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Lecture - 5 

Algorithm Design Techniques: Basics 

 

We begin with discussion of some Basic Design Techniques for Algorithms. We will 

start with fairly simple problems that many of which you may have seen. But, we will 

hopefully see solutions to non trivial problems, which you may not have seen. The first 

example, I would like to start with is finding the minimum element in an array. 
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So, the input problem is Find Min. The input is an array A. And the output is a minimum 

element in A. A element with whose value is the minimum. This is a problem, which 

most of you would have see earlier, in your. Perhaps the first programming course may 

be later even in your course on data structures. Let us anyway go over the solution. So, 

the standard solution is, you have you take a temporary variable. 

There is a temporary variable, which contains the current minimum. So, this contains the 

current minimum and it is updated at each step. So, you start with the first element in the 

array. And then, you scan the array element by element. The First element then the 

second element third element and so on up to the last element in the array. Each time, 

you compare the array element with temp and update temp if necessary. 



This simple technique actually is used is very powerful. And used often, which is if your 

input is in the form of an array or a list, then if you can solve the problem for the first n 

minus 1 elements of the array. Can you solve it for the n th element? This is the step, 

which is put in a loop. So, let me just write this down. So, the important step is this. If A 

i is less than temp, then temp is set to A i. 

This is the crucial step. And this is usually put in a loop i varies from 1 to n, where let us 

say n is a size of the array. And at the end of this temp will have, the minimum element 

in the array. So, I will be when I discuss algorithms, often I may not write the full code. 

In fact, I will not write the full code. The idea is to give you the main ideas, behind the 

design of this algorithm. I may not take care of some of the stray cases. I may not 

initialize variables properly etcetera, etcetera. 

So, all these programming details I will not get into. The main idea is to, get the main the 

techniques, and the ideas behind the algorithm which solves the problem. And you 

should be able to sort of take these ideas together. And write the program, which actually 

works. Yes. So, if you look at this, this is the level at which we will describe algorithms 

may be even less. I could just say, scan the array element by element. And update the 

current minimum as required. 
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There are, so there is two things couple of things that I would like to point out. So, this 

thing this design technique is often called well induction. Both recursion and iteration 



actually go with this. I will explain this a bit more. The second technique, the second sort 

of thing we will keep in mind is ordering. And the third thing is to store value, already 

computed. I must add store necessary this value. So, let us go each of these one by one. 

So, induction what you mean by induction is this. You want to solve a problem. Your 

input has some size. The array has say size n. Now, the one way to solve it is, supposing 

you can solve this problem for smaller values of input. If this problem can be solved for 

smaller values of input, now can I extend these solutions to a solution for the bigger 

input. If you can solve the problem for the smaller values of input, can you extend the 

solution to a bigger value of the input. 

For instance, if I can solve a problem for all arrays of size n minus 1, can I solve this 

problem for an array of size n? Now, this step which takes you from n minus 1 to n is 

often put is the crucial step. And once you come up with this step, we just put this step in 

a loop or you use recursion. You first recurse on an array of size n minus 1, and then 

extend it to an array of size n. Or you scan the array one by one, element by element. 

And you update the solution as you go along. 

So, this is what I mean by induction. And it is at the base of every algorithm design 

technique. You can call it the mother of all algorithm design techniques. You will learn 

some more fancier things later, but this is the very crux of design of every algorithms. 

Second point that, I would like to make is ordering the input. Looking at the input in the 

right order often helps. In this case, it is simple. You know, you look at the array 

elements in the increasing order of the array index. 

In fact, you could look at the array in any order. It really does not matter. But, there are 

cases, we will see cases where ordering plays a very crucial role in solving the problem. 

The third thing, which is also fairly simple here is to store some of the values that you 

already computed. That is the third point, we want to make. Now, even in this case it is 

simple. You just store the previous minimum, the variable temp the temporary variable 

which we had. 

So, these are values that you would like to use in future. Almost every algorithm design 

technique that, we will study are a combination of these three. Some of them will use just 

induction and storing whole values. Some of them will use all three. Some of them will 



just order the input and use induction. So, these three are things that you must keep at the 

back of your mind, when you design any algorithm. Let us analyze this algorithm. 
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So, here is the here is an analysis. Every algorithm that we design, we will analyze. 

