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Last time we looked at the concept of reduction. So let me just quickly review, what we 

mean by reduction? So, reduction means this given an efficient algorithm for a problem 

pi 1. So, you are given a efficient algorithm for problem pi 1. Then using this, we design 

an efficient algorithm for a different problem. So, we essentially showed that this implies 

that there exists an efficient algorithm for problem pi 2. So, given that there exists an 

efficient algorithm for problem pi 1. 

So, one problem we show that there is an efficient algorithm for problem pi 2. The way 

we do it is imagine that this pi 1 somebody has coded for pi 1 an algorithm for pi 1 and it 

exists in some library. Then, we use this to design an algorithm for problem pi 2. So, this 

algorithm that we design it takes as input for problem pi 2. It perhaps does something to 

the input and then calls this sub routine for an algorithm pi 1 may be once may be twice 

repeatedly. 

And at the end of this it outputs an answer and this answer is for problem pi 2. So, 

essentially we have solved problem pi 2 assuming that somebody has given a solution for 



problem pi 1. The two problems, we looked at last time was pi 1 was given a graph. 

Does, there exist a perfect matching in the graph that was pi 1. And the algorithm, we 

designed was given a graph output a matching of maximum size that was pi 2. 

And we did in fact, repeatedly call this pi 1 after modifying the inputs likely. So, why is 

this called the reduction? It is called the reduction in the following sense that you 

actually want to call, you actually want to solve a problem pi 2. And you have somehow 

reduced this problem solving the problem pi 1. 

In the sense that you can solve the problem pi 1, you can solve problem pi 2. So, you 

have reduced the problem pi 2 to a problem pi 1. And that is how the word reduction 

comes. But, the essential method is this given an efficient problem algorithm for one 

problem find an efficient algorithm for another problem. And you have to use the 

algorithm for the problem given to construct this efficient algorithm. So, this was a 

concept of reduction. 

We will in fact, see one more example of this very shortly. Before, we see an example 

here is a word which seems a bit new which is efficient. Problems have been defined, we 

have seen many problems, algorithms have been defined. We have seen many algorithms 

well what does this efficient means. 

So, let me define what I mean by efficient? We had seen earlier a solution to one of these 

scheduling problems, where the time taken was just too much? That was a inefficient 

algorithm. An efficient algorithm, we would like to be something that on reasonable size 

inputs finishes in reasonable amount of time. 
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So, let me tell you algorithms which are not efficient to start with. So, these are usually 

brute force algorithms are not efficient. So, what do you mean by brute force algorithms? 

Brute force algorithms are algorithms that look at all possible solution sets. There may be 

many possible solutions given your input there could be many possible solutions. And 

you want to pick one which is good or the best. 

So, the brute force algorithm would look at all possible ways of doing this and pick the 

best one. For instance, if you want to look for a matching of maximum size a brute force 

algorithm would look at all possible collection of edges. All possible subsets of edges, 

then check whether each subset is a matching and also the size. And from this you can 

certainly find out a matching of maximum size. But this algorithm takes too much time. 

So, if there are m edges then you take 2 to the m, you have to look at 2 to the m subsets 

and we have seen that this is just too much. So, these usually search exhaustively through 

the entire solution space. And if the input is of length n that is the other sort of 

characteristics of this brute force algorithm. The input size is n typical times taken by 

these brute force algorithms is 2 to the n, because we have just looked at all subsets. 

Typical times are 2 to the n and this is just too much. 

And we saw that you design such algorithms you may get fired. So, these are not the 

algorithms that we are looking for these are not efficient, what do I mean by that. So, by 



efficient I mean that the running time of the algorithm is bounded by the polynomial in 

the input size. 
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Let me write this down for us this would mean this, the running time of the algorithm is 

bounded by a polynomial in the input size. So let me restate this again, what do I mean 

by polynomial? The running time which is bounded by let us say n to the constant. So let 

me, just state this again which means I am just going to restate this. There exists a 

constant c such that the running time T of n is big O of n to the c, where n is the input 

size. 

So this is, what efficient for us will mean? Most of the algorithms, we studied so far are 

efficient in this way. For instance sorting, we can do in n log n times. That certainly 

bounded by a polynomial n square bounded by n square. The other algorithms which you 

have studied in your divide and conquer or dynamic programming they are all bounded 

by a polynomial in the input size n square n cube. Shortest path finding minimum 

spanning trees all most any algorithm that you have studied so far. 

They are all their running times are all bounded by a polynomial in the input size. And 

these are the algorithms we have studied so far are efficient, why polynomial, why is the 

notion of efficiency, why not some other function of n. 
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So, the reason is this, if you compare n to the c if you compare n to the c. And let us say 

2 to the n. So, these are 2 to the n is what brute force algorithm would take and n to the c 

is what our notion of efficiency is will be. If you look at these two functions then 2 to the 

n grows just much faster than n to the c. So, even for inputs of size 1000 square and 2 to 

the 1000 are just two different things. 

