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Welcome to the course on Design and Analysis of Algorithms. Our topic today is 

Asymptotic Notation. Let me begin by setting down this topic, in the context of our 

overall course goals. We said last time that one of the main course goals was to well first 

design algorithms. 
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And then, we want to analyze their time. Analyze the time taken on the RAM model, 

which we defined. We also said that the results of the analysis are not directly applicable. 

So, there is some care needed in understanding, how to interpret the time taken on the 

RAM model? And how to use that predict, what happens on other computers. So, for 

example, so in all this we need some level of, we need to be a little bit imprecise. 

We need to throw away some details of our analysis, in order to predict what happens on 

other computers. So, the entire analysis or what I really mean the entire detailed analysis 

not applicable to other computers. We said that suppose the time taken in the RAM was 

something like say 10 n cube plus 5 n square plus 7. Then, all that we can say for other 

computers is that the time is going to be cubic in n. 



However, the same conclusion would be arrived at say of the time was 2 n cube plus 3 n 

plus 79. Even here, our interpretation our conclusions for the computers at large would 

be that the time taken is only cubic in n. So, this is what our conclusions will be, for any 

computer or all computers. So, you see that we start off with the precise number over 

here. But, over here we are going down to a very rough statement. 

And in some sense, we are saying in all this that this function, this expression which we 

are going to think of is a function in n. N is the problem size. So, this expression 10 n 

cube plus 5 n square plus 7. And this expression or this function, 2 n cube plus 3 n plus 

79 are really in the same class. So, you want to define the notion of classes of functions. 
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So, the idea is that we want to put functions in the same class and really think about the 

entire class. So, our conclusion will be that instead of saying that the time taken is 10 n 

cube plus 5 n square plus 7. We really want to say something like cubic, but we want to 

be a lot more systematic and formal about it. So, that is really the goal of today’s lecture. 

So, we would like to develop the notation, which allows us to talk nicely about classes of 

functions. 

So, asymptotic notation, so is a formal way or formal notation to speak about functions 

and classify them. Asymptotic analysis refers to the question of classifying functions or 

classifying the behavior of anything, but in this not too precisely, but by putting them 



into classes. So, let me start out by writing down what do, we need from the classes, that 

we are going to define. So, we want really two kinds of features. 
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So one, we would like to put functions such as say 10 n cube plus 5 n square plus 17 and 

2 n cube plus 3 n plus 79, should belong to the same class. Because, we said that in some 

sense we are going to be classifying these as cubic. And we want them to get together. 

Another way of saying this is that constant multipliers should be ignored. So, the 

constant multiplier over here is 10. The constant multiplier over here is 2. 

So, we are going to ignore that. And that is our desire. Because, eventually what we can 

really say is that, the time taken on the RAM is this. And the time taken on any computer 

has to have the form, like something times n cube. So, we want a class notation, which 

allows us to nicely ignore constant multipliers. Our class notation should also really 

worry about, what happens as n tends to infinity. So, we should give more importance to 

behavior as n tends to infinity. 

So, it is also seen in this example itself as n tends to infinity. Really the 5 n square plus 

17 and this 3 n plus 79, these two parts of these functions will go out. And therefore, we 

will really be worrying about 10 n cube versus 2 n cube. And then, out first property or 

first feature which we said, we want in our class definition will take over. 



And it will say that, really 10 n cube and 2 n cube are really the same thing. So, that is 

the spirit. So, we want a notation a class notation, which will allow us to conclude that 

say functions of this kind are really similar or are in the same class. So, let me give an 

outline of today’s lecture. 
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So, we are going to define three main kinds of notation today. So, one is the theta 

notation. One is the O notation. This is the capital or the big O. And then, there is the 

omega notation. And these will define function classes. And they will do exactly, what 

we said we want. And we will have lots of examples throughout. But, at the end we will 

also have a series of examples. So, let us go in order. And let me start off with the theta 

notation. 
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So, in what follows we are going to have functions, say something like f and g. And 

these functions are always going to be say non-negative functions, which will take non 

negative values functions of non negative arguments. This is natural in the sense that, we 

are going to be talking about time or may be sometimes the memory or any kind of 

resource. And these values will not really, there would not be any occasion when 

functions will need to take negative values. 

So, now theta of g where remember g is a function, is the following class. So, it is the 

class of all functions f where. So, let me write that down. So, f is a non negative function 

such that, there exists constant c 1 c 2 and n naught. Such that c 1 times g of n is less 

than or equal to f of n less than or equal to c 2 times g of n. And this is true, not 

necessarily for all values of n, but certainly for n greater than or equal to n naught. 