Analysis is as important a part of this subject as design. And we would like algorithms to 

be as fast as possible, in the worst case. So, all our analysis pertain to worst case. And we 

would like to design algorithms, which are as fast as possible. So, in this case we look at 

every array element one. And we make one comparison for array element. This leads to, 

we make n minus one comparison. 

We do not really compare anything with the first element. But, with each of these 

subsequent we make one comparison. n is the size of the array. So, we make n minus 1 

comparison. Along with comparison, we need to we also store this new value in temp. 

But, the number of times we do this exactly equals the number of mean. It is let us say 

one more than the number of comparisons, we make. So, if you are not really worried 

about constants, then you can just focus on the number of comparisons. 

As long as I bound the number of comparisons, the other small operations that I do, like 

incrementing the index variable of the array or storing the value in temp. They all are of 

the same order as the number of comparisons. So, the time taken here we would say is 

order n. The time taken is order n, but our focus is just on the number of comparisons. I 

think the question that one can ask and one should ask is this the best? 



Can I find the minimum element in an array in using less than n minus one comparison? 

Well, we just think about it. Or even, if you do not think about it. I guess, most of you 

will jump up and say, of course you need n minus 1 comparison. That is the sort of first 

reaction that, most people will have. Without making n minus 1 comparison, how can 

you find the minimum? Why is this so? 

Can you logically argue that, you actually need n minus 1 and you know you cannot do 

with less than n minus 1. This argument is easy, but not absolutely trivial. Let us see. So, 

why should we make n minus 1. Can we do it with less? Well, every element you have to 

look at least. Every element in the array must be compared to something or the other. If it 

is not compared then, you may actually make it the minimum. It could be the minimum. 

If you had output something else as a minimum then, this could have been made the 

minimum. Or you can easily make some other element of the array the minimum. So, 

without comparing if you do not compare an element then, you cannot tell the minimum 

element in an array. Now, this gives you this does not give you n minus 1. It gives you n 

by 2, assuming n is even. So, at least n by 2 comparisons are needed. 

The reason every element must be compared, must be in some comparison. What I mean 

is, every element must be compared with some other element. This can be done with n 

by 2, by the way. So, the first element is compared with the second element. The third 

element is compared with the fourth element and so on. The fifth element is compared 

with the sixth element and so on. So, with n 2 two comparisons, if n is even or n by 2 

plus 1, if n is odd. 

Well, ceiling of n by 2 comparisons are all that is necessary. To sort of satisfy this 

condition that, every element must be in some comparison. Now, clearly n by 2 is not the 

right answer. n minus 1 is the right answer. And why is it that 1 is n minus 1? So, here is 

an argument. See initially, when you have not made any comparison there are n 

candidates for the minimum. Each element in the array can actually be a minimum. 

You do not know, which of these n elements are minimum. Now, when you make a 

comparison, you can get rid of only one of these candidates. When you compare, let us 

say at some stage you have candidates x 1 x 2 up to x k, some k elements are candidates 

for the minimum. Each of them based on the comparisons that you have made, 

previously each of them is equally likely, I mean each of them can be a minimum. 



Now, if you compare two of these candidates you can get rid of one. Whichever one is 

smaller, that still remains a candidate. Whichever one was larger, that no longer remains 

the candidate. But, you can only get rid of one candidate. So, with each comparison I can 

only get rid of one candidate. I have n candidates to start with. So, I need n minus 1 

comparison. This is actually a complete proof, though a bit hang wavy. You can make it 

more rigorous also. 

Here is one more way of looking at it. Supposing, you draw the following graph. So, 

initially we have I have all these nodes. Let us say the elements x 1 x 2 up to x n. These 

are elements and the array and also vertices in our graph. Let me just put a circle around 

these two, indicate that these are also vertices. Now, when you compare x i and x j. Here 

is x i and here is x j, I draw an edge between these two. 