If you have something which is let us say n square then if you program an algorithm, 

which runs in time 1000 square that will take a few minutes to complete. If your 

algorithm takes 2 to the 1000. Well, it is not going to stop at least in our life times may 

be much more. So that is why, this motion of efficiency has been is prevalent. 

The other sort of reason is the in practice usually when the problem has an algorithm 

which runs an polynomial in input size. So usually in practice, if there is a constant, so 

that you can bound the running time by n to the c. This c happens to be very small 2 or 3, 

there are very few algorithms, whose running times are more than n cube. 

If there is a polynomial time algorithm for this problem which means the running time is 

bounded by a polynomial. Then, using this polynomial is small like n n square n cube log 

n. So in practice, if there is such a c, usually less than equal to 3, so that is why one uses 

this notion of efficiency and this is the notion that we will use for the rest of this course 



((Refer Time 1:48)). We said that if there is an efficient algorithm for problem p i 1, 

there is an efficient algorithm for problem pi 2. 
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So, let us again look at the matching example that we did pi 1. So, we said that lets 

assume that there is an efficient algorithm for perfect matching. So this, we said implied 

an algorithm for finding the size of the maximum matching and this implied an algorithm 

for finding a maximum matching. 

This is what we saw last time? Now even though this algorithm, it is efficient. It is not 

necessary that when you do this transformation. The new algorithm is efficient. In this 

case, it actually is true the reason is this algorithm is called at most n times. So, the 

running time were let us say n to the c this was called at most n times running time here 

is roughly n to the c plus 1. And this called this at most n times, so this turns out to be n 

to the c plus 2. 

So, if there is a c if there is a constant c. So that this running time is bounded by n to the 

c. There is some other c possibly may be c plus 2 2 c. So, that the new algorithm runs in 

time n to the c. So that is what I mean by saying that if there is an efficient algorithm for 

problem pi 1. There is a efficient algorithm for problem pi 2. 
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For our next problem I need to define a couple of terms. These are concepts of 

Hamiltonian path in Hamiltonian cycle some of you have seen this before, but let me 

define this anyway. So, a Hamiltonian path in a graph G is a path of length n minus 1, 

where n is the number of vertices. So, path of length n minus 1, where n is the number of 

vertices. In other words it is a path which spans all vertices. 

Other words, it is a path that contains all vertices. So, it must be a path in the graph and 

all vertices in the graph must be present. Clearly, the length is n minus 1, the number of 

edges which is length n minus 1, this is Hamiltonian path. The Hamiltonian cycle is very 

similar; it is a cycle which spans all vertices one single cycle which spans all vertices. 



(Refer Slide Time: 16:30) 

 

Let me write this down to a Hamiltonian cycle in a graph is a cycle which spans all 

vertices. So, let us look at an example, so supposing this is a graph. Now, here is a 

Hamiltonian cycle in the graph, this edge, this edge, that edge this edge. So, this is a 

cycle which has all the vertices in the graph. And if I remove any one of these edges it 

gives a Hamiltonian path in the graph. 

Any one of these edges in the Hamiltonian cycle, this gives a Hamiltonian path in the 

graph. So, if a graph has a Hamiltonian cycle, it has Hamiltonian path. The reverse of 

course may not be true. So for instance, the graph is just a path. If the graph is this path 

then it has a Hamiltonian path and it has no cycle. 
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So now we have defined these two terms, let us put them to use. We are talking of 

reductions. So we are going to see, how closely are these two problems or two problems 

that I am going to define right now related. One is the problem of finding the 

Hamiltonian paths and the other is the problem of finding the Hamiltonian cycle. 

So, the first problem is called Hamiltonian cycle. Let us see, it is this input is a graph G. 

The questions you ask Does G have a Hamiltonian cycle? This is problem HC. Similarly, 

I have problem HP not to be confused with Hewlett Packard. And the input to the graph 

G, the question Does G have Hamiltonian path? So for this problem, you want an 

algorithm that says you fit in a graph G. 

And this algorithm should say either yes the Hamiltonian path or not the graph does not 

have that is for this problem. For this problem, it should say yes put the graph as 

Hamiltonian cycle otherwise No the graph does not have Hamiltonian cycle. So, the 

input is a graph, the output is yes or no, yes if it has this structure either the path either 

the Hamiltonian path or cycle no, it have. 

So, these are the two problems and clearly they seem to be related I mean Hamiltonian 

cycle is a cycle that spans all vertices. Hamiltonian path is a path that spans all vertices. 

