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Lecture - 22

Average Case Analysis of Quicksort

Welcome to another lecture on Design and Analysis of Algorithms. Our topic for today
is Average Case Analysis of Quick Sort. Let us begin by discussing Average Case

Analysis.
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Let suppose A be an algorithm. Q is the set of input instances of A. And let us make it,
make Q be a function of n. So, Q of n is a set of instances of instances for algorithm A of
length n. T sub A of q is the time taken by A on instance g. Given this, you can define
the average time taken by A on inputs of size n, which we might write down as M sub A
of n. M could be interpreted as mean for example.

And M sub A of n is defined as sum over all instances in the set Q of n. Or sum over all
instances of size n of the time taken by those instances, divided by the total number of
instances. So, this is the usual definition of what we mean by an average. This is not the
most popular definition of course. The definition we usually use is the so called worst
case measure. Here the worst case time of an algorithm A on problems of size n, is

defined as the maximum over all g of this.



The maximum time taken by any input instance of size n is defined as, the usual measure
or the worst case time. There are several reasons for doing this. Worst case is usually
easier to compute than this average. When we talk about the average, in some ways we
have to talk about all input instances. Whereas, often it is easier to deduce what the worst
instance is going to be. And, then we can just worry about that. For many algorithms,

most of the inputs behave like the worst input anyway.

So, in which case it does not really matter, it is not really necessary to take the average in
any case. Very often may be perhaps, the average case is easy to compute if at all. And it
might still not be preferable, it might still not be very popular because, in practice we do
not know which input instances are likely to appear more frequently. If some instances
appear more frequently, then in this mean expression we would have to wait those

instances more heavily.

Therefore, if we just take the mean, then that is not an indication of what might happen
in practice. And therefore, again we do not really focus so much on the average case
analysis. Worst case on the other hand might be conservative, but at least we know that it
is conservative. And therefore, at least we can give some guarantees. Our topic for today
is quick sort however, where average case analysis turns out to be quite useful and quite

interesting.

(Refer Slide Time: 04:14)

Quicksort:
Popular sorting algorthm
+Vory fast Often the method of choke
. Worst case time = Q(n")
«Average case time = O(n log n)
«Average case analysis seems 1o explan fast behaviour seen In

practice




So, let me say a few things about quick sort. Quick sort is a popular sorting algorithm,
perhaps the most popular and the most commonly used in practice. It is very fast. And as
| said, it is often the method of choice. The worse case time of quick sort is O of n
square. The average case time on the other hand is O of n log n and will see this quite

soon.

So, in some sense the excellent performance in practice might be better explained by the
fact, that the average case time is O of n log n rather than by focusing on the worse case
time. So, let us now take a look at this algorithm. Quick sort is based on divide and

conquer strategy. And the algorithm is something like this.
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So, as input we take an array x 1 through n by writing x 1 through n, | simply mean that
x is an array whose length is n. This is an array in which we have keys. We can think of
these keys for the minute as some integers perhaps. And our idea and the goal of quick
sort is to sort them. That is let us say that the smallest keys have to come at the beginning

and the largest ones have to go towards the end.

We begin quick sort by looking at the best case first. So, the best case just checks
whether, this is an element this array has only one element. If it only has one element,
then the array is sorted trivially. And therefore, we just return that array. Otherwise, we
pick something which we will call it splitter. And that splitter is chosen to be the first

element of this x. The first key is the splitter. Then, we built three lists.



A list which will call small is going to be small, which contains all elements of x which
are smaller than the splitter. A list which we will call equal, which will contain all
elements of x which are equal to x 1 and so, we begin by putting x 1 into equal. | should
perhaps said less over here. But, will not we are not worrying, we are not very careful

about this. And we will not be very careful about this throughout the course.

So, we will I just tell you that, we have just made equal just single list, a list with a single
element. And we will also construct a list, which we will call large. And large will
contain all the elements of x, which are larger than x 1. So, right now it has been
initialized to null and small has also been initialized to null. This loop is simply going to
build up the lists, as we just described. So, first step if so for every element other than the
first.

We check whether it is smaller than splitter in which case, we add that element to small.
If it is equal to splitter, then we add it to equal. If it is greater than splitter, we add it to
large. So, at the end of this loop all the elements have been put into the proper lists. So,
now it is simply a matter of recursion. So, small is a list which contained all small

elements. So, we call gsort or quick sort in this list.