Now, when you compare let us say x 1 and x 2 and x n, I draw this edge. Now, x j and x 

n are compared I draw this edge and so on. As you make comparisons, I keep drawing 

these edges. So, once your program ends terminates, you have done all these 

comparisons. Now, I look at this graph. And I look at each connected component in this 

graph. If there are more than one connected components in this graph, then I will not be 

able to tell the minimum. 

Now, in each connected component I know which is the minimum? There will be one 

which is a minimum, but I can surely give values to these. So, that I can pick the global 

minimum from, any one of these connected components. Here, this is arguments that 

after the comparisons are over, once you finished all comparisons I better have one 

connected component. This means from a discrete structure’s class, you know that you 

need n minus 1 edges. 

So, this is just the same argument. Both of them have the same idea behind both. For 

instance, here you start with n connected components. And each time you add an edge, 

you can decrease the number of connected components by 1 at most 1. So, it is the same 

argument. So, you need n minus 1. And this sort of simple scan of the array does it with 

n minus 1 comparison. Let us look at a slight variation of this problem. Now, I want to 

find not just the minimum in the array, but also the maximum. 
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So, this problem is called Max Min. So, the input is in array A. And the output is the 

maximum and the minimum elements in A. So, I want both the maximum and the 

minimum element. Now, if I just wanted to find the maximum, the procedure is clearly 

the same as the one for the minimum element. What if I want to find both the maximum 

and the minimum? Well I could first find the minimum and then, I can find the 

maximum. How many comparisons does this take? 

Well n minus 1 for the maximum. n minus 1 for the minimum. And that makes it 2 n 

minus 2. So, the number of comparisons that a naïve algorithm. So, this is the number of 

comparisons that, the naïve algorithm makes. We can ask the same question. Is this the 

best? You can try the previous argument that, we had of connected components. And so, 

you can show that you need m minus 1. 

That is fine, but when you see more than, that is very difficult to prove. It is not 

absolutely impossible, but it is difficult. And if you try to certainly increase it to 2 n 

minus 2, it is impossible. You will not be able to prove it. Let us look at some small 

values. Supposing I have four elements, i have let us say x 1 x 2 x 3 and x 4. The naïve 

algorithm took x 1 compared with all of them. Found the minimum and then we were 

done. 

Then, we took again took x 1 we compared it with all of them. And while maintaining 

the maximum, the temporary maximum. Now, many of these comparisons are repeated. 



So, you see that many of some of these comparisons that you make, when you on roll the 

whole thing out, are repeated. So, our aim is to sort of get rid of these unnecessary 

comparisons. Now, in four elements here is what you can do. I first compare x 1 and x 2. 

So, supposing x 1 is less than x 2. So, this is the first comparison. x 1 is less than x 2. 

Now, I compare x 3 and x 4. Supposing x 3 is greater than x 4. This is my second 

comparison. Now, where do I find the minimum? I mean, how do I find the minimum? 

The minimum clearly is either x 1 or x 4. It is the smaller of x 1 and x 4. So, I compare 

these two and find the minimum. Similarly, I compare these two and find the maximum. 

So, how many comparisons I have made? I have made 1 2 3 and 4, so four comparisons. 

What does our old algorithm say? It says 2 n minus 2. n is 4. So, this is 6 when n is 4. So, 

we seem to have done certainly, better than 2 n minus 2. When there are four elements, 

we have certainly done better than 2 n minus 2. And well the trick was, once we found 

the minimum and maximum between x 1 x 2 and x 3 x 4 then, for the minimums I only 

need to look at x 1 and x 4. 

The smaller on the left hand side and the smaller on the right hand side. I do not have to 

bother about the bigger one and similarly for the maximum. So, this trick can be applied 

recursively. Well, it is certainly worth trying and let us do it. So, what we do is this. 
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Here is the let us say I have you have an array of size n. So, let us divide this into two 

parts. Recursively find the maximum in this part. Let us say Max L. This is the left part 

and that is the right part and Min L. Recursively, find the maximum minimum on the 

right hand side. So, that is Max R and Min R. Now, how do I find the maximum and 

minimum? Well, I need to compare these two to find the minimum. I need to compare 

those two to find the maximum. 