So, one would expect these two problems to be similar in some way. In fact similar now, 

we have a clear notion of what similar must be; we want to say something like this. 



If we can solve HC which means if there is an efficient algorithm for HC, there is a 

efficient algorithm for HP. And there is a efficient algorithm for HP, there is a efficient 

algorithm for HC. 
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So, these are the questions that we are going to address now an efficient algorithm for 

HC which is Hamiltonian cycle. Design a efficient algorithm for HP, this is Hamiltonian 

path. So, how do we do this? So here is my here is the algorithm HC. If I feed in a graph 

to this algorithm it will say whether or not it has a Hamiltonian cycle. Now, what I want 

to design is one for HP. I want this feed in a graph this would say yes if it has a 

Hamiltonian. So, supposing the input is some graph G. 

I want to determine if this graph has a Hamiltonian path or not. And I have to use this 

algorithm somehow. Supposing I feed the same graph into HC, two things can happen 

HC can say yes or it can say no. So, let us try this let us see what happens in each of 

these two phases. 
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I want to determine if G has a Hamiltonian path, does G have a HP? This is the question. 

So, I feed G into HC. There are two cases this fellow can say yes and what do you think 

you can conclude. If it has a Hamiltonian cycle does it have a Hamiltonian path? Well 

absolutely it must have a Hamiltonian path. So, if G says this HC says yes for G you are 

done great it has HP. So, you can say with surety that if it has a Hamiltonian circuit it has 

Hamiltonian path. 

What if it says No? Now, we really do not know may be it does not have an HP in which 

case it does not have a HC and so we are all fine. The problem is the graph could have a 

Hamiltonian path, but it need not have a Hamiltonian cycle. So that case, we are not just 

able to distinguish using just a blind way of using this sub routine. So, we have to be a 

little bit smarter in using this sub routines and that is the duty of the subject. 

You have to figure out how exactly do I use? This sub routine HC effectively to get a 

Hamiltonian path. This is what you do? You should may be try it you see the solution I 

am going to give right now. In fact, these transformations to the graph that I am going to 

do you have seen earlier it is a hint. So, what we do is this. 
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So here is G, I take G as it is I added this is G, I added new vertex u connect u to 

everything in G, u is connected to every vertex in G. Now, this graph I feed into HC I 

have an original graph where I want to determine if it has a Hamiltonian path or not. I 

add a vertex I connect it to every other vertex in G and feed it into HC. 

Now, if HC says it could say yes or no. So, what I am going to do is if HC says yes then 

I will also say yes, the graph G has a Hamiltonian path. If it says no, I say G does not if 

HC says yes then the output of the algorithm for HP will say yes. If HC says no I will say 

no on this new graph; however, it is on the new graph. 

So, does this work does not this work. Well it does work we will see why there are 2 

things we have to show we have to show that if it answers yes. This answer must be 

correct which means this graph G must have a Hamiltonian path. And if it answers no the 

graph should not have. 
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So, the two statements that we need to prove is the following are the following here is G 

vertex u is adjacent to every other vertex in G. So, call this new graph G prime new 

graph is G prime. So, I want to show that G has a HP if and only if G prime has HC. This 

is an if and only if statement, so if there are two things. The two things correspond to yes 

in output. For instance, we have to show that G has an HP this implies that G prime has a 

HP. 

And the no output G does not have a HP this implies that G prime does not have HC. So, 

these are the two things. So, assume that G has a HP, we need to show that G prime has 

an HP. And I think this should be fairly obvious, there is G here is my HP. I do not know 

how this looks; it is a path which runs between, which has all the vertices in G. 

Now, I need to construct an HC which is a Hamiltonian cycle in G prime and that is easy 

I just add these two edges. So, this path starts at some vertex and it ends at some vertex. 

It starts at x and ends at y, the Hamiltonian cycle, I get by just appending u to x and y. I 

add the edges u x and u y and I get a cycle in G prime. 

And you can see that I can go the other way also. So, given the Hamiltonian cycle in G 

prime I can construct a path a Hamiltonian path in G and the construction is similar. So 

here, supposing this is graph G prime and I have a Hamiltonian cycle it goes around like 

this in G prime. 



Now, this vertex u sits somewhere, this is my vertex u. If I remove this vertex u from the 

graph what I am left with is the Hamiltonian path in G. This path will start from this 

vertex x and will end at this vertex y. So, the path starts at x it will go around and end at 

y and this path is in the graph G. So, we have proved statement both ways that if the 

original graph had a Hamiltonian path the new graph have a Hamiltonian cycle. If the 

original graph did not have a Hamiltonian path the new graph will not have a 

Hamiltonian cycle. What about the other way round? We said given an algorithm for 

Hamiltonian cycle. We could construct one for Hamiltonian path. 
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What about the other way round? The other way round would be this given an algorithm 

for Hamiltonian path constructs one for HC and from now on it, if you are given a 

algorithm it is efficient. And you want to construct one that better be a HP. So, these are 

all well I just said algorithm, we want efficient algorithm. The previous one was clearly 

efficient. I had to call the Hamiltonian cycle routine exactly once. 