This is bit of a big definition. But, let me just indicate the spirit of it. So, let us go back to 

the properties that we wanted. So, we said that whenever whatever class structure we 

defined, should give importance to behavior as n tends to infinity. So, this is the part of 

the behavior. This is the part of that requirement. We are saying that for, only that we are 

only really bothered about, what happens as n is bigger than some n naught. 

So, we are not worried about smaller values of n. Then we said that we should really not 

be worrying so much about constant multipliers. So, this is also what is going on over 



here. So, it says that we want f of n to be sandwiched between c 1 time g of n and c 2 

times g of n. So, let me draw a picture here. 
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So, this is where I plot the function values and this is n. Then, c 1 times g of n will look 

something like this. Say in general, that is going to be something like. This is c 1 times g 

of n. This is going to be c 2 times g of n. And let us say this is n naught. Then, our claim 

our requirement is that, if f occupies this region entirely and does not go beyond this 

region, go outside this region. This is the region for f, somewhere inside anywhere 

inside. 

So, then it is sandwiched between c 1 times g of n and c 2 times g of n. Then we will put 

f in the class theta times g. So, notice that we are not caring what happens, if for values 

of n below. Over here, f could go outside this. That is ok. We are not worried about that. 

But, beyond n naught f must only lie between this sandwich region. So, essentially we 

are saying that, we do not worry about what that constant factor is. 

So, it is bracketed below by some multiple of g. It is bracketed above by another multiple 

of g. So, essentially it behaves like g and that for large n. That is exactly, that is exactly 

in the consistent with the features that we wanted. So, let us take a few examples. 
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Let us take our two functions, which we started. So, I will write down. Say f of n equals 

or let me call it f 1 n equals, say 10 n cube plus 5 n square plus 17. Then, this function 

belongs to theta of n cube. Let me write down. I will prove this, but let me write down 

the other claim as well. So, let me write f 2 of n another function, which is say 2 n cube 

plus 3 n plus 79. And this also belongs to the same class n cube. 

So, I just want to reassure you. That the goals with which we started namely, developing 

a class notation which will enable us to put these two functions in the same class. Or 

those that goal is actually being met. So, let me now say in one what basis I am 

concluding something like this. So, let me go back to the old definition. So, in order to 

classify a function as being a member of this classed functions, this set of functions. 

All I need to do is, to find suitable constants c 1 c 2 and n naught. So, if I find these 

suitable a constant c 1 c 2 n naught such that, these properties are met. Then, I am really 

done. So, let us take one. So, let me write this down as proof of one. So, clearly 10 n 

cube is less than or equal to f 1 n. Because, there is a that additional 5 n square plus 17 

term. I can write down f 1 of n is certainly less than. I will just raise all these to n cubes, 

instead of keeping them n to the zero n square over here. 

So, this is certainly less than 10 plus 5 plus 17 times n cube. Or this is equal to 22 n cube 

or 32 n cube really. And this is true for all n. So, I have established that if I take c 1 

equals 10 and c 2 equals 32. Then, c 1 times n cube is less than or equal to f 1 of n less 



than or equal to c 2 of n for all n greater than or equal to say even 1. That does not really 

matter. So, these constants c 1 c 2 and n, and 1 is equal to n naught having found. And 

we know that the functions. And these constants satisfy the properties that, we wanted. 

And therefore, we can legitimately claim, that f 1 belongs to this class. So, the 

conclusion from this is that f 1 belongs to the class n cube. And in fact, the same kind of 

analysis where example is to prove, that f 2 also belongs to the same class. Let me take 

one more example, which actually illustrates that our notation is a bit more is going 

beyond what we really started off. 
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So, I am going to argue now. So, that suppose I take f 3 of n is equal to n cube plus, say n 

log n. Then, even this is in the class theta of n cube. This is not something that you 

would classify, as being cubic, because cubic has the connotation of cubic polynomial. 

So, it has to it has to have the form something times n cube plus something times n 

square plus something times n plus a constant. 

Whereas here there is something funny that is there is a term, which is not a polynomial 

term. However, note that it still is true that 10 n cube is less than equal to f 3 of n, 

because n log n is certainly always at least zero or certainly greater than zero in fact. And 

in fact, I can since I know that, n log n less than n cube. I can also write this as less than 

or equal to 11 n cube. So, I have found c 1 equals 10 c 2 equals 11. 