So, here is an algorithm that seems natural. I divide this into two parts. Divide this into 

two parts. Let us say two equal parts. Two equal halves. Halves are always equal. I find 

the maximum and the minimum on the left hand side. The left half, I find the maximum 

and minimum in the right hand side. Now, I compare the two minimums to output the 

minimum of the array. I compare the two maximums, to find the maximum of the array. 

How many comparisons does this algorithm take? Let me write down the algorithm. But, 

in future with this explanation you should be able to write the algorithm. So, divide into 

halves. Let us say left and right. Then, recurse on both parts on the left and on the right. 

And the answers are Max L and Min L and Max R and Min R. Then, put these things 

together, to get the minimum and maximum. And then, compute final solution from the 

solution of the two parts. 

Well, I have written the essence of the algorithm without really writing details. I hope, 

you can fill in the details. Define procedures and write down recursive calls. And you 

know, do these two comparisons and output the minimum maximum. Do how many 

comparisons does this take? That is the question, we need to answer. 
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So, let us say T n is the time taken by max min on arrays of size n. It is the time taken by 

max min on arrays of size n. Then, T n is there are two problems of half the size. You 

solve two problems of half the size. There is 2 n by 2 plus; two more comparisons, one 

between the 2 maxs to get the new max, one between the 2 minus to get the new 

minimum. These are this is for the recursive call. So, you call the left hand side, that is n 

by 2 right hand side n by 2 and then 2. 

Well, if n is odd I would have a ceiling and floor somewhere. But, let us not worry about 

it for the time being. Let us assume that, n is even. You can assume n is the power of 2. 

We also know that, T 2 is 1. For two elements, I can find it in one comparison. So, what 

is the solution to this recurrence? Let us see. So, the easiest way to solve all this is to 

check, how this recurrence behaves. So, T n is nothing but 2. And now, I open this out. 

This is 2 T n by 4 plus 2 plus 2, which is 2 square T n by 2 square plus 2 square plus 2. 

You can right this down, once more. And essentially we want to see how, what pattern 

this follows? Well, it is not too difficult to guess what the pattern is? The pattern is this.  
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So, T n is 2 to the i T n by 2 to the i plus 2 to the i plus 2 to the i minus 1 and so on. All 

the way up to 2. So, now we set n by 2 to the i to be 2, because we know that t of 2 is 1. 

Then, we have t of n is 2 to the i. This t, this becomes 2. So, t of 2 is 1plus 2 to the i plus 

2 to the i minus 1 and so on up to 2. So, this is nothing but 2 to the i plus 1 plus well 2 to 

the i minus 1 and so on up to 2. You can check that this is nothing but we also know that 

2 to the i plus 1 is n. And I hope you can solve this. 

I will leave it for you, to solve this. This is nothing but n. And this sum, you will get as n 

by 2 minus 2. If you sum this up, using the usual geometric series and use this fact, that n 

is 2 to the i plus 1. You will get that, this sum is nothing but n by 2 minus 2. Well, put 

this together. You get t of n is 3 n by 2 minus 2. You can check that this, when n is 2 this 

is 1, which is what we want. And this also satisfies the recurrence that we had. 

The recurrence was let me refresh your memory. The recurrence was T n is twice T n by 

2 plus 2. So, if I put T n equals 3 n by 2 minus 2, this satisfies the recurrence. You can 

prove that T n is this ((Refer Time: 30:12)). Well, so the number of comparisons that we 

seem to make using this method is 3 n by 2 minus 2, which is certainly better than 2 n 

minus 2. We seem to have done something fairly mechanically and we seem to have 

improved the number of comparisons made, quite drastically. 



So, this technique is called divide and conquer, is used by the British in the last century, I 

mean last century and even before that. We will put it to good use, in designing 

algorithms. So, let me write down the main steps of this technique. 
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The first step is to divide the problem into, I will say two parts. Often we will want these 

parts to have equal sizes, often of equal sizes. The next step is recurse on each part. So, 

you recurse on each part and solve each of them. Both the parts, if there are two. And the 

final step is put these solutions together. Put these solutions together, to get a solution for 

the original problem. Often, you can just do this blindly. 