I do a small modification to the graph the input size does not go up by much and I call 

the Hamiltonian cycle routine exactly once. So that running time is roughly this the old 

algorithm was sufficient the new one was. So, how about this? So, you are given a 

algorithm for HP which means if you are given a graph G it says yes or no and what I 

want is for HC? The given let me call this G prime to distinguish from this G. So, this is 

what we want, this is what we want this is given to us. 



So, somehow again I have to use this routine for HP efficiently to get this routine for 

Hamiltonian cycle. So, how do I do? I could let us try the usual trick feed this graph into 

HP and it says yes. If it says yes then well it could have a HC or it may not have an 

Hamiltonian cycle. On the other hand if it said no then I am here that the graph does not 

have the Hamiltonian cycle. In fact, does not have a Hamiltonian part. So, if it says no I 

have no we are all fine, but if it says yes, again we run into a similar problem. We cannot 

decide whether it has a Hamiltonian circuit or not. 
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So, what do we do? So, here is there is an attempt take the graph G. So, I want to use let 

me just put this on the side. So this is, what I want to use and I want to create one for HP. 

So, what do I feed into HP. So, take this graph there is a input graph G. So, take G now 

remove edges from G one by one. So, let us say I remove edge e. Now I feed into G 

prime and I will see whether it says yes or no. 

Now, if it says no for any edge, then clearly the graph will not have a Hamiltonian cycle, 

why is this? So, supposing G has a Hamiltonian cycle then if I remove any edge from G, 

the graph still has a Hamiltonian path. So, if I take G and remove any edge the 

Hamiltonian paths must keep saying yes. Is this a good algorithm I mean can I sort of say 

that remove every edge from G feed into HP? If it says yes all the time then yes G has a 

Hamiltonian cycle. If at least once it says no then G does not have Hamiltonian cycle. 



Let me write this algorithm. For each edge e call HP with G minus e. If HP says yes for 

all edges then G has an HC. So, you output yes otherwise output no. So, if it says if HP 

says no for any input then you say no. So, this is the algorithm. Well the question is does 

this work what do we mean by this question what does it mean for this to work or not. 

It means that whenever you output yes. So, whenever you output yes the graph better 

have a Hamiltonian cycle. And whenever you output no the graph should not have a 

Hamiltonian cycle. Let us take both of these in turn and see whether we can prove this. 
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So, let us take no first, so that is easier. So, you output no if for some edge e prime G 

minus e prime does not have a Hamiltonian path. So, if I remove this edge e prime then 

the graph does not have a Hamiltonian path. We have seen that this implies that G does 

not have Hamiltonian cycle. If it had a Hamiltonian cycle then if I removed any edge out 

I would still have a Hamiltonian path in the resultant graph. 

So whenever we output no, we are in the clears we are correct the algorithm is always 

correct, what about the yes case? It seems very reasonable that for every edge if I remove 

it. And ask there is a Hamiltonian path and it says yes there should be reasonable that 

there should be a Hamiltonian cycle. So, if there is a Hamiltonian path after removal of 

any edge is a good chance that one feels that graph should have a Hamiltonian cycle, but 

this is false. So, this statement is false. 
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Let us see an example, so here is an example. So, this is an example of a graph such that 

removal of after removal of any edge graph has a Hamiltonian path, but the graph does 

not have Hamiltonian cycle. So, there are two things to be checked with this graph. That 

it does not have a Hamiltonian cycle, but if I remove any edge from this graph any edge 

at all then this graph must have a Hamiltonian path. Let us check both of them. 

Now, this graph does not have a Hamiltonian cycle and to see that we focus on this 

vertex in the middle. If I remove this vertex, then this graph becomes disconnected. 

There is a vertex in this graph. So that if I remove this middle vertex and the graph 

becomes disconnected. This cannot happen if the graph has a Hamiltonian cycle. If the 

graph has a Hamiltonian cycle, if I remove any vertex the resultant graph will have a 

Hamiltonian path and will in fact be connected. 

So, if a graph has a Hamiltonian cycle if I remove any vertex it must remain connected 

that is not true for this graph. That is the reason why this does not have a Hamiltonian 

cycle, we still have to prove one more thing which is that if I remove any of these edges 

in this graph then it should not have it must have a Hamiltonian path. 
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So, let us look at these edges one by one. Let me draw this graph again. So, let us focus 

on this edge supposing I remove this edge. Does there exist a Hamiltonian path? Well the 

answer is yes choose this edge choose that edge choose this edge. You come down this 

way then you choose this edge. Then, you go down this way to this edge that edge. There 

are other ways of doing this. 

