of comparisons. So, the number of, if I can bound the 

number of comparisons, the total time is a constant times the number of comparisons. So, 

please check this. For instance moving the pointer etcetera, etcetera, etcetera. And if, you 

have list copying one list to the other etcetera. They are all bounded by the number of 

comparisons. 

So, I can just focus on this one quantity, which is number of comparisons. So, let T n be 

the number of comparisons that we make, we would now like to bound the total number 

of comparisons needed for an array of size n. Well the divide step does not take any time. 

So, but there are two sub problems of roughly equal size, so that that gives you 2 T n by 

2. Again, we will not worry about floors and ceilings for ease of calculation. And then, 

there is a merge step. How much time does merge step take on an array of size n. So, this 

is something we need to do. So, what is the merge step on an array of size n. 
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The merge, I have two arrays of size n by 2. Two sub arrays of size n by 2 or two lists of 

size n by 2. And I merge this to get something of size n. How much time does this take? 

Well, there are many ways of figuring this out. So, let me tell you one way of doing it. 

This is a smart way of doing it. And then, I will tell you a way, which is just using the, 

we will again design this algorithm using design principles, that we have already 

followed and then analyze it that way also. So, we will do it two ways. 

So, what is each step? Each step you compare two elements and an element gets filled in 

the array C. The crucial sort of observation here is that. Each time you make an, each 

time you make a comparison. One element in C in this new array, the final sorted array 

gets filled. Once again, one for each comparison an extra element a new element gets 

filled in the total array. How many elements get filled? The total number of elements that 

gets filled into a new array is n. 

So, the total number of comparisons you make is utmost n. Let me say, state this analysis 

again, because this is this is quite important. Each time you make a comparison an 

element of C gets filled. So, if I make k comparisons, then I fill k elements in C. The 

total number of elements in C is n. So, the number of comparisons I make must also be 

bounded by n. So, the total number of comparisons is n. The reason is for each 

comparison, we add an element to call this array C. 



From these two smaller arrays A and B, I pick an element and add it to C. The total 

number of elements in C is n. So, the total number of comparisons I make is also n. Let 

us, do this merge differently. So, that total time now is n., we now this. And we can now, 

write the recurrence and we will solve it. That is fine. But, let us again do this merge a 

bit differently. So, we are now going to apply our design principles, which is induction 

like a merge to smaller arrays. How do I merge larger arrays? 
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So, let us look at this again. So, here are my two arrays ((Refer Time: 23:46)). Now, I 

know that the first element in C is the smaller of these two elements. The first element 

here is the smaller of these two elements. So, let us say this is smaller. Now, I look at the 

input without this. The input now consists of one less element from here and some 

elements from here. Now, the sizes need not be same. So, I can supposing I solve my 

problem for this smaller input. 

Can I solve the problem for the larger input? Well, the answer is should be you know 

vociferous yes. It can be solved. This is the smaller of this shaded is the smaller of these 

two. And now, I have two arrays here. So, the total size is smaller. One element I have 

removed. So, these two I merge to get this portion. And the smaller element I put here, 

this goes in here. And recursively, I can sort of merge these two to get this portion. So, 

this is the other way of doing this. 



Here, you would naturally use recursion. And if not iteration at least initially, may be 

later on you will see that this can be implemented iteratively. And you could put them 

together iteratively. So, now how much time does this take? If there are two elements. 

So, let us write the recurrence here. So, T, so this could be n and m, because they could 

have different sizes. So, if it is, let me not use n here. Let us say m 1 and m 2. T of m 1 m 

2 is what, well one of them decreases by 1. We do not know which one. 

So may be, I can just write a recurrence on the sum of these two sizes. So, I can actually, 

write it on n. This n stands for the sum of these two sizes, which is the total number of 

elements in the input. This is nothing but t n minus 1 plus 1. Where does this 1 come 

from? This is two, when I have two lists. For the first comparison I make. I make I 

compare these two elements remove the smaller 1 and apply recursion. This 1 comes for 

the first comparison I make. 

