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Welcome to the course on design and analysis of algorithms. Our topic today is Element 

Distinctness Lower Bound. This will be the continuation of the previous lecture, which 

was on sorting lower bounds. Let me start by defining the problem. So, the problem is as 

follows. 

(Refer Slide Time: 01:11) 

 

You are given as a input, a sequence of numbers. Let me call the entire sequence x and 

the individual numbers in the sequence are x 1, x 2, x n. We are supposed to output a yes 

answer, if all the x are distinct. And otherwise, if some x i equal to x j some two numbers 

x i and x j, distinct two numbers x i and x j are identical. Then, we are supposed to output 

and no answer. A no answer means, that no all the elements are not distinct. 

What we are going to prove today is that, in the decision tree model, which we talked 

about last time. And which I will quickly define this time also just for continuity. We 

will prove that in this decision tree model, the time is going to be n log n. So, this is a 

non trivial lower bound, in the sense that it says. That you need to do a little bit more, 

than just examine the numbers, which would just take omega of n time. 



It should be quite obvious to you, that if you are allowed to use n log n time. Then, 

element distinctness can easily be solved. How? Well, in n log n time we can sort all the 

numbers. And now, if two numbers are identical, they are guaranteed to come next to 

each other. In which case, we simply have to compare adjacent numbers after sorting and 

that will enable us to find out, whether all the numbers are distinct are not. 

So, in summary in n log n time, we will be able to actually compute, whether the 

numbers are distinct. However, the subject of today’s lecture is not that. The subject of 

today’s lecture is to prove, that at least n log n time is needed. So, we want to prove a 

lower bound. 
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Here is what I am going to do today? So, today I am going to talk about, the decision tree 

model. I am going to go through this rather quickly. Because, it is going to be very 

similar to what we did last time. Last time we looked at lower bounds on sorting and we 

introduced a lower bound technique. So, I am going to explain, why that lower bounding 

technique does not work, that seem like a very nice technique. But, it will turn out that, 

that does not really work for the problem, which we are looking at today. 

Then, I will talk about a new lower bound technique, which works for this problem of 

element distinctness. And then, we will prove the lower bound that I mentioned. Finally, 

I will extend the model. So, instead of the decision tree model, I will define a more 



powerful model I will call the algebraic decision tree model. And I will talk a little bit 

about it. 
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So, let me start with the decision tree model. So, in the decision tree model, the input is 

always going to be a sequence of numbers. Say, the same sequence x 1 through x n. And 

we will assume that these numbers have already been read into the model. So, there are 

no input instructions as such, the inputs are already read. A program in this model is a 

label tree. And all non leaf nodes are labeled i colon j, where i and j are integers. 

And these integers have to be fixed as a part of the program. Leaf node, each leaf node 

has a label, which just says what is the value to the output? Edge labels are relational 

operators. So, less than equal to greater than or not equal to less than less than or equal to 

greater than or equal to. Let me quickly take an example of a decision tree program. 



(Refer Slide Time: 05:12) 

 

So, here is a decision tree program for sorting three numbers. As you can see, each non 

leaf node is labeled i colon j in this case 1 colon 2. And it is each leaf node is labeled by 

the answer, that is to be output. And furthermore, each edge is labeled with a relational 

operator ((Refer Time: 05:34)). Execution begins at the root, at each node labeled i colon 

j, x i from this set of inputs is compared with x j. 

Whatever the outcome of that comparison is, the corresponding branch is found with the 

corresponding label. The corresponding outgoing edges are found and execution follows 

that branch, that outgoing edge. So, you go down to the node, which is at the other end 

point of that edge. And you repeat this whole thing, until you get to a leaf. When you get 

to a leaf it is label is the output. So, that is the answer that you are going to compute, that 

you wanted to compute. 

So, two things to be noted. So, as we saw in the example, there is going to be a separate 

program for each input size. So, there is going to be a separate program for n equal to 1, 

for n equal to 2, for n equal to 3 and so on. And we saw a program for size n equal to 3, 

not for element distinctness, but for sorting. And then, the other point we noted is, that 

although we are looking at a decision tree model. And a decision tree model is not 

exactly like our computer, like any of our computers. 