So, you go up and down like this and this you can see the Hamiltonian path. So, removal 

of this edge here causes no problem. So, let us look at some other edges. So, let us 

remove this edge what if I remove this edge? So in this case, I can start here come down 

here go up here there it says this and this. So, this will give a Hamiltonian path. So, you 

start here and you go up and down like this go up go down up to this and this you can see 

gives a Hamiltonian path. 

So, removal of this edge is also not a problem. Let us look at one more lets remove this 

edge. If I remove this edge, the graph still has the Hamiltonian path this this this this. So, 

you go down this way go back keep going down all the way up here go down and back 

here. So, if I remove this edge too there is a Hamiltonian path. Now we just see that all 

edges in the graph are similar to one of these three. 

For instance this edge is similar to that right this edge at the bottom is similar to this. So, 

all edges on this side is taken care of. These two edges are taken care of, this is the 

middle edge these two are similar. And the graph is symmetric about this vertex. So, all 



edges on this side on the left hand side are also taken care of. So, these three cases are 

enough to enumerate to sort of hopefully convince you that removal of any edge in this 

graph leads the graph with a Hamiltonian path. 
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So, this type the algorithm that we described is wrong this fails. So, it looked like a 

reasonable thing to try, but it fails. 
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So, what you do is this? So, here is my graph. So, here is let me take some edge u v. 

Now, what I will do is remove the edge u v remove this edge and I will attach to other 



vertices this is u prime that is v prime. So, I have a original graph G I remove the edge u 

v. So that is g1 from here and then I attach two additional vertices u prime and v prime. 

Now, I ask does this graph have a HP, does this graph has a Hamiltonian path. The 

question we wanted to answer was does this have a Hamiltonian circuit. Now let us see, 

supposing this graph did have a Hamiltonian circuit. Supposing this had a Hamiltonian 

circuit not only that the Hamiltonian circuit pass through the vertices u and v. In order 

which means the edge u v was present in some Hamiltonian cycle in the graph. 

Then, let us notice that this new graph has a Hamiltonian path. So, what does it mean for 

this graph to have a Hamiltonian cycle passing through u v? It means there must be a 

cycle this way it goes through all other vertices like this and also u v. So, let us look at 

the same cycle, where I take the same cycle and I add these two edges and I get a 

Hamiltonian path in the new graph. 

So, if the old graph had a Hamiltonian circuit. Then, if I picked an edge which was 

present in the Hamiltonian cycle and ask if this has a Hamiltonian path. Then, it will 

have a Hamiltonian path that is the first thing to notice. Now here is the second thing to 

notice supposing I took a graph like this. So, I took a graph and here is G. I took a graph 

G edge u v I removed u v attached u prime and v prime and I ask if this has a 

Hamiltonian path. 

Supposing this says yes what does the Hamiltonian path look like? Now, the path has to 

these two vertices have degree 1. So, they have to be the end points of the path u prime 

and v prime have to be the end points of Hamiltonian path which means the Hamiltonian 

path has to look like this. It has to start at u prime and then go through all vertices in G 

and then go back up to v prime. This is how the Hamiltonian path should look like. 

Then, what we do is this? We remove these two edges. And then put this edge u v which 

you have removed this will give you a Hamiltonian circuit in the original graph. Now, 

our algorithm is almost complete, what we do is? We do this for all edges in the graph. 

We remove that edge attach this u prime v prime and ask if it has a Hamiltonian path. If 

any edge it says yes then we say yes it has a Hamiltonian cycle. If for all edges it says no 

then we say no, it does not have a Hamiltonian cycle. So, let me write this algorithm, 

then we will argue that this algorithm is in fact correct. 
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So, the algorithm is this for every edge e, do the following. So, remove e from G, let us 

say e is equals is u v. Then, add vertices u prime and v prime and connect u prime to u 

and v prime to v. This lets say graph G lets say e, for an edge e I get this graph G e. Now 

feed G e; that means, input G e to an algorithm for HP. If this algorithm says yes for any 

e output yes, if it says no for all e you output no. So, otherwise output no. 

So you output no, if it says no for all edges you do this you remove this edge add these 

two extra vertices and ask whether it has a Hamiltonian path. If it says no for all these 

edges then you output no. So, this is the algorithm and we have to show that this is 

correct which means if the original graph had a Hamiltonian circuit. Then, this algorithm 

will always say yes. 

If the original graph did not have an Hamiltonian circuit, it will say no and it is efficient. 