And say n naught equals 1 for which, my whole definition holds. And therefore, I can 

write fully claim that this function f 3 also belongs to the class n cube. So, this is a good 

idea. It is good that in fact, this function belongs to this class n cube. Because, as n 

increases as n tends to infinity then, this function really is the same as 10 n cube 

essentially, because this term is going to be negligible as for large n as compared to this 

term. 

And so therefore, since it is essentially the same as n cube. It is a good thing that our 

classification system, is putting it in the same class. Let me write down a few more 

examples. Actually before that, let us come back to this definition itself. So, theta of g is 

a set of functions or class of functions. And we are going to think of g as being sort of a 

representative or v g s being a sort of a prototypical function. 

So, instead of talking about a very detailed function like, say 10 n cube plus n log n or 10 

n cube plus 5 n square plus 17. We will say, we are roughly going to say that it is n cube. 

If we are ignoring constant factors and as n goes to infinity. And we will instead be 

saying that, it is that the class theta of n cube. So, think of g also as a representative of all 

this, all these functions. So, let us take a few more examples. 
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Some, I will write down may be that 5 n log n plus 10 n, belongs to the class theta of n 

log n. So, the important point over here is that, this 10 n is grows slower. So, as n 

becomes large this term is going to dominate this term. And therefore, its behavior 



should be essentially the same as that of n log n. And therefore, it is in the same class. 

We should really prove this. And I will leave that as an exercise. 

We should really prove that, a function of n which is 5 n log n plus 10 n belongs to this 

class theta of n log n. And by that, I mean you should exhibit constant c 1 c 2 and n 

naught. Such that c 1 times n log n is less than or equal to this, which in turn is less than 

or equal to c 2 times n log n, for all n greater than the n naught that we defined. That is a 

fairly easy task, but if you certainly do it. So, as to make sure that you are fully 

conversant with this definition. 

Let us take a slightly more complicated, but complicated looking example. So, let us say 

we have a polynomial a of n which goes something like. Say summation i going from 

zero to k of a i, a i n to the power i. And let us assume that, a k is greater than 0. Other 

terms could be smaller, but a k is bigger than 0. Then, I will claim that this function a of 

n in general, any polynomial of k th degree is in the class theta of n to the power k. 

Again you should prove this. But, this proof is really similar to what we have done 

earlier. And there should not any difficulty what so ever. Again the message is the same 

that, if you have a function. You look at the most, the largest determinate. And that is 

really is, it is class. That really is its asymptotic complexity class. Let me now write 

down, some properties of this definition. So, suppose we have f belonging to theta of g 1. 

And say h belonging to theta of g 2. 

Then, I claim that f plus h belongs to theta of g 1 plus g 2. This also you should be able 

to verify, fairly straight forward. And furthermore, if say g 1 this is the same as g 2. Then 

f plus h when I write f plus h, I really mean f of n plus h of n, the function which returns 

for every n, f of n plus h of n. And this function belongs to theta of g. This is also 

understandable, because if you believe the previous result. So, g 1 plus g 1 equal to g 2 

equal to g. 

So, g 1 plus g 2 will be equal to twice g. And the class two n cube theta of two n cube is 

really, the same as the class theta of n cube. Again you should be able to verify this. You 

should verify this. And it is really not surprising, because we started off by saying that 

we really do not want to worry about constant factors. And therefore, it does make sense 

or it should make sense, to have theta of n cube with the same as theta of 2 n cube. 



We however, never ever write theta of 2 n cube. And that is, because it is much simpler 

and much nicer to say, theta of n cube. So, when we write theta of g we do not, we drop 

off the constant multipliers, if any that might be present in g. So, we have defined the 

first class of functions that we wanted. And it does indeed, it is indeed consistent with 

our intuition. And the goals we set ourselves. However, although this is a class of 

functions, in computer science and mathematics there is a funny style evolved, as far as 

writing down these classes is concerned. 
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So, let me write that. Let me write that down. So, I am going to write down a note, on 

writing style. So, suppose f belongs to the class theta of g. Now, very often or most 

commonly this is not written in this manner. But, the more common writing style is, to 

write f is equal to theta of g. Unfortunately, the assignment operator is again being badly 

abused over here. This seems to be a tradition in computer science. 

We use assignment to mean, we use the equal to operator to mean assignment. We use it 

to mean. Well, first of all it has the value equality. Then, it has this value. It has, it is 

used to indicate assignment. And here, we are actually using it to denote inclusion. 