It does in fact, have a connection to the RAM model or the Random Access Machine 

model which in fact, resembles our computers. And this relevance has been discussed in 



the previous lecture. And let me remind you what that relevance was. So, we said in the 

previous lecture, that if we have a lower bound in the decision tree model, when it 

applies to the RAM model, not completely. But, it applies to comparison based 

algorithms in the RAM model. Comparison based algorithms are simply algorithms, 

which compare the keys, they do not perform arithmetic on the keys. Or they do not use, 

the keys to induct into the arrays. They simply compare the keys and of course, they 

make copy. 
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So, here is a quick overview of the sorting lower bound. The input to the sorting problem 

was the sequence x. The same sequence which we have mentioned, consisting of 

components x 1, x 2, x n. So, these are all numbers and we want to sort these numbers. 

The key thing to observe in this problem or in the lower bound argument is that there are 

n factorial possible answers. 

So, either I could say that, this is the sorted sequence or I could take a permutation of 

this. And say that is a sorted sequence. I could take every possible permutation of this 

and that could be my answer. Every possible permutation could be an answer and there 

are n factorial permutations. And therefore, there are n factorial possible answers. This is 

a very important point, in this argument. 

Now, the answer is going to be printed at the leaf of these trees of the program tree, 

which means that, if you want to print out n factorial different answers. Then, you must 



have n factorial leaves, you have no choice. Because, a single leaf can just print a single 

answer, it will print out that entire permutation. But, that entire permutation constitutes a 

single answer. So, if execution arrives to that leaf, then that is the only answer it can 

print out. 

So, if your program tree is going to be even capable of printing n factorial different 

answers. Then, it had better have n factorial leaves. But, if it does have n factorial leaves. 

Then, the height of the tree has to be at least log of n factorial, which is n log n. And in 

fact, the height of the tree is the worst case time. And therefore, the worst case time 

taken is at least n log n. So, this is a rough sketch of the argument, that we saw last time. 

This idea, that if the answer is n factorial possibilities. Or if there are n factorial different 

answers, in the language of information theory, can be expressed as saying that this 

answer has high information. So, whatever we are going to print out as the answer, if you 

think of it as a variable, it has a very high information content. The answer can take n 

factorial different values. So, it has the information quantity in it is high is something 

like n factorial. 

In fact, information theory measures information as the number of ways, the log of the 

number of ways. In fact, it is going to be log of n factorial, very roughly. In any case, 

bounds of this kind, where we say that there are so many ways in which this variable can 

take a value are therefore, called information theoretical lower bounds. So in fact, you 

will see the sorting lower bound often refer to as the information theoretic lower bound. 

Let us now turn to the element distinctness problem. How many answers do we have? 

Well, the answers are two really, the answer could be yes, which means all elements are 

distinct or the answer could be no. No means some duplicate exist. So, we only have two 

answers, so our answer has only two possibilities. So, log of that is not going to be very 

large it is going to be in fact, exactly one. 

So, if we just say that there are two possibilities. And therefore, there are two leaves that 

does not help us much. Because, log of 2 is 1 and it just says that, the tree must have 

height of value, which is really a silly bound. So, we need to do something better. So, we 

need to have a new strategy. 
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So, here is a rough sketch of the strategy. So, we will show that there must be at least n 

factorial leaves. Again the n factorial is going to turn out be somewhat significant. But, 

we will prove that in fact, there must be n factorial leaves all of them giving yes answers. 

So, this is going to be a interesting argument. And we will be making some rather clever 

use of n dimensional geometry. Do not be worried about n dimensional geometry, most 

of the time for the purposes of getting intuition. You can visualize, what is going on in 

two or three dimensions. And that usually tends to be enough which is in fact, going to 

be the case in our proof. However, if we want it algebraically write down things, the 

arguments can get a little bit complicated. But, fortunately even the algebraic argument 

that I am going to show you is going to be rather simple. 
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So, here is our main claim again, we are going to prove that the time required for the 

element distinctness problem is going to be at least n log n on the decision tree model. 