So, as a result we will get these elements sorted. Now, these elements are all guaranteed
to be smaller than the elements in the list equal. And those in turn, are guaranteed to be
smaller than the list in large. But we do not append large immediately over here, we
quick sort it. So, as a result we have a long list which is made up by appending three

lists. But, which in turn is guaranteed to be sorted.

So, this is how quick sort works. So, as | said it is divide and conguer strategy, the
division part is where the interesting work happens. And, then there is a conquer part and
then the combined part is trivial. Correctness is quite obvious here. You can do a
induction on size, if you want to prove it formally. And | will leave that as a easy

exercise. So, now you wanted to analyze this algorithm.
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Let me use T of n to denote the time for quick sort, on size and input. So, right now |
have only written n over here. But, | will actually have a specific input in mind. Just for
the minute. Later on we will worry about average cases or the worst cases or whatever.
So, right now let us say this is for a particular instance. So, T of n is the time taken by

that particular instance. So, how do we analyze this? Well.

Usually if we write something like this, we try to establish the recurrence. So, of course
no matter what input instance we feed. If it has length of only 1, then the time taken is
constant. So, that is what is you write down first. Then, we need to find out how the
recursion happens. So, let us just go back to the algorithm. So, over here the recursion

happens by calling quick sort on small and calling quick sort on large.

And before that, we have a loop which runs about n times. So, the result we have O of n
time for the loop. And T of large or T of the cardinality of large is the time taken for that
instance, for further for evoking quick sort on the list large. And T of small, is the time
taken for invoking quick sort in the list small. Now, we can analyze this using the
recursion tree. So, this was our basic recurrence. So, let us draw a recursion tree

corresponding to this.



(Refer Slide Time: 10:28)

So, we start off with the problem of size n. And, then as per this recurrence we break the
problem into two pieces. One is the small list and the other is the large list. So, this is the
small part and this is the large part. This is a problem of size n. This is the small part, this
is the large part. If this is the small part this is the large part, then we are going to call
quick sort recursively on these. So, furthermore this problem will get split, this problem

will get split.

Of course, if the problem is going to get split, may be one part one side could be smaller
than other side could be larger and so on. And may be one of the lists could be empty in
which case of course, this whole thing terminates. So, in general it is going to keep on
splitting. May be once in a while, a list terminates and things keep on going in this

manner. So, what do we know all about this.
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Well, here is the first observation. So, if this node has size n, then we know that in this
node the number of keys which are going to be present is definitely going to be less than
n, in this node. Or in fact, in this node as well, so what does that mean? So that means
that as | go down from here along any branch, the size of the instance has to decrease.

So, which means | cannot go down too far.

So, | start the instance of size n. It has to decrease therefore, that means this height has to
be utmost n. That is the first observation. The second observation is that, if | look at any
node its children have a certain size. But, that size adds up to something strictly smaller
than this. So, if I look at the size over here, it is n the size over here has to be less than n.

The size over here in fact, has to be smaller than this for these two.

And for these two, it has to be smaller than this. So, this also has to be less than n. This
also has to be less than n. So, if I look at any level, the size of that the sum of the sizes of
the problem at that level have to be at most n. But now, if we go back to our problem our
algorithm at each inside the body of each invocation, we do work or we do work

proportional to the size of the problem.

So, which means corresponding to each node over here we are going to do work, which
is proportional to its problem size. So, now if | look at the total work done here, it is
going to be O of n. Because, it is going to be proportional to this problem size this

problem size added up, it is going to be proportional to O of n or it is going to be O of n.



Similarly, here also it is going to be O of n. At every level, it is going to be at most n at

most proportional to n.

So, now we have an upper bound on the work. Because, there are n levels at most and at
each level the work is O of n. And therefore, the total work has to be O of n square. So,
this is the upper bound on quick sort. Now, | will leave it as an exercise for you to
construct an input instance for which, quick sort actually takes time n square. So, this is

actually fairly easy. Let me give you a hint, think of a sorted list.

What if the input instance is already sorted? But, the key question is that this is the worst
time. But, will it be the most time, will it take this long usually or is this some kind of an
unusual case. So, if you come back to the recursion tree to this tree, then we know that at
every level the work is going to be at most n. So, the real question that we want to ask is,
will the tree be of a large height or will the tree have a small height because, if the tree

has small height then our total work will be less.