However, you will see that you will not really be bothered by this. It will become very 

clear by the context that is, what we mean. 

Actually the situation is really similar to our use of English language words. So, for 

example, we might write Rose is Red. When we write this, we really mean that Rose 



belongs to the class of red things or the set of red things. So, as you can see even in the 

English language, the verb is used to indicate equality. That is perhaps the more common 

use. But, it is also used to indicate some kind of say conclusion. 

So, anyway instead of saying f belongs to theta of g, it is very common to say f equals to 

theta of g. We never however, write theta of g equal to f. This is never written. Just as, it 

does not make sense to say red, well I guess in poetic English. It does make sense to say 

red is Rose, but we never write this in computer science. I will add one more note on the 

writing style. So, I have been writing functions as functions by their names directly. So, I 

might write something like f equals theta of g. But, from time to time I might also write f 

of n is equal to theta g of n. 
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If n is it is sort of understood, n is clearly understood as an unbound variable. The 

argument, the possible argument that f can take. So, these two really will be think of 

these as being the same. This I might write it in this manner. Just to emphasize the fact 

that, f is a function. But, if it is clear that, f is a function then I am it might be god to 

write it in this manner. Let me take one more example. 
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Let me define f 5 of n as 2 plus 1 over n. So, what can we what class can we put this in. 

So, it turns out that there is actually a nice class into, which we can put this. And this 

class is simply the theta of 1 class. So, here let us say g of n is always equal to 1. And 

then, we have to argue that. In fact, f 5 belongs to theta of g, which is what I have written 

over here. Let us just do this. Just to make sure, we understand this. 

So, clearly 2 is less than or equal to 2 plus 1 over n, which is equal to f 5 of n. And in 

fact, this is less than or equal to say 3. And therefore, we have c 1 equals 2 c 2 equals 3 

and this is true for all n. So, we can have n naught equals 1. And we have these three 

constants, satisfying our basic definition of theta. And therefore, we can write f 5 as 

belonging to theta of 1. So, theta of 1 is the class of all functions, which are essentially 

constant. 

They may have some minor perturbations, but they really are like constants. So, now we 

will come back. We will come to our other two definitions. Our other two classes and we 

will define those. So, the first class is O of g. 
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So, this is a class of functions f, where such that where f is a non negative function. And 

there exist c 2 and n naught, such that f of n is less than or equal to c 2 times g of n, for 

all n greater than n naught. Omega of g is the same thing as above. So, it is f but. So, f is 

non negative. But, now we are worried about c 1 and n naught. Such that f of n is less 

than c 1 times g of n is less than or equal to f of n. And we do not have anything on the 

upper for all n greater than n naught. 

And let me just refresh you, what the theta of g definition was. The only difference was 

that, we wanted there to exist c 1 c 2 and n naught. Such that, c 1 times g of n is less than 

f of n and is less than c 2 times g of n. So, you can see that the class omega relaxes one 

of the conditions, which was present in the class theta and so it does O. O relaxes the 

lower bound condition. And omega relaxes the upper bound condition. 

So, in omega the lower bound condition is present. But, we are not saying anything 

about, whether f of n is bounded above by some g. Most of an algorithm analysis, we 

find it is easy it is reasonably easy to say that the time taken is at most something like 

this, at most this function. So, for example in last lecture. In the last lecture, we said 

something like if we look at this program. And we count the number of iterations. 

Then, we can certainly argue that there are at most n cube iterations or something like 

that. And therefore, the time taken has to be at most cubic in n. There we later on did 

argue that, the time has to be at least cubic. But, suppose we just had argued that it was 



utmost cubic. Then, we would have used this O notation. So, we would have said that the 

time taken belongs to O of n cube. So, let me write that down. 
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So, if we know say the time taken as a function of n is less than or equal to say 15 n cube 

plus 17 plus 7 n square plus 35 or something like that. Then, we can conclude that t of n 

belongs to O of n cube. If in addition, we prove that t of n is also greater than say 2 n 

cube plus 37. Then, this would imply let us go back to our definition. So, let me put it on 

top. So, let us see. So, here we are establishing that t of n is bigger than 2 n cube plus 37. 

Or I can write this as, say 2 n cube is less than or equal to t of n. So, which is exactly the 

condition that, we wanted over here. And therefore, we could argue that t of n belongs to 

the class omega of n cube. Over here in the first case, in the first case we said that t of we 

know that of, n is less than 15 n cube plus 7 n square plus 35 and which I can write down 

as in fact, less than 35 plus 7 plus 15, so 57 n cube. 