Let me remind you what this claim means. So, this claim asserts a problem lower bound, 

it says that the time required for this problem, irrespective of any algorithm is this. So, it 

is not a bound on an algorithm. Well, if you want to think about algorithms, it is a bound 

on all possible algorithms, in this model of course. 

Here is a quick overview of the proof, the proof is a little bit long, but not terribly so. 

The first idea is going to be to interpret our input sequence. So, we have our input 

consists of n numbers x 1, x 2 all the way till x n. So, we are going to think of this n tuple 

as representing, the coordinates of a n dimensional point. 

So, x 1 represents the first coordinate, x 2 represents the second coordinate, x n 

represents the nth coordinate. And the entire thing represents a point and will call that 

point x. We are going to restrict these instances to the unit n cube. What do I mean by 

that? Well, we are going to insist that all the x i's lie between 0 and 1. We will prove the 

lower bound under this restriction. 

So, that should not be a cause of any worry. If we prove the lower bound under this 

restriction of course, it works if we do not have this restriction. So in fact, if we do not 

have this restriction, who knows things can get even much worse. But, we are not 



worried about that, we just want to argue that things can certainly get at least as bad as 

this. And so it is to have this restriction. 

Here is the first claim, that we are going to make. We will use the notation R of L, which 

stands for the region for L. So, the region of L, where L is a leaf is a set of all input 

instances for which leaf L is reached at the end of execution. So, this is the definition of 

what R of L means, what we are asserting is that this R of L is connected. I will explain 

to you what connected means in just a minute. But, it is the usual notion. 

So, a region is connected, if it looks together or if there are two points in it. And they can 

be joined by a path, within that region. We will do this a little bit more formally and we 

will write it in a minute. The second claim goes something like this. Suppose we have a 

point x whose coordinates are distinct. So, the sequence consist of distinct elements or 

alternately these coordinates are distinct. 

Now, we take y which is the non trivial permutation of these coordinates. So, here is this 

coordinates, pre reorder than. Such that this sequence and this sequence look different. 

That is what x and y are. So, the main claim is and this is the key claim in this entire 

proof x and y must reach distinct yes leaves. So, the point is this, that this will allow us 

to argue, that there will be at least two distinct leaves or who knows more. 

And then, we will argue in fact, based on this essentially, that the number of yes leaves is 

bigger than n factorial. The time is simply going to be the height of such a tree. And it is 

going to be log of n factorial or n log n. So, this will immediately follow from this, we 

will see that later. So, let me go over each of these items. And let me explain each of 

these items. 

So, let me start with this, we are going to interpret, this x as a point in n dimensional 

space. And of course, we are restricting the points to unit n cube. As I said, it is hard to 

visualize n dimensional space. So, we are just going to leave it two, we will visualize two 

dimensional space and we will say what happens? And you must note that, even if we 

work with two dimensions, we will get enough of the insight. 
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So, here is our visualization. So, our instance is this x that first coordinate is x 1, second 

coordinate x 2. So, this is our x 1 axis, this is our x 2 axis. Our instances come from the 

unit cube. So, here is the unit cube in two dimension, this entire interior is a unit cube. 

So, this is one, this is one, this is where our instances come from, what I mean by that is I 

pick a point over here. It is first coordinate is the x 1 value, it is second coordinate is the 

y 1 value. 

So, let me continue the analogy of little bit further to show you, what we make sure we 

understand at least this case of two dimensions very well. I claim that all the instances 

which lie on this diagonal are no instances for this problem of size two. Well, what are 

the instances which lie on this diagonal. So, the instances on the diagonal simply are 

those points whose x 1 coordinate is exactly equal to the x 2 coordinate. 

But, if the x 1 coordinate is equal to the x 2 coordinate, then we know that they may n 

dimension distinct. And therefore, these points on the diagonal are in fact, the no 

instances. The interior of this triangle and the interior of this triangle are the yes 

instances. Why, because if I pick a point in it, I know that the x and y coordinates cannot 

be equal, the x and y well the x 1 and x 2 coordinates cannot be equal. 