And you can check that T n the solution to this. So, T of 2 is 1. The solution to this is T n 

equals n minus 1. So, to merge two arrays the sum of two sizes is n. The number of 

comparisons is n minus 1. So, these are two ways to do this merge. When you write the 

code actually, the comparisons they, the both the algorithms do will be, if you unroll the 

recursion you will actually get the iterative process back. So now, we can go back to 

merge sort and look for the what is the time that we need. 
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So, it is 2 twice T n by 2 plus order n. So, in fact, well I just put n here for simplicity. 

You can put a constant times n and calculate this, it will make no difference. These 

constant will just come out of the calculation. So now, we need to solve this recurrence. I 

guess most of you would have hopefully do know how to solve this. Let us, anyway do 

this. So, T 2 is 1. Well, I should strictly write T n is less than or equal to 2 T n by 2 plus 

order n. 

If I am writing comparisons for the simple reason that, if I have two arrays whose let us 

say, they are not of equal size. Then I could use less than n. In this case, it is n and it is 

equal. But, often you should sort of check whether, this should be equal to or less than or 

equal to. In this case, it is in fact, equal. 
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And T n is twice T n by 2 plus n. So, this then is so let us open this out, twice T n by 2 

square plus n plus n. So, this T n by 2, I have replaced I have again used this recurrence. 

I am sorry. So, this should be n by 2. I have just used recurrence. I use the same 

recurrence on T n by 2. So, that will be twice T n by 4 plus n by 2, but just using this 

with n by 2 in place of n. So, that is what I get. So, what is this, this is 2 square T n by 2 

square plus n plus n. 

So, if I do this I times, well you could do it once more to see what the pattern looks like. 

If I do it I times, I get 2 to the i times T n by 2 to the i, you can plus there will be a 

number of n. So, how many times will I have n’s here, it will be i times n, this you can 



check. You should do it once more, you will get 3 times n. So, here I have 2 times n. If I 

do it once more I get 3 times n. The next step you get 4 times n. So, you check, you sort 

of guess that this is what is going to after I steps. 

And you can actually check this by induction on i. Once, you have guessed this you can 

check that T n is in fact, equal to this by induction on i. That I will let you know. Now 

what, well we continue till n by 2 to the i. So, let me let us start here. 
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Now, we know T of n is 2 to the i times T n by 2 to the i plus i times n. Now, I know t of 

2 is 1. So, I will let n by 2 to the i to be 2. So, then what do I get. If I choose an I, so that 

this is true. Then, I get T n is well 2 to the i is n by 2. This is t by t of 2, which is 1 plus i 

times n. what is i. Well, I know 2 to the i plus 1 is n. So, i is log base 2 of n by 2. This is 

what i is, so plus n times log base 2 n by 2. This is order n log n. So, the time taken by 

merge sort is n log n. 

There is one more way to do this divide and conquer business on arrays to sort. And it in 

fact, gives rise to another well known algorithm, which you may have studied. Let us 

see, what this idea is. So, here is the array. 
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I still want to do divide and conquer. So, I still want to divide the array into two parts. 

Somehow work with each part. And then put the solutions back together. But, the way I 

do, it will be slightly different in this case. So, what I do is this. So, what I do is in the 

divide part, I ((Refer Time: 33:02)) start rearranging the elements of the array. So, I now 

have two parts to the array. But, these are not divided as in the previous case. 

Remember in the previous case, we just picked up the array and just divided arbitrarily 

into two parts. This time we are going to be more careful. What we would like is every 

element landing up in the left is smaller than every element landing up in the right. So, 

there is a x here and y here. I know that x is less than y. Again, every element in the 

array must occur in one of these. So, somehow, I have divided this array into two parts 

left and right. So, that elements in the left are smaller than the elements in the right. 

This somehow we have done this. Now, what we do is just recurse on these two parts. 

So, you sort the left separately. You sort the right separately. Let us see, what happens 

once you do this. Once you do this, I claim that the entire array is now sorted. Why is 

that so? Well this portion is sorted right. This left portion is sorted. This right portion is 

sorted. I also know that every element on the left is smaller than every element on the 

right. So, the largest element here is smaller than the smallest element here. 

So, when I look at the entire array, you can check that the entire array is now sorted. So, 

this is also an example of divide and conquer. The divided step is where we did work. In 



the divide step, which I have still to specify you somehow divided this array into two 

parts left and right. So, that elements in the left are smaller than the elements in the right. 