And that is really satisfying this condition. And therefore, I can conclude that t of n is 

belonging to this class. But, what happens as a result of both of these. So, I have really 

established that, this t of n is bounded below by c 1 times g of n. Simply, this 2 n cube. 

And it is bounded above by c 2 times g of n, which is simply this 57 n cube. 
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So, as a result what has happened is that, I can conclude from both of these things that t 

of n is belonging t of n belongs to theta of n cube as well. So, let me make this point 

again, because it is an important point. The class O of g is the class of functions, which 

are bounded above by g. So, if we know something about what is bigger than these, than 

the function that we are considering. 

If we know a function, which is bigger then, we can say we can put it. Put the unknown 

function in this class, in this O of g class. So, if you know an upper bound on a function 

then, we should be looking at expressing that upper bound as O of g. If we know a lower 

bound on that function, we should be looking at expressing this knowledge as this f 

belongs to omega of g. And if we know both upper bound and lower bounds in terms of 

the same function g then, we should write that this function f belongs to theta of g. 
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So, as you must have already guessed the class theta of g is simply the union of the 

classes O of g, the intersection of the classes O of g and omega of g. So, let us take some 

examples of O. 
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This is something like 3 n square belongs to O n square. 3 n square in fact, belongs to 

theta of n square. And therefore, it certainly belongs to O of n square, because O of n 

square in fact, is bigger than theta of n square. Here is another example. So, say 10 n 

cube plus 5 n plus 7 belongs to O of n cube. Similar logic, but something like 10 n cube 



plus 5 n plus 7 also belongs to O of n to the fourth. Why is this? Because, 10 n cube plus 

5 n plus 7 is less than or equal to I can certainly write this as being less than or equal to 

say 32 n to the fourth. 

And that is all my definition of O really cares about. So, this also belongs to this. This 

function belongs to this class. No surprise, you should be surprised by this. Because, we 

are really saying that g serves like an upper bound on this function. And if I can, if n 

cube is an upper bound then certainly n fourth is an upper bound as well.  
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Let me summarize that f belongs to theta of g, should be read as f is nearly the same. Or 

let me write it as similar to g. f belongs to O of g, should be read as f dominated by g. 

Actually, not dominated. f is no larger than g. Sort of like less than or equal to, but it is 

not exactly less than or equal to. Because, we are ignoring constants just as this is sort of 

like equal to. f belongs to omega of g, like y should be thought of as f greater than or 

equal to g. But, again we are ignoring constants. And also lower order terms. 

So, we now have defined our three main functions classes, theta of g, O of g are also 

called big O of g and omega of g. I have defined these classes in the context of the times 

taken by algorithms. But of course, these are just plain old function classes. And the 

functions could denote, not necessarily the time taken, but any old thing. So, for example 

let me define a general function. Which just, it is the sum of n numbers. 
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So, let me say S of n is equal to summation i going from 1 to n of i itself. Well you do 

know, from say some of the mathematics courses that you have done. That S of n is 

nothing, but n into n plus 1 upon 2. However, getting into a result like this, requires some 

amount of cleverness, this result is a very precise result. If you prove that S of n is 

exactly this, it is a very precise result. 

But, sometimes you might say, you might not have enough time or you might not have 

enough cleverness to get on exact result like this, which is to say that S of n is exactly n 

into n plus 1 upon 2. But, suppose you might be happy with a weaker results. So, you 

might want to know well, does S of n grow or does S of n belong to n square into the 

class theta of n square or does it belong to the class theta of n. 

At first glance just by looking at this, it should it is not clear at all whether S of n belongs 

to the class theta of n square. Or whether it belongs to class theta of n cube or anything 

like that. So, what I want to stress or what I want to give an example of right now is that, 

even without getting to this exact expression, you might be able to determine the class to 

which a function belongs. And in fact, we are going to prove that S of n belongs to the 

class theta of n square, without actually calculating S of n precisely. 

And this is an instructive example, because something like this will happen when we 

analyze algorithms. So, S of n is equal to summation i going from 1 to n of i. But, note 

that, this i is always going to be at most n. And therefore, I can write this as summation i 



going from 1 to n of n itself. But, what is this? This is just n plus n plus n n times, 

because every term in this sum is n. And therefore, this is nothing, but n square. 