Similarly, over here this is the line which divides the square into two parts. And this is 

the line on which the x 1 and x 2 coordinates are in fact, equal. So, what we have done 

over here is, we have taken our problem. And we are viewing it geometrically and you 



will see, that this geometric view point gives some interesting insights ((Refer Time: 

20:25)). So, we have finished interpreting these instances in a two dimensional space or 

in particular in an n dimensional space. 

So, we have finished this part. We interpreted our input instance, as a point in n 

dimensional space. Well, in this case it was just two dimensional space. But, you should 

get the idea and we also restricted the instance to be in n cube, which in this case was 

just the unit square. Now, you want to prove this claim. So, this and this are the two main 

claims. 

This claim says, that if we look at the region of this cube from which instances will reach 

L. Then, this region is going to be a connected means. So, let me start by defining what 

connected means. 
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A connected region in n dimensional space. So is as follows A region R is said to be 

connected. If for any points x or y in R, there exists a path from x to y passing entirely 

through R. So, we have any points x and y in R and there exists a path from x to y, which 

goes only through the points to R. So, what is a connected region? So, the cube that we 

mentioned for example, is a connected region the interior of it. Well the surface of it is 

also connected region. 



So, let me now define a convex region. So, this is going to be needed in the proof. A 

region R is said to be convex, if for any points x and y in that region. The straight line 

path from x to y passes entirely through R. So, here we just said, that the any path that 

some path passing from x to y, must pass entirely through R. Now, we are making the 

stronger requirement. So, we are now saying, that in particular the straight line path from 

x to y must pass through R. 

Notice, that convexity is only a special case of connectivity. So, in other words, if we 

know that a certain region is convex, then it has to be connected of course. So, the reason 

why we worry about convexity is that, if we look at only straight line paths, they are very 

easy to reason with. And therefore, its often much easier to argue, that is a certain region 

is convex. So, convexity of a region is easier to prove. And therefore, we are worried 

about convex regions. 

But, notice that if we prove that something is convex, we are also proving that it is 

connected. So, some examples of convex objects are the cube, the fill the whole cube or 

the whole sphere. Examples of objects which are connected, but not convex say 

something like a torus. So, let me draw a picture. 
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So, if you have a torus, so it has a hole in it. So, if I pick a point x over here and a point y 

over here. Then, the line joining the straight line joining them would pass through this 

region, which is not in R. So, this torus is itself in R, but this region is not is R. 
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A kidney shaped region or a cashew shaped region is also not convex. Because, I can 

take a point x over here, a point y over here and this line passes outside the region. 
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If I look at a cube and if I just look at it is surface not the interior. But, if I just look at it 

is surface, if I take a point over here and a point over here and this phase. Then, the line 

joining them has the straight line joining them, will pass through the interior, which is 

not in this region R. And therefore, this shell is not convex either. So, that describes what 

connected means ((Refer Time: 25:14)), formally and also what convex means. 
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So, here is our claim. So, we claim that R of L is the set of instances for which leaf L is 

reached on execution. And then, we want to argue that R of L is convex. Well, actually 

we wanted to argue, that it is connected. But, we will in fact, argue that R of L is convex, 

which will assure that it is also connected. Let me pictorially remind you, what this R of 

L is... 
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So, here is our decision tree and this is leaf L. So, what is this region that I am talking 

about? Well, if I start with any instance x and suppose I follow this path and I reach L. 



Then, I will say that this instance belongs to R, if execution arrives at L. So, then it 

belongs to R of L in the region of L. So, let me first begin by giving some intuition. So, I 

said that x is a set of points, such that if I start from here and I get eventually I get to L. 

So, what do I know about x? Well, each node that is visited has some condition 

associated with it. So, may be here the comparison is between i and j. And say this is the 

less than path, then these two together say that, this x must satisfy x i less than x j. May 

be this label over here is k l and say this is the equal to path. Then, this says that the 

condition satisfied must be x k equal to x l. So, if any instance gets to this level L, I know 

that all of these conditions along this path must be satisfied. 