So, in fact that is what we will see is, going to happen quite frequently. So, we did the
analysis of the worst case. So, let us ask what the best case is going to be? So, clearly the
best cases are the one in which tree is as small as possible.
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If the elements that we are trying to sort are all distinct, then I will claim that the height

cannot be smaller than log n. Why is that? Well, I am going to leave this as an exercise.



But, again let me give a hint. So, we said as we go down the tree height must decrease.
But, we also said that the sum of the nodes over here, the size over here plus the size
over here must be smaller than this. But, if everything is distinct it will only be one less
than this. So, if it is one less than this, then you should be able to argue that it would not

decrease too fast either.

So in fact, you should be able to argue that it essentially halves at each step. And
therefore, the total height will be something like log n. So, what happens in the best
case? So, in the best case it turns out. That the total time taken will be O of log n, O of n
log n. And in fact, there is a very simple situation in which the best case will happen,
which is this? If the splitter is equal to the median, then the problem size halves. And,

then the height becomes O of log n.
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So, if the height is O of log n that | have taken as n log n, and that is the best. So, we
consider two cases one case in which the splitter goes, somewhere in the middle.
Another case in which the splitter was extreme, the splitter was the smallest element.
Well, that was supposed to be a homework exercise. But, suppose we take splitter, the

splitter happens to be the smallest element. Then, the list would be split very unevenly.

So, let us consider a case which is somewhere in between. So, in this the splitter is say
larger than n over 10 elements in the list and is also smaller than n over 10 elements. So,

it could be somewhere in the middle. So, of course this is an artificial case. But, you can



imagine that this will happen frequently enough because, after all if I pick an element

from a list, it is likely to be somewhere in the middle.

So, let us say this happens. Let us say that, every time | pick a splitter it satisfies a
property like this one. What happens then? Well, let us go back to the recursion tree. So,

let us redraw this recursion tree.
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So, | start with an n node problem an n key problem. Now, | am going to pick a splitter
such that, it is larger than n over 10 elements. So, if | consider, what is the most uneven
distribution? What is the size? Well on one side | could get something like a list of n
over 10 elements. On this side, | could get a list of say 9 n over 10 elements. So, this is

good because, this list is going to shrink and its going to terminate quickly.

The height is going to be small over here. This on the other hand, might appear to be a
problem, because here the height has not reduced. That the size has not reduced. If the
size has not reduced, then it will keep on going in this manner. And may be the height of
the tree may be large. But, what we argued was the work done in this algorithm is, the
height of the tree is at most the height of the tree multiplied by n because, n is the work

at each level.
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So, let us see what happens? So, in the first level as we have pointed out, the largest
problem size will be 9 n by 10. It could be smaller than that. So, it could be say half half.
But, that is actually not so bad. That means, the third tree height will be actually small.
So, this is trying to force the tree height to be large. And therefore, it is trying to force
quick sort to take large, to take long time. So, we are sort of looking at we said that we

are looking at neither the best nor the worst cases.

But, we are sort of erring on the side of the worst within this region. So, in the first level
problem, largest problem level size is 9 n by 10. What happens next? Again, we assume
that the problem will split in the ratio 1 is to 9. So, this will become say something like n
by 100 and 9 n by 100. This will become something like 90 n by 100 and 81 n by 100.

So, as you can see this rightmost branch will keep on having the largest size.

So, what will happen? At each in each step, the size of the largest problem drops down
by a factor 9 by 10. And therefore, we can conclude that log of n to the base 10 by 9, the
problem size will even on this right most branch will drop down to 1. And even to do
that, I will take log of n to the base 10 by 9 levels. So, this is good news in the sense that,
even when | am looking at a split which is lopsided.
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The number of levels, the height of the tree is still going to be about log. Well, it is going
to be log not to the base 2. But, to the base 10 by 9 and let me just remind you that, log n
to the base 10 by 9 is simply equal to log of n to the base 2 divided by log of 10 by 9 to
the base 2. So, this is still only a constant. And therefore, this is still O of log n. So, the
height given in this case is O of log n, the height of the tree. The tree height is of log n.

And therefore, the total work is n log n.
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So, even in this middle case we have seen that the total work is about n log n. So, that is
the sort of the first intuition as to why quick sort should work? Quick sort may be works
while in practice. Because, unless the splitter comes from too large or too small, the two
sub problems that we create will be reasonably balanced and not too lopsided. And if
they are not too lopsided, then the height of the tree height of the recursion tree will not

be too large.