In fact, for the max min we could have done it blindly. Take this array of size n, divide 

that divide this array into two arrays to size n by 2. Find the maximum and minimum on 

the left array, the maximum and minimum on the right array. And once you have these 

two solutions together, now you find the maximum of the whole array comparing the two 

maximums. Find the minimum of the array by comparing two minimums. 

Again the essence is this induction. In the sense that, if you could solve problems of 

smaller size which is what you are doing in this recursion. You are somehow putting 

these together to get a solution, for the big problem. How you will find these small 

problems varies from problem to problem. Let us look at another problem, where we will 

apply this method blindly and we will see what we get? 
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This problem is to find both the minimum and second minimum. The minimum is the 

smallest element in the array. The second minimum is the next one, the second smallest 

element in the array. So, your input is an array. And you are going to find both the 

minimum and the second minimum. The usual way you would do it is, you first scan the 

array and find the minimum. Now, you again scan the array and find the second 

minimum. 

The other way to do it is, to have two temporary variables Temp 1 and temp 2. In 

temporary 1, I store the current minimum. In temporary 2, I store the current second 

minimum. Now, when I get to an array element i let us say the ith element. I compare 

this first with the minimum then, with the second minimum that I have. And based on the 

result of these two comparisons, I update minimum and second minimum. 

Now, this will take we have seen how many comparisons this will take. It is 2 n minus 2 

as it was in the max min case. And let us just apply our divide and conquer paradigm, 

blindly to this problem and see what you get. So, how would we do this? So, here is the 

array. The array is of size n. I divide this equally into two paths. I find a minimum and 

second minimum here. So, let us say Min left and the second Min left, Min right and S 

Min right. 

So, I have found these four values. And now, I want to find the minimum and second 

minimum for the entire array. The minimum is not a problem. So, I just compare Min L 



and these two values and I can output the minimum. The smaller of these two is the 

minimum. Now, what do I do about the second minimum. Now, supposing Min L was 

smaller than Min R, so without loss of generality this Min L. So, assume Min L was less 

than Min R, which means at this point Min L has been output. Now, what are the 

candidates for the second minimum? Clearly, Min R is still a candidate for the second 

minimum. 

Second minimum of the left hand side S Min L is also a candidate for the second 

minimum. But, one of these elements we have sort of thrown out, which is S Min R. This 

does not figure in the picture at all. So, we need exactly one more comparison to get the 

second minimum, which is supposing this is true then compare the second minimum on 

the left and the minimum from the right. So, you need to compare just these two 

elements. 

And you can see that, the minimum of these two will give me the second minimum. The 

minimum of the entire array I get by comparing these two minimums, the minimum the 

left hand side minimum the right hand side minimum. And the second minimum I can 

get by comparing the minimum element, which lost the first comparison which was 

larger and the second minimum of the element that one. 

So, that will give me the second minimum. So, how many comparisons have we does 

this take. Well, if you write down the recurrence this seems to be very similar to the 

previous one. So, what is? 
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So, if T n is the time taken by the algorithm, we have two sub problems each of size n by 

2. That takes time t of n by 2. And then, we have two more comparisons, one with the 

two minimums and one to find the second minimum. We also know that, t of 2 is 1. If I 

have two elements, one comparison suffices to find both the minimum and second 

minimum. And these set of equations are exactly the same as the set of equations, we had 

before. 

So, the solution is T n is 3 n by 2 minus 2. So, the number of comparisons we make is 3 

half n minus 2. And it is not 2 n minus 2. It is much less. One can ask, is this the best? 

Can we do better than 3 half n minus 2? This question can be asked both for max min 

and also for min and second min. Well, it turns out that these two problems behave 

differently. For max min 3 half n minus 2, is the best we can do. 