So, this is one way to characterize the region, the set of points which reach L during 

execution. But, notice that this characterization is geometric. So, this just says that the ith 

coordinate is smaller than the jth coordinate. So, this is naturally putting our region R of 

L into some parts in our unit cube. So, let us start with this root itself. So, which are the 

instances, which can visit the root, well at the root any instance will arrive. 

So in fact, any x in the entire unit cube, will arrive at the root, will start at the root. So, 

instances visiting the root constitute the entire cube. What about instances visiting this 

node? So, this node is visited by those instances, for which x i is less than x j. Now, here 

is the key insight. 
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So, asserting that x i is less than x j is equivalent to saying that, if this is our unit cube. 

Now, I am looking at three dimensions and may be this is some x 1, this is x 2, this is x 

3. And if I say, that x 3 is say less than x 1 what do I do? Well, I will look at this x 3 and 

I look at this x 1. And then I look at first, that portion where x 3 is equal to x 1. So, it is 

this, it is this plane let me just shade it. 

So, it is this slice through the centre of that cub. That is, where x 3 is equal to x 1 and if I 

want x 3 to be smaller. Then, which side should I take then x 1. So, I want x 1 to be 

larger and x 3 top be smaller. So in fact, this is the entire region. So in fact, it is this 

region, the wedge shaped region that is facing us. So, the idea is this, the moment I assert 

a condition, I am going to slice my current set. 

And I am going to take one part of it, if my assertion was something like x 3 equal to x 1 

then I won not take one part, but I will take that slicing region itself. So, notice that I 

started off with the entire cube which is convex. 
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And the important point is that, whenever I go to a child as in this. I am going to shrink 

the set of instances, which visit this ((Refer Time: 30:28)). And when I shrink them, I 

will be shrinking them in a convex manner. 
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So, it is sort of I will take my region I will take a region, which is convex then I will slice 

of a part of it. But, this slicing operation maintains convexity. So, that is roughly the 

idea. So, even if I do it several times, the region that I am left with at the end is going to 

be a convex region. And therefore, also connected region, that is roughly the argument. 

So, now we are going to see it more formally ((Refer Time: 31:05)). 

So, here is the proof, suppose x and y are two points in R in this region. So, I am going to 

consider three execution. In the first execution the instance is going to be x, what do I 

know about this? I know that L is reached by definition, by our assumption that x and y 

are points in R of L. So, when I finish this execution I know that L is reached. 

In execution 2 I am going to start with y. What do I know about this? Well, I know that 

for this point as well L is reached. So, even for this point L is reached right, again that is 

because I said that y belongs to R of L which is nothing but saying if I do an execution 

with instance my instance equal to y I will reach that same leaf. 

My third execution is the interesting execution. Here, I am going to start off with an 

instance which I will call z. Z let me remind you has n coordinates, just like x and y. So, 

I will call those z 1, z 2 all the way till z n. And I am going to set z i in a curious looking 

manner. Z i is going to be lambda times x i, where lambda is some positive number 

between 0 and 1. I will tell you more I will write that down in a minute, and lambda 

times x i plus 1 minus lambda times y i. 



So, this is how each z i is going to be set. So, it will be some kind of an average of x i 

and y i, where the weights for x i and lambda. And the remaining weights come from y. 

So, if I take the case lambda equal to 0 what does it mean. So, if I take lambda is equal to 

0, then this part goes away and I get y. If I get lambda equal to 1, this part goes away and 

I get x. 

And if lambda is somewhere in between, what do I get? If lambda is equal to half, then I 

get half of this and half of this. And in fact, I get the midpoint of line segment x, y. If I 

take other values of lambda I will likewise get, points on the line segment joining x and 

y, the straight line segment line joining x and y. So, this is the key behind, this is the key 

part of the definition set. I am going to I have defined z, so that it happens to be on this 

straight line x, y. 

And so long as I restrict lambda between 0 and 1, it will be in the interior of this line 

segment x, y. So, what do I have to prove in order to I give that, this R of L is convex. 

Well, the definition says that straight line path must lie inside of R of L. If I prove that 

then I am done, that is exactly what I am going to do. So, I am going to analyze this 

execution 3 and figure out what happens during execution. 