So, what have you established? We have established that S of n is less than or equal to n 

square. But, that right away puts S in the class O of n square. So, this implies that S of n 

belongs to the class O of n square. Can we argue that S of n belongs to the class omega 

of n square? That is, what we are going to do next. So, again we observe something very 

simple. So, S of n is summation i going from 1 to n of i. 

Now, I am going to ignore the first in our two terms. So, this certainly is greater than or 

equal to. If I ignore the first in our two terms, this is going to be i going from say n over 

2 plus 1 to n of i itself. But, now note that this i is always going to be at least n over 2, 

because it starts at n over 2 and goes all the way till n. So, therefore, I can write this as 

summation i going from n over to 2 plus 1 to n of n over 2 itself. 

So, term by term this series this sum is bigger than the corresponding term over here. 

But, what is this? This is simply n by 2 added to itself n by 2 times. So, therefore, I will 

write this as equal to n by 2 times n by 2, which is n square by 4. So, I have argued that S 

of n is bigger than or equal to n square by 4 and at most n square. So, we have bracketed 

S of n. Well before that, just once we argue that S of n is bigger than n square by 4. We 

can conclude that, S of n belongs to omega of n square. Just going back to our definition, 

we have proved that. Let us just do this once. 
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So, we need to argue that f of n which is S of n now, is greater than or equal to n square 

by 4. And the c 1 is now 1 by 4, but that is. We do not, we did not necessarily say we did 

not say over here that, c 1 has to be greater than 1 or anything like that. Any real number, 

any positive real number is fine. There exist, I should write this as there exists c 1 on n 

naught positive all through. All the c 1 naught that, I have written should be positive. 

That is what, that is exactly what we have proved over here S of n. So, we have argued 

that S of n belongs to n square as well and from this and this, what can I conclude? 
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Well from those two things, I can conclude that S of n must be theta of n square as well. 

So, notice that in doing any of this I did not actually exactly evaluate S of n. In this case 

evaluating S of n exactly is possible, but very often it is not. As I said, it may require 

exceptional cleverness once in a while to exactly evaluate a function. But, giving bounds 

on it is easy. And the bounds on it, can be nicely stated in terms of the class notation that 

we have right now. 

So, if you know an upper bound we can state it as S of n belongs to O of something. If 

you know a lower bound, we can state it as S of n belongs to omega of something. And if 

we know both, we can state S of n as theta of something. In this manner, I would like 

you to prove. So, let me write this down as home work. Prove that, say t of n if t of n is 

equal to summation i going from 1 to n of say i square. Then, prove that t of n belongs to 



theta of n cube. The proof is really more or less identical, but you should. But, again you 

should persuade yourself of this. Let me take one more example. 
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So, let us look at the Fibonacci series which is defined by f of n equals f of n minus 1 

plus f of n minus 2. And f of 1 equals f of 0 equals 1. Let me claim that, f of n is always 

greater than or equal to 2 to the power n by 2. This is also home work. What can you 

conclude from this? You can conclude from this that, f of n is an omega of 2 to the n by 

2. Let me make, one more claim. Well, let me not make that claim. 

Let me instead tell you the real result, actual result. It is possible to show that f of n is 

theta of 1 plus root 5 upon 2 whole to the power n. So, it is not exactly this number, but it 

is within a constant multiplier of this. The nth Fibonacci number is within a constant 

multiplier of this. Proving this exact bound, takes a lot more work. But, by something 

really simple we have at least argued that f of n is actually going to grow at least as 2 to 

the n by 2. Or in fact, I can write this as omega of root 2 to the n. 

So, something like this is commonly called exponential growth. Some by a very easy 

logic, by very easy reasoning we can argue that the Fibonacci number grow 

exponentially. By more complicated reasoning and by reasoning, which involves 

essentially involves finding out a precise formula for the nth term. We can get a much 

tighter results. But, the importance right now is that our theta notation and our omega 



notation allow us to express our knowledge or lack of it, in a very compact manner. So, 

let me summarize now. 
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So, one we have defined theta, O and omega notation. These capture the idea that, ignore 

constant multipliers. Consider n goes to infinity, which is equivalent to saying that ignore 

consider leading terms. So, our time estimates of algorithms will be expressed using 

these notations. The second thing that I want to mention is that, in fact this notation is 

just a general notation on functions. And it can be used for other things as well and 

sometimes. 

And it really allows us to express, what we know and what we do not know in a very 

compact manner. So, even if we do not know even if we know a little bit about it then, 

we can put it in a certain class and that, this partial information that we have can be 

nicely expressed. So, this is useful for thinking about functions in general.  

Thank you. 