So, 3 half n comparisons is the best we need 3 half n comparisons. While in this case, 

when minimum and second minimum you can do with actually less. The divide and 

conquer sort of paradigm gave us 3 half n, but that is not the best. So, why? So, let me 

give you a reason why you can do better here. To better this, you need to understand a bit 

more as to how this algorithm works? Let us unfold the recurrent, the recursion out and 

see what this looks like. 
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Initially, I have array elements x 1 x 2 x 3 x 4 and so on, all the way up to x n. What we 

do is, we just divide it into two parts. We divide it down the middle. And then, you 

recurse on these two. On the left half, we divide it again into two halves, recurse divide 

recurse divide recurse. Now, we come down all the way down to, when they avail as size 

2. This is when the comparisons start happening. The recurrence sort of bottoms down, 

till you reach arrays of size 2. 

Now, I will find the minimum of x 1 and x 2 that goes up. The minimum of x 3 and x 4 is 

pushed up. Also the second minimum is pushed up. But, let us not worry about that for 

the minute. The maximum case also it works very similar. You put the max min, max 

mins are pushed up at each level. We just focus on the minimum element. So, the 

minimum element is pushed up. From here, the minimum element is pushed up from 

there. 

At the next level, I will compare the minimum of these two. This contains a minimum of 

x 1 x 2. This contains a minimum of x 3 x 4. This contains a minimum of these two, 

which is actually the minimum of these four and so on. This would be a bigger tree and 

so on. All the way up to the root and this root, you can the minimum is known. So, for 

instance here x n minus 1 and x n are compared. This is the minimum. At the next 

instance, you compare it with the other two. 



This would be x n minus 2 and x n minus 3 and so on. All the way up to the root, where 

the minimum is known. Now, this looks like if n was say power of 2. This looks like 

very familiar complete binary tree. So, there are log n levels. There are n leaves. There 

are log n levels. And in each level, we sort of have some sort of minimum and some 

portions of the array and these are pushed up. Now, where was the minimum element? 

The minimum element sits somewhere in this array. And at each stage, it is pushed up. It 

sort of wins, its comparison each time at each level of this tree. And it finds its way to 

the top. Somewhere with perhaps, came from the left. May be it came from the right, 

came from the left came from the left and so on. So, it does traverse some root all the 

way from the root node to a leaf. And this is where the minimum element resided. 

Now, what can you say of the second minimum element. Now, well the crucial sort of 

observation that you need to make to speed up the algorithm is that, at some stage the 

second minimum must have been compared with the minimum element. This is 

absolutely crucial. If the second minimum element were never compared with the 

minimum element then, you really do not know which of these two is the minimum, 

because in each comparison the second minimum one, it was smaller than every other 

element. 

So, was the minimum element which of these two is minimum, to know that you must 

have compared the second minimum element with the minimum element. Now let us 

look at this picture. Here is the picture. How many elements did the minimum element, 

you know win against. How many elements were compared with the minimum element? 

If you look at this picture and you follow this, at each stage in this path down from the 

loop to the leaf, the minimum element was compared with exactly one element. 

The length of this path is log n. So, the minimum element was compared with at most log 

n elements in this tree, which means log n elements in this array were compared with a 

minimum element. And one of these log n elements, remember must be the second 

minimum. So, to find the second minimum all we do is this. Find the minimum using this 

tree. You can do it recursively, if you want. 

Once you find the minimum element, collect all elements that the minimum element one 

against was compared against. If you have this tree in front of you, you can certainly go 



down the tree and figure out, which were these elements. Among these elements, find out 

which is the minimum? And that will give you a second one. There are log n elements. 

(Refer Slide Time: 44:24) 

\ 

So, initially you made n comparisons. May be, it is n minus 1, n minus one comparisons 

to find a minimum. And then, you need about log n minus 1 comparison more to find the 

second minimum. This then is actually optimum, though we will not do it in this course. 

There is an argument, which shows that you need n plus log n. But, it is surprising that 

you can actually do this in n plus log n. And this problem in this way, it differs from the 

previous problem. 

A straight forward application of divide and conquer does not work. You need to use 

some more intuition. You need to understand a problem a bit more come up with new 

ideas. And that is what algorithm design is all about. Often, there are problems which are 

hard. You really do not know what to do? And when you come up with a smart answer to 

an algorithm, you feel really you feel nice. 