So, let us start with root, the root label is i colon j. And suppose, the less than branch is 

taken in execution 1. I am just taking this as an example, the argument will really work 

for every possible branch. So, the less than branch is taken in this execution. In this 

execution, what do I know about this execution? Well, clearly the same branch will be 

taken in execution 2. 

Why? Well, in execution 2 we reach final finally, the same leaf. And there is only one 

way to get at that leaf. And therefore, it had better be along the same path. So, even in 

this second execution, we are going to follow the same branch. What can we conclude 

from that? So, from the fact that in the first execution, this branch was taken. It clearly 

means, that x i and x j got compared and x i turned out to be less than x j. In the second 

execution y i and y j got compared. And y i turned out to be less than y j. 

So, this is what we know, if we assume that the less than branch was taken in this 

execution. Now, I am going to multiply this by lambda and this by 1 minus lambda and I 

am going to add these two things. So, let us see what happens. So, I claim that I get this 

inequality, let us check that out. From the left hand side I am going to get from this 



inequality lambda times x i, which I have got over here. From this I will get 1 minus 

lambda times y i, this is what I have got over here. 

On the right side I got lambda times x j from this inequality and from this inequality I got 

1 minus lambda times y j. So, what we have now is this inequality. So, this is the 

inequality that we got, let me just complete this argument. So, to complete this argument 

what we have is, that this part is simply z i and this part is simply z j, so this is z i this is 

z j. So, we have concluded, that z i must be less than z j. 

But, that is what we wanted, why? Because, if z i is less than z j, we know that the less 

than branch will also be taken in execution 3. So, for this first root we have proved that 

execution 3 will follow the same path, as that followed by execution 1 and execution 2. 

So, this argument can be made if instead of less ((Refer Time: 37:38)) than we took some 

of the other. 

And we can make it at every node along that path. And so we can argue that finally, L is 

going to be reached. So, what we have argued is that, z will reach L z is any point on this 

line segment. And so if I start with any point on this line segment I reach L. And 

therefore, I have concluded that R of L is convex. So, I have proved this claim. So, let us 

now turn to the next claim. 

So, this claim says that ((Refer Time: 38:20)) if I have a point or an instance x, whose all 

coordinates are distinct. And y is another non is a permutation on this, which is not 

exactly equal. Then, x and y must reach distinct leaves. Of course, they must reach yes 

leaves, because their coordinates are all different. But in fact the claim asserts that they 

must reach distinct yes leaves. 
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So, you are going to prove this. So, x consists of distinct values, means the answer of x 

must be yes, y is some permutation sigma. So, the answer to y is also yes. We are going 

to prove this result by contradiction. So, we are going to assume that say x and y reach 

the same leaf L. Then, we know that every the region corresponding to every leaf L is a 

connected region. 

If it is a connected region, then there has to exist a path p from x to y, which passes 

entirely through L. This is what we know from the previous claim. So, what we will 

show, that if you tell me that it is this path I will show, that there exists a point z on this 

path p, such that the answer to z is no. Now, this will be a contradiction, because z lies 

on P, P supposed to lie inside R of L. 

And what we have argued is that, the answer is no whereas, the answer for L is supposed 

to be yes. So, this would be the contradiction. So, this is what we are going to do? Let me 

start with the sub claim. The sub claim says that there have to exist i and j. Such that, the 

ith coordinate of x is strictly less than the jth coordinate of x, whereas the ith coordinate 

of y is bigger than the jth coordinate of y. I will prove this in a minute. But, let me just 

examine it is implications. 

So in fact, this is going to give us the proof almost immediately. So, let me define a 

function f in this space, where f for a point w is simply the difference between the ith and 

the jth coordinates. So, what is f of x, f of x is x i minus x j, but x i is smaller than x j. So, 



f of x is less than 0, what is f of y? Well, y i is bigger than y j. So, y i minus y j is bigger 

than 0 and f y is bigger than 0. 

So, f of x is less than 0, f of y is bigger than 0, they are joined by this continuous path p. 