Next we are going to actually do sort of a very systematic analysis, of the average time
taken by the quick sort. We are going to do this in two ways. In one way, we are going to
derive the recurrence. And we will not really solve the recurrence, but I will indicate to
you how that recurrence could be solved. And it will turn out that, the solution of the
recurrence is n log n. And, then I will indicate somewhat more elegant way using, which

we can also derive n log n.
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So, when | talk about average case, | have to define what are the possible inputs? So, in
this case | am going to assume that, for this particular analysis |1 am going to assume first
of all that all the inputs are distinct. All the inputs, the numbers the elements the keys
which are given to us are all distinct. And if they are all distinct, I might as well assume

that they are integers 1 through n for each of the n keys.

But of course, they will not be given to me as 1 through n, but they will be given to me

as some permutation of 1 through n. So, now | will state exactly what my allowed inputs



are. So, my allowed inputs are any possible permutation of the integers 1 through n. So,
there are n factorial possible permutations. There are that many input instances for my
algorithm. So, my question will be, what is the average time taken by my algorithm over

all these input instances or over all these permutations?

And of course, | would like you to express it as a function of n. So, now | am going to
express | am going to look at our analysis. And | am going to figure out, how we can
estimate this. So, although | have been talking about different, about taking averages |
can also think of this in terms of probabilities. So, I can think of this as follows. So, |

have been given a set of input instances. | have constructed a set of input instances.

And | am picking one of those instances at random. And | am doing this, giving equal
probability to every input instance. So, there are n factorial instances possible. Each one
has equal probability or in other words each one has probability whenever we assign. So
I am picking one of those. And | could also be asking under this choice, what is the
expected time for that for the instance that | pick? Which is of course, the same thing

asking what is the time taken, what is the average of all the times?

So, now this average can be estimated by grouping the instances into separate groups.
And, then calculating the average within each group and then multiplying by, essentially
by the size of the group or by the probability of picking that group. So, here is how you
are going to do it. So, in the first step of the algorithm, we pick a splitter. There are n
keys and the keys are going to be numbers in the range 1 through n. So, there is going to

be some probability that, the splitter is going to be one of these keys.

It is to be even any one of those keys. So in fact, let us assume that we always pick a
splitter at the first element which is in fact, what the algorithm did. So, in that case the
question is. So, we are splitting all our input instances into those permutations first in
which the splitter in which | appears in the first place. And within that group, we are

taking the average time. So, let me draw this picture out here.
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So, here is our set of input instances. So, | am breaking it into pieces. So, these are input
instances which begin with 1. That is, they have 1 in the first place. These are input
instances which begin with 2. These are input instances which begin with 3. And
somewhere over here are input instances which begin with i. And of course, at the end

there are instances which begin with n. So, I am going to pick a group.

And, then | am going to pick an element from it. Or | can ask, what is the average time
taken for this group? And if all this groups are identical, then | can just take this average
or I will have to wait with the size of this group. So, that is exactly what | have done over
here. So, | have taken the average time for this group which is what is written over here?
Average time given that splitter is equal to i.

But, given that splitter is equal to i is the same thing as saying, that the first element of
the list is i. So, | am in this region of my input space. And since, | want the average over
the entire space, | just want to | just multiply by the probability that the splitter is equal
to i. Or the fraction which indicates how many instances are there in this group as

compared to the entire group. So, this is what | get.
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Now, what is the average time given that the splitter is i? Well, if we go back to our
algorithm here. So, | pick a splitter over here. Then, 1 am going to have this loop
anyway. So, if | am solving a problem of size n, | will do n work in any case. And, then |
will have my inputs split into two lists or three lists. But, only two of which will be
interesting. So, average time given splitter i is going to be O of n for that loop to take,

loop to do its work plus the average time for sorting the small set.

But, what is the small set? It is the permutation of the elements of integers 1 to i minus 1.
And the average time for sorting permutation of elements i plus 1 through n. Because,
that is what quick sort does. It splits into groups, it sorts the first group, takes the equal
elements in which case in this case there is only one equal element which is i. Sorts the

last group and then concatenates them together.

So, in addition to sorting the time will require is O of n. So, you might require O of n
time also for concatenation. But, in any case we have written O without actually
mentioning the constant. And therefore, this is fine. Or we might have a clever data
structure in which case, we do not need this O of n time. But, in any case we need the O
of n time for the loop. So, this is perfectly fine.