If the Hamiltonian path algorithm runs time polynomial in the input size, so does the new 

algorithm. So, these are the three things to check, let us just make sure that the algorithm 

is efficient first. You call it once per edge the Hamiltonian path routine is called once per 

edge and you do not change the input size by much. 

You just remove one edge and you add two more edges. So, the number of edges goes up 

by one. So, the input size does not go up by much and you are calling it at most m times. 

So, the original running time was bounded by some n to the constant. It is still bounded 

by some n to the constant again there are two cases. Case 1 is when the algorithm outputs 



yes then it has to be correct. Second case is the algorithm outputs no this no answer also 

has to be correct. 
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Let us take both these cases. So, case 1, so the algorithm outputs yes. So, this implies; 

that means, for some edge HP must output yes. This means there is there exists an edge e 

in G such that G e has Hamiltonian path. So, here was G and here is e I get G e by 

removing and adding these two. So, this had a Hamiltonian path. And now we have seen 

this argument that if this has a Hamiltonian path then this has a Hamiltonian cycle. 

Essentially you take the Hamiltonian path here remove these two edges and add this edge 

back together Hamiltonian cycle here. So this case is done. 
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The algorithm outputs No this means for every edge e G e does not have Hamiltonian 

path. So, we need to see that this implies that G does not have Hamiltonian circuit. So, 

this is what we need to show? So, we need to show that for every edge e if G does not 

have Hamiltonian path, then G does not have a Hamiltonian circuit. Now, it is easier to 

prove the contra positive, which means this statement, which I have written is equivalent 

to saying the following that this let me write the equivalent statement on the right hand 

side. 

So, I am going to say that G has a Hamiltonian cycle this implies if G has a Hamiltonian 

cycle what should happen? This means this statement cannot happen. It is not the case 

that for every edge e G does not have a Hamiltonian cycle. It means there exist an edge e 

such that G e does not have HP. So, these two things are the same. So, these two are 

equivalent. So, let me just sort of say what I am doing. So, you want to prove that A 

implies B you are proving that NOT B implies NOT A. I want to prove that this implies 

this is A and this is B. 

So, I want to prove that A implies B all I am doing is NOT B is this implies NOT A 

which is this because I am going to prove that if G has a Hamiltonian cycle. There exists 

a edge such that G does not have a Hamiltonian path. And you can see this also we have 

proved. 
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If G has a Hamiltonian cycle, so that is G. So that is my Hamiltonian cycle, if I remove 

any edge in the Hamiltonian cycle. So, if I remove this edge and attach these two vertices 

this resultant graph has a Hamiltonian path which is what we wanted to prove. So, we 

want to prove that G has a Hamiltonian cycle. 



There exists an edge such that G does not have sorry G does have a Hamiltonian path. I 

am sorry about this G does have a Hamiltonian path and this we have just proved. In fact, 

this edge e can be any edge in the Hamiltonian cycle. So, remove any edge in the 

Hamiltonian cycle for that edge removal of that edge G e will have to remove that edge 

attach those two vertices. This new graph G e will have a Hamiltonian path. 
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So, when we looked at these problems there were two kinds of problems we looked at. 

For some problems we said that we wrote input output. For certain other problems we 

said input question, now when I looked at problems like with finding a matching of 

maximum weight of finding a matching with maximum number of edges. They were of 

the form input and output. Because, the output was edges which were there in a matching 

of maximum size. 

Now, for instance does the graph has a Hamiltonian cycle that is the question the input is 

a graph. Does the graph has a Hamiltonian cycle I ask a question the answer should be 

yes or no. Now, the difference was for these kinds of problems. The answer was a single 

bit, it was yes or no. For these problems the output spend many bits. So, these had a 

single bit as the output these had many bits as output for instance edges in a matching. 

In fact, let us look at the Hamiltonian cycle problem. We said input is a graph G, does G 

have a Hamiltonian cycle if yes or no. So, the answer is yes or no. On the other hand I 

could have asked for a output for saying output the Hamiltonian cycle input is a graph G 



output the Hamiltonian cycle. Now, this problem seems to be somewhat similar to the 

previous problem only here the output has many bits. We have to output every edge in a 

Hamiltonian cycle. 

We have to choose one Hamiltonian cycle and output the edges from the Hamiltonian 

cycle. So, we would like to distinguish between problems, where we require the output to 

be 1 bit and problems, where we require the output to be many bits. These we call 

decision problems and these we call search problems. 
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So, typically here for decision problem let me write decision and search. So here, output 

is 1 bit here is many bits. So, here you want to decide whether true or false here you want 

to search for a solution and output the solution. That is why this I guess that is why these 

are called decision and these are called search problems. 