So, what happens is we move along this path from x to y. The path is continuous, this is 

a continuous function. And so, by the mean value theorem, there has to exist a point z on 

p such that f of z is 0. If f of z is equal to 0, what does it mean? This means that z i equal 

to z j, but z i equal to z j, then two coordinates are equal. That means, the answer to z is 

no. 

The coordinates are not distinct. So, the answer is a no, but this supposed to be a point 

inside R of L. So, the answer had better been yes, so there is a contradiction. So, we have 

proved our basic claim. So, all that remains now is to prove this sub claim. So, let us 

prove that. 
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So, the claim is that there exist i, j such that x i is less than x j and y i is less than y j. So, 

I am going to do this with an example to help you understand what is going on. So, here 

is my example. So, I am looking at say five dimensional space, this is my x, the 

coordinates are all points in the unit cube. This is why remember that y is just a 

permutation of this permutation sigma. And y is such that, it is not identical. So, the 

same numbers as x is repeated over here. 



But, it is not repeated they are not repeated identically. Well, they can be identical at one 

place that is. Now, here is the key step, I am going to define a permutation pi which sorts 

x. So, pi of x then is going to simply take these and rearrange them in increasing order. 

So, it is going to 0.2, 0.5, 0.7 and so on. It may not be clear to you, why I am not 

defining this permutation pi. But, please bear with me, the answer will hit you in a 

minute. 

So, I know what pi is I know how to take x and generate pi of x from it. I apply the same 

permutation on y as well. So, what happens well I look at the column, the column of x 

which moved over here. And I take the corresponding value for y and move it down over 

here. So, it is both are 0.2 over here, so, it is both are 0.2 over here. Then, 0.5 came from 

here. So, the value over here must also come over here 0.7 came from here. So, below it 

is 0.9, so over here also there is 0.9, then we have 0.8, 0.7 from this and 0.8, 0.9, 0.5 

from here. 

So, we have rearranged x and we have rearranged y. Now, be patient with me just for a 

minute, I am going to prove this claim. But, I am going to prove it for pi x and pi y, 

where it is easy to see. And you will see that, they can just trace it backwards to x and y. 

So, what is it mean to prove the claim for pi x and pi y? Well, we are supposed to find i j 

of this property. 

So, because we sorted and here is now the reason for sorting it, if i is less than j we know 

that pi of x i has to be less than pi of x j, because this is sorted order. So, pi of x sub i the 

ith component of pi of x must be smaller than the jth component of pi of x. So, this is 

smaller than this, this is smaller than this and so on. So, long as I choose i smaller than j, 

this first property is guaranteed to me. What do I know about y? So, here is one sequence 

I change that and then permuted. 

So, I know now that somewhere, this new sequence has to be non increasing. This was in 

increasing sequence, this is a permutation of it. So, somewhere this sequence has to be 

non increasing. So, let us say that there exist i j, such that i less than j and if it is non 

increasing. Then; that means, pi y must be greater than pi y j. But, notice that then we 

have found these two. 

So, we have found i j such that, pi y is bigger than pi y j, whereas pi x i is bigger than pi 

x j. So, just to illustrate in this example. Here is the case, where this is smaller than this, 



but this is larger than this. Now, we have proved it for this pi x and pi y. How do we go 

back? Well, the idea is simply we take we figure out, where these columns came from 

our original example. 

This column came from here and this column came from here. And sure enough, this 

number is less than this whereas, this number is greater than this. So, I will skip the 

algebra. But, this is exactly what is happening? We just have to follow back and then this 

property will hold nevertheless ((Refer Time: 46:40)). So, what have we proved, well we 

have proved this claim. And this was all that was needed to prove our original claim, 

which was this ((Refer Time: 46:48)). 

So, once we prove this claim what do we know that if we have two distinct permutations 

of this. If we distinct permutation of this, then that must reach a different region. But, 

now I know that the number of distinct permutation can be n factorial. And therefore, the 

number of yes leaves has to be bigger than n factorial. And the time has to be bigger than 

the height of the tree, which is log of n factorial or at least n log n. So, this finishes the 

claim that the time for element distinctness is at least n log n on decision trees. 
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Here is the quick summary of the argument. So, what we did here was, that we said that 

the instances visiting any yes leaf, former connected region in the instance space. No 

instances partition the instance space, such that distinct permutations are not in the same 



connected region. And therefore, we conclude that the number of yes leaves must be 

large. 