So, now you have the average time for sorting permutation of 1 through i minus 1 and
then the average time for sorting permutation of i plus 1 through n. Here is the important

part. So, the first time we picked the splitter to be i and then we constructed this group.



But, the key observation has to be, that the numbers the order in which these numbers
will appear is not going to be particularly biased. So, we know that within the group that

we selected, i is going to appear as the first element.

Since we are dealing with all possible permutations, the other elements would appear
equally likely in the first space in this group or in the second space in this group or in the
third space in this group. So, this group will have all possible permutations of 1 through i
minus 1 as well. So, if it has all possible permutations of 1 through i minus 1, then the
time average time for sorting it will be T of i or other T of i minus 1.

It does not really matter, T of i over here. The time over here is going to be i plus 1
through n or it is going to be T of n minus i. So, | think. So, what do we get from this?

Well this expression has to be put in over here and as a result we get something like this.
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T of n is equal to sum over i of this probability that, the splitter is i. There are n choices
for i and since we are considering all possible permutations. Everyone is equally likely to
appear in the first place. And therefore, the probability that i appears in the first place is
just 1 over n. So, this is 1 over n and this we just established is this. And that is what |

have written over here.

| just remarked that this should have been i minus 1. And that is what | have put in over

here. Now, this recurrence can actually be solved. It is a little bit tedious algebraically,



but you can certainly solve it by recursion induction. Since | am telling you that, the
solution is n log n. So, that will establish that the average case of quick sort is n log is O

of log n.
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Now, we are going to do we are going to consider an alternate method for solving this.
So, this is going to be much more direct. We are not going to write recurrences. We are
just going to do some interesting counting. So, here we will focus on the comparisons
performed by the algorithm. So, after all the important operation in all of this, is
comparison. So, if you go back to the loop let us just take a look at that. We did other

work as well.

Say we added elements into lists. But, corresponding to every such operation there is a
comparison operation going on as well. So, certainly if we bound the number of
comparisons, then that will give us a good indication of the time taken by the entire
algorithm. So, that is exactly what we are going to do. So, we are going to estimate what

is the number of comparisons performed by the algorithm on the average.

And we will show, then that is going to be something like O of n log n. Well, let us first
determine what is the maximum number of comparisons possible? So, the maximum
number clearly is n into n minus 1 upon 2. This is, if every key is compared with every

other key. And of course, if the input is the worst case input, then something like this



actually happens. But, this will not this will, but if the input is some permutation, then

every key will not get compared with other key.

So, just to see clearly what is going on, | am just going to describe a table which shows
what happens for different input instances. So, a table this table will have rows. And
there will be a row corresponding to every possible comparison. So, our keys are integers
in the range 1 through n. And for every i and j, we will have a row. So, | compare j that
will be the label of that row. And in that row, we will have information about whether i
and j are compared in every possible input instance.

And in fact, the columns will be the input instances. So, the entries are going to be
indexed by two indices, one is i colon j. Well, this itself is a complicated index and the
other is this permutation P. So, here for example, is a table. Of course, | have just made
up the entries, just to tell you what this table might look like. So, the rows are labeled i
colon j. So, starting with 1 column 2, 1 compare 2, 1 compare 3 and so on to n minus 1

compare n.

So, during the execution whether it is or not 1 is compared to 2, when permutation 1 is
input is going to be written out here. So, you have left a blank over here. And that just
says that node, that node will not be compare. It is just an example. On the other hand, 1
and 3 will be compared, when permutation 1 is the input. Similarly, if permutation 2 is
the input then 1 and 2 will get compared, 1 and 3 will get compared and may be some
other things will also get compared.

Similarly, there will be other permutations for which this will be the pattern of
comparison, this will be and so on. So, there are n factorial possible input permutation.
So, we have n factorial possible columns. And for each possible comparison, we have a
row. And their intersection says that, whether that comparison actually happens in the

corresponding execution.
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Time = number of comparnsons

Maximum number of comparnsons = n{n.1)2

Build a table in which rows are numbered by possible comparisons (i J)
and columns with all permutations

Entry( (1)), perm p) = T f | is compared 10 j when aigonthm is run for

permutabon p

Perm 1 Perm 2 Perm n'
T T TT
T

The key question is, Are there many T cells in this or are most of the cells blank? What
we really want to know is, what fraction of the cells in the column are marked? Or what
is the average number of cells which are marked in a given column? We are not going to
answer this question directly. We will begin by asking, what is the fraction of cells which

are marked in any row?