This was the divide step. Now, it is recursion ((Refer Time: 35:06)) sweat. 

You just recurse on these two parts and recursion does it for you and you sort these two. 

Putting things together is trivial. You just have to do no work. Both of them are sorted, 

when you put them together in fact, the entire array is sorted. The only thing we need to 

figure out, it how to divide the input. So, that everything on the left is smaller than 

everything on the right. Well, some of you may have noticed that, this is an algorithm 

that you have seen before and it is called Quick sort. 

Again, let me sort of emphasize that. Earlier on you were told what these algorithms are. 

You were given code for ((Refer Time: 35:54)) while this is quick sort, that this sorts an 

array. Our emphasis here is to see, how do people come up with these algorithms. How 

does somebody come up with an algorithm called quick sort. Well, this is how they come 

up with. So, you start with divide and conquer at the back of your mind. And you figure 

out, how do you put this paradigm into place. 

So, now how do people, how do we split an array into left and right. Well, you pick a 

pivot, xome element in the array, which you call the pivot. Left consists of every 

element, which is smaller than the pivot. And right consists of every element, which is 

greater than or equal to the pivot. So, the smallest element on the right is the pivot. And 

you know that the left of the array every element is smaller than the pivot. So, that does 

it. Let me just write this down. So, that we have quick sort in front of us. 
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So, pick a pivot. This is quick sort. Pick a pivot divide into two parts smaller than the 

pivot elements. Let us, call this p pivot p. And elements greater than or equal to p. These 

are elements less than p and elements greater than or equal to p. These are the two parts. 

Recurse and put them together. That is the last step. Well, unlike the difference between 

merge sort and quick sort is essentially this. In quick sort this is where you spend most of 

your time. Putting them together is easy. 

In merge sort dividing into two parts is easy. Putting them together is where you take 

time. So, this is the this is this is quick sort. How much time does quick sort take? Well, 

it depends on which element you pick as a pivot. So, let us see, what really happens. So, 

supposing you pick the i th element. What do i mean by i th element, means in the sorted 

order it is the i th element. So, let me make a definition here, which we will use later on. 
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The rank of an element is it is position in the sorted order. Remember recall that, we are 

assuming that each element in the array is distinct. So, each element has a distinct rank. 

If there are i elements smaller than x, say x is an element i elements are smaller than x 

the rank is i plus 1. The minimum element has a rank 1. And the maximum element has a 

rank n, which is the size of the array. So, the rank of an element is it is position in the 

array. So, if everything depends on the rank of the pivot. 

So, if the rank of the pivot is i. Then, the time taken there will be i minus 1 on 1 side and 

n minus i plus 1 on the other side right. So, is T of i minus 1 plus T n minus i plus 1 plus 

the time taken to partition the array. What was this time? How did we partition the array? 

Well, we compared each element to the pivot. Put the ones on the left on the, put the 

lesser ones on the left and the larger ones on the right. So, we compared every element to 

the pivot. So, number of comparisons we made is n minus 1. 

For ease of calculation, we will just say this is less than or equal to n. It will not bother 

us much. What is the constant between ((Refer Time: 40:54)). So, if the rank is i then it 

is utmost T of i minus 1 plus T n minus i plus 1 plus n. This is the time taken to partition 

the array, because every element was compared to the pivot ones exactly once. So, what 

is the solution to this recurrence. Clearly sort of it depends on i. It depends on what i is 

and various values of i it varies, for instance if I picked the minimum element. 



If i picked the minimum element then, then what happens. Then i was 1, oh sorry this 

should be minus 1 ((Refer Time: 41:47)) n minus i minus 1 or it should be n minus i plus 

1. That is what fits in here, N minus i minus 1. So, if i were 1 then there is nothing on the 

left. And there are n minus 1 elements on your right hand side. There is something wrong 

here. This should just be n minus i. There is no 1 here. This is exactly n minus i. I have 

the pivot. I have i minus 1 here. And i have n minus i elements on this side. 

The pivot sits at the center. So, the right hand side had size n minus i. So, if I has chosen 

the minimum element, then I get T of n to be T of 0, which is 0 plus T of n minus 1 plus 

n. And if I kept picking the minimum element as the pivot what is this time. So, let us 

write this again. 