What is the implication for the RAM model? Well, for the RAM model we can conclude 

exactly using ideas similar to last time, that the comparison based algorithms for element 

distinctness, must take time n log n. 
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I want to quickly extend this to the case of algebraic decision trees. So, here is a quick 

definition. So, again the program in this model consists of trees with outgoing branches, 

less than equal to or greater than. But, this time we will have these three relational 

operators, just for simplicity, although you can have other operators too. The node labels 

are no longer i colon j, but they are algebraic expressions, over the input the components 

of the input. So, x 1 square plus x 2 square minus 25. 

The action is we are going to evaluate the label expression. And we are going to compare 

it to 0. So, this expression is equal to 0, then we will choose the equal to branch. If this is 

less than 0, then we will choose the less than branch. So, let me just take a quick 

example. So, if our expression is x 1 square plus x 2 square is 25 or minus 25. 
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Then, the condition x 1 square plus x 2 square minus 25 is less than 0. Simply means, 

that our point lies inside this. So, we are restricting our point to be inside this region. If 

the expression is linear instead of this, which is a quadratic. Then, our previous results 

actually hold. Unfortunately, if the expression is non-linear ((Refer Time: 49:50)), then 

the intersection of constraints can produce disconnected regions, which cannot happen if 

things are linear. 
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The main result is something like this, this is a deep result actually from algebraic 

geometry. So, we have a decision problem over inputs x 1 to x n, by a decision problem 

we simply mean, that we mean a problem whose answer is yes or no, just like element 

distinctness. Suppose A is a algebraic decision tree algorithm for the problem. Such that, 

the degree of each algebraic expression is some fixed constant d. So, x 1 square plus x 2 

square would be degree 2. 

Suppose, the no answers partition the instance space into w connected regions, within 

each of which the answer is yes. So, in our case for simple decision trees, this w for the 

element distinctness was n log n. But, in general the time required is going to be by this 

algorithm is going to be omega of log of W minus n. Now, you might wonder what 

happened to that d. So, this d actually appears inside this omega. So, there is a constant 

of proportionality, which depends upon d. 

For decision trees the time is log of W, not even omega it is actually just log of W, a log 

of W to the base 2. So, what this theorem says, that the complicated algebraic model 

does not really help all that much. So, the lower bound that we get is almost as good. 

Well, it is a little bit smaller, because of this minus n and may be the proportionality 

constant is a little bit different, but it is essentially the same lower bound. 

For element distinctness in fact, there is no change, the algebraic tree for any fixed 

degree will give us n log n as before. The proof idea is actually pretty difficult. Now, as 

we said a single leaf can correspond to a small number of connected regions, not just 

exactly one connected region. 

So, now we have to get some heavy duty machinery from algebraic geometry to count 

the number of connected regions. When that you get when you take intersection of 

several constraints. If the constraints are linear, then it is very simple. If the constraints 

are high degree algebraic expressions, then this becomes rather complicated. 



(Refer Slide Time 52:30) 

 

So, quickly summarize lower bound theory, that we have been looking at in the last two 

lectures, tells us when to start searching for better algorithms. This is very good, because 

it is good to know that you are done. Another interesting point of this theory is that it has 

some connections, with some really deep mathematics. Algebraic geometry is supposed 

to be rather deep area of mathematics. And it has connections to many other fields also. 

Here is a very simple context, in which this idea can be used. So, I will leave it as a 

problem for you. Suppose, you have 27 coins, such that 26 have equal weight. And one 

is heavier, find the heavier using 3 weighings. This is probably we have puzzle that we 

have solved. Now, I want you to use the ideas expressed in this lecture to formulate a 

decision tree model using which, you should be able to argue, that you cannot do this in 

fewer than 3 weighings. 

Thank you. 