So example, does G have a Hamiltonian cycle. So, this is an example of a decision 

problem. Example of a search problem output a Hamiltonian cycle if one exists. The 

input is same to be both which is a graph G in one case you just want to know G has a 

Hamiltonian cycle or not. The other case you want Hamiltonian cycle output you want 

actually the edges we have. 

Now, how do these two things, how do these two problems relate to it. Is one easier than 

the other is one harder than the other? Now it turns out people have just observed it that 



they are related to each other quite closely in the sense that one is easy the other one also 

turns out to be hard. 
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So, let us take this Hamiltonian cycle problem and see this. So, I have so the input is a 

graph G. Now there are two problems, one is does G have Hamiltonian cycle, this is 1. 

And the second thing output a Hamiltonian cycle if one exists this is problem 2 that is 

problem 1. Now supposing there is a algorithm for problem 2. So, which means given so 

if you feed in a input graph the sub routine outputs the Hamiltonian cycle. 

Can we find a algorithm for problem 1, yes I hope all of you answered yes. So, the 

answer has to be yes. So, you just feed the graph in so this sub routine and look at the 

edges which have been output. So, if it forms a Hamiltonian cycle, then you just output 

saying that yes it does in fact have a Hamiltonian cycle. And if it says no it does not the 

original routine says no it does not have Hamiltonian cycle, I just then you just output 

things, so that is trivial. 

Our job is to look at the other way which means I have an algorithm for problem 1. I 

have an algorithm for this. Now I want a algorithm for this so given. Let me add efficient 

just to remind you that we are talking of efficient algorithms given an efficient algorithm 

for problem 1. Construct one for problem 2. So, this is what we really want to do and 

how do we do this. 



We have actually done something like this before which was with respect to matching’s 

when we wanted to find the edges in the matching of maximum weight. We used this sub 

routine which answered something else and we somehow got these edges out and we 

used absolutely the same trick here. So, what we do is this? We will look at the edges 

one by one let us say the edges e 1 e 2 e 3 e 4 and so on. 

So, we look at the edges one by one I remove e 1. Now I ask if the graph has a 

Hamiltonian cycle or not. If the graph has a Hamiltonian cycle it does have a 

Hamiltonian cycle which does not use this edge e 1, so I just throw away e 1. Similarly, I 

look at e 2 I remove e 2 and ask if the graph has a Hamiltonian cycle. If it says if the sub 

routine says yes I just throw away this edge and I keep doing this. 

Supposing I remove an edge and it says the graph does not have a Hamiltonian cycle 

then you also know that this Hamiltonian cycle uses this edge. So, these edges you put 

back in and you do not want to throw these edges. So, you just do this look at all edges 

one by one for those edges, where the algorithm says that it does not have a Hamiltonian 

cycle. 

You throw away those edges, but edges for which the algorithm says that there is if you 

remove there is a Hamiltonian cycle. You throw away those edges for edges when you 

remove those edges and ask the question it says no there is no Hamiltonian cycle; that 

means, this edge must be present you put it back here. 

So, you do this for all edges and at the end of it you throw away some of edges and some 

edges remaining. The claim is that the edges which remain must form a Hamiltonian 

cycle. Firstly, the graph must have a Hamiltonian cycle, because whatever remains 

whenever we ask whether it has a Hamiltonian cycle it says, yes. 

So, the graph that remains must have a Hamiltonian cycle, why should not there be other 

spurious edges floating around, why should it not have apart from the Hamiltonian cycle 

other edge. Supposing it had some other edge when you remove this edge and ask 

whether the graph is Hamiltonian cycle. The answer should have been yes. So, the 

answer is yes you would have thrown this edge away. So, there are no spurious edges. 

The only edges which are present are Hamiltonian.  
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So, let me write this. So, just to recap we are given a algorithm that says whether a graph 

is a Hamiltonian cycle or not. We are constructing using this as a sub routine, we are 

trying to find out edges in some Hamiltonian cycle. So, consider edges one by one for 

edge e i remove e i and ask HC if the resultant graph has a Hamiltonian cycle. If I says 

yes throw away e i else retain e i that is it you just do it for all edges. 

Finally, what remains is a Hamiltonian cycle which means what remains are edges from 

a Hamiltonian cycle. So, you can see that both problems are quite related I just need to 

call the other algorithm n times able to actually extract the Hamiltonian cycle. So, it is 

been observed for most problems there are of course, problems which do not fall into this 

which do not fall into this property. But for most problems if I can sort of decide then I 

can also search for a solution. So, if the decision version of a problem is easy then even 

the search version is easy. 