(Refer Slide Time: 43:14) 

 

So, T n looks to be T of n minus 1 plus n. Let us expand this further. It is n minus 2 plus 

n minus 1 plus n so on and so on. Well, it comes down to 1 plus 2 plus so on up to n. 

This is n times n plus 1 by 2. This is order n square. So, if the pivot turns out to be the 

minimum element in each case, then the total time taken is order n square for quick sort. 

And you can check that if I start increasing now. Let us say, the pivot was a second 

element. There is a time decreases. It will decrease till you reach the middle element. 

Let us see what happens, if I pick the roughly the middle element. Then, T of n roughly, 

I will have two problems of equal size. That is 2 T n by 2 plus n. This does not change. 

Because, every element I have to compare with the pivot anyway. This recurrence I 



know what then solution is. This looks like order n log n. So, let us sort of write all this 

on one slide and look at it. 
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I started out with saying let us say, T n with T i plus T n minus i plus n. Now, if i equals 

1, there is i minus 1 here. If i is 1, then i get order n square. This i is roughly n by 2. Then 

i get order n log n. Well, one can check that, if I plot T n versus i then it initially falls. If 

we start with n square it initially starts falling, till I roughly n by 2. And then, again it 

starts rising. So, if I pick the maximum it is very similar to picking the minimum. The 

array sizes split much the same way. 

And it again goes back to n square. So, the worst case time is n square. And if you 

manage to pick the pivots correctly, I mean if you pick the middle element at each stage. 

Then the time taken by quick sort is n log n. So, we are only worried about the worst 

case time. So, if somebody asks you, what is the time taken by quick sort. Well, it is n 

square. This implementation of quick sort, takes order n square time, because that is the 

worst case time. 

If somehow, we could pick an element of rank n by 2 efficiently. If you can pick an 

element of rank n by 2 efficiently, what do you mean, what do I mean by efficiently here. 

It means the recursion should not change much. So, if I know I get n log n with the 

following recurrence T n is 2 T n by 2 plus n. In fact, I could add a constant here. And it 



would still be n log n. This will still give me order n log n. So, you can check this. This 

constant will just come out of the calculation. 

If I have c n then i get n log n. Now, if I can somehow find the middle element of an 

array, which means an element of rank roughly n by 2. So, if I can find an element of 

rank n by 2 in constant times n time. Then, I can implement quick sort to take time order 

n log n. The way I do it is I first pick I spend c n time pick this middle element. The 

element of rank roughly n by 2. Now, I do the usual. Use this pivot divide the array into 

two parts. 

Now, the array is divided into two roughly equal parts. Once, I divide them into equal 

parts. Now, it is the usual recursion and I am done if I take n log n. So, I can implement 

quick sort. There is an implementation of quick sort. There will be an implementation of 

quick sort, which takes n log n time, provided I can find this element of rank n by 2 in 

linear time. Which is what we do next? Before we do that let me so point this fact out, 

that in the recurrence, it was desirable that the two parts were of roughly equal size. 

If they were not of equal size, then the time was proportionally it was higher. So, often in 

these divide and conquer kind of situations. We try and see, if we can somehow split the 

input into exactly two parts in two halves. So, once we have halves, some because of the 

way this recurrence these recurrences work the time taken is usually smaller. So, our job 

next is to figure out, how to pick this element of rank n by 2 in linear time. So, let me 

state this problem. So, this element of rank n by 2 is called the median. 
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So, the median is an element of rank n by 2. Let us say, floor of n by 2. You could take 

the ceiling of n by 2. It does not matter. So, n is odd. You get the floor of n by 2 and our 

job. So, what we want to do is this. The algorithmic problem given an array find the 

median. How do you find this element of rank roughly n by 2? Well, the easy way to do 

it. Is sort the array and pick the middle element. That takes time n log n. The time for 

that is n log n. 

So, if you for instance use merge sort. That is not good enough. Can we do it faster? The 

answer is yes. You can in fact, do it find median in linear time. And this will be the first 

non trivial algorithm that you will see. It is a really smart algorithm and as we present, I 

hope you appreciate the beauty of the solution. 