On the other hand, if the search version is hard then social decision word, so this is the 

reason they are going to focus on decision versions of problem from known. So, we are 

just going to look at the problems which have whose output is 1 bit and say yes or no. 
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We are now ready to define the class NP. So, before I formally define this. Let me, sort 

of give you a informal definition. Let us take our favorite Hamiltonian problem. So, HC 

the input is a graph G and the question does G have Hamiltonian cycle. So, let us look at 

this one just consider now we are going to do something slightly different from what we 

have been doing. We are not going to design algorithms for the time being what we are 

going to do is have a game between two players. 

There are two players now one I will call a Prover and one I will call a Verifier. These 

are two people Prover and verifier, Prover is all powerful; he just knows everything. The 

Verifier has limited resources and it does not trust anybody sort of does not trust. 

Especially he does not trust the Prover he has limited resource. 

Now, the Prover and Verifier sort of lets sitting in a room. And there is a huge graph in 

front of just imagine that somebody has drawn a huge graph in front of them. The Prover 

looks at the graph and he says this graph has a Hamiltonian cycle he is powerful he can 

figure these things out and he says this graph has a Hamiltonian cycle. 

Now, the verifier is skeptical he does not believe the Prover. So, he says the why should 

the graph have Hamiltonian cycle and what is the deal, then what should the Prover do. 

The Prover wants to convince the Verifier that he is all powerful and he has made the 

right statement he said the graph is Hamiltonian cycle and the graph has a Hamiltonian 

cycle. So, he wants to convince the verifier that the graph has Hamiltonian cycle. 



So, what could he do? Well if you think about this for a minute what the Prover could do 

was pick out the edges from the graph which form some edges which form some 

Hamiltonian cycle. So, pick out some Hamiltonian cycle from the graph and tell the 

Verifier that here are a set of edges which form a Hamiltonian cycle. 

Now all the verifier needs to do is look at these edges make sure they form a make sure 

that they form a cycle. You just have to verify that these set of edges form a Hamiltonian 

cycle which is easy to verify even though he has limited resources and he is not too 

intelligent this much he can do. So, the Prover has somehow convinced the verifier that 

this graph has a Hamiltonian cycle. 

So, the Prover says that there is a Hamiltonian cycle in this graph the Verifier asks why 

the Prover then picks out the edges. These are the edges look at these edges they form a 

Hamiltonian cycle in a graph. The Verifier then verifies that yes indeed the graph did 

have a Hamiltonian cycle. And we have just proved that Hamiltonian cycle is in the 

graph is in the class NP. I have not defined the class NP. 

So, you really do not know what it is. But, this is all there is to proving things proving 

the problems are in the class NP. So, let us do this Prover Verifier game for some other 

problem just to get sort of just to get used to it. Let us say the input is an integer t. So, 

you want so the output factors let us say two non trivial integers t 1 and t 2 such that t 

equals t 1 times t 2. So, you want to find factors of these. 
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Now, this is a search question it is not a decision question. So, the corresponding 

decision question is the following. So, here is the question is t composite which means 

can t be written as t 1 times t 2 where t 1 is not 1 and t 2 is not 1. So, these two are non 

trivial factors of t. So, let us play the same Prover verifier game. So, here is the Prover 

whom I will say P here is the Verifier V. 

So, P says t is composite, now V asks why, now t has to convince V that in fact, it is 

composite. So, Prover sends t 1 and t 2 across. So once, he sends t 1 and t 2 across 

Vmultiplies t 1 and t 2 and checks the result with t. If its equal to t of course, he is 

convinced that t is composite. And in fact, t 1 and t 2 are two factors go back and look at 

this Hamiltonian problem again. 

So, let us look at this again, now if the answer was yes it does have a Hamiltonian cycle 

which means the Prover says it has a Hamiltonian cycle then the Prover could convince 

the Verifier that the graph does have a Hamiltonian cycle, what if the Prover says no it 

does not have a Hamiltonian cycle. So, usually he says yes this guy asks why, so he 

sends edges in HC and this guy Verifies. 

Now supposing, he says no, it does not have a Hamiltonian cycle. Now the verifier asks 

why and well what does the Prover do could he convince, how could he convince the 

verifier the given graph does not have a Hamiltonian cycle. Now, think about this for a 

little, while you see that it is a difficult question to answer, how could he convince 

somebody that this graph does not have a Hamiltonian cycle. 

Well the only way seems to be you just try all possible subsets of edges whether they 

form a Hamiltonian cycle or not. If known of them form then it does not have, but this is 

a brute force method. And the verifier does not have so much time he does not have. So, 

much time to check all possible subsets of edges. So, there is no easy way for the Prover 

to sort of convince the Verifier that G does not have a Hamiltonian cycle. So, it looks 

like the answer to the question, whether it is yes or no. If it is yes the Prover can 

convince the Verifier if it is not the Prover is not able to convince the Verifier. So, they 

behave sort of differently. 