And interestingly, that will tell us something about what happens in columns as well.
Say, if | go to a particular row of this table or the row which has labeled i colon j, the
question that | am asking is, Is i going to be compared with j in the first permutation or in
the first input instance or in the second input instance in the third input instance and so

on.
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' Will i be compared with j?

For | to be compared with |, either | or | must be chosen as a splitter before
one of the elaments in between. 1.0 elements i+1_j-1
L

So, here is the key observation for i to be compared with j either i or j must be chosen as
a splitter before, one of the elements between that is elements i plus j or j minus 1 gets

splitter. So, let me explain this a little bit.
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So, here is i here is j and there are some elements in between. Well, | know i plus 1 i plus
2 all the way till j minus 1. So, these are the elements that | am considering. Of course,

they will not appear in my input instance in this order. They will be in my input instance,



they will be scrambled up. But, I am just thinking of them as sitting in a line. Now,

suppose some element over here gets picked up as a splitter, what happens?

If this element is picked as a splitter, then this element is compared with everything else.
If everything else is compared with it, then this I will get input in the small list. So, i will
go into the small list. j on the other hand will get input in the large list. But, remember
that once an element goes into this list and another element goes into another list, there is

no question of comparing them subsequently.

So, if any of the elements in between over here get picked as splitters, before any of
these two elements get picked. Then, we know for sure that these elements will go into
separate lists. And therefore, they will not be compared. On the other hand, before these
elements have been picked suppose i gets chosen, what happens then? Well, then i is
going to be compared with everything larger than it, or certainly everything which has

not been found which is in the current list.

But, if nothing in this has been selected as a splitter, then this had been better been in the
current list. And therefore, j will get compared with i and vice versa. If j gets picked first,
then i will get compared because j will be compared with everything over here. So,
which means that, these two elements must get split as splitters before these, inner

elements are picked. So, what is the probability of that happening?
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Will | be compared with |?

For i to be compared with |, either | or | mus? be chosen as a splitter before
one of the elements In between_ 1.0 olements 1+1_ )1

Pr(i or j chosen before 1+1 |1] = 2/{j«i+ 1




So, | claim that probability of i or j being chosen before i plus 1 or before elements i plus
1 through j minus 1 is in fact, 2 minus 2 upon j minus i plus 1.
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So, here is i here is j. So, how many elements are these in total? These are j minus i plus
1 elements. And out of these, the comparison happens only if this is picked or this is
picked. So, there are two cases which are good out of j minus i plus 1 cases. And

therefore, that is the probability. So, now actually things are very, very simple.
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‘' Will i be compared with j?

For i to be compared with |, either | or | mus? be chosen as a splitter before
one of the elements in between. 1.0 elements i+1_j-1

Prii of j chosen before 1+1 |«1] = 2/(j-i+1)

Fraction of Ts n row (1)) = 2/(j-i+1)

Total number of Ts in entire table
=n' '5”“12.'()%1)




So, the fact that i or j is probability that i or j is chosen, before i plus 1 through j minus 1
is this just tells us something very simple. It tells us that the fraction of T s in this row is
just this. Because, that is what the probability is. We are going to pick a row at random.
And we know that, 2 upon j minus i plus 1 fraction of the time we get a T or the
comparison happens.

So that means, in other words the number of columns the fraction of the number of
columns in which T s appear, is just going to be this much. So, what does that tell us? So,
it tells us that the total number of T s in the entire table is going to be sum over all the
rows of this multiplied by n factorial. Let me explain that a bit slowly. So, from this what

can | conclude?
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I can conclude that, in row i colon j contains n factorial times 2 upon j minus i plus 1 T s,
what T s represent? Where comparisons happen, whether comparisons happen or not.
But, if I want over the entire table I just have to sum over all possible rows. So, this is
what | have written out here.
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Will | be compared with |?
For | to be compared with |, either | or | must be chosen as a splitter before

one of the alements In between 1.4
Pr{i or | chosen before 1+1 1] =

Fraction of T5 in row (i) = 2/(j-i+1)

Total number of Ts in entire tabile

Except that the n factorial has taken outside because, it does not depend on what row |
am looking at. Well, this expression can be written out slightly differently. So, all
possible labels i j, | can now classify as all possible levels in which j is a second element.
And, then the first element has to be smaller. And therefore, it is sum over i is less than j

of this expression.

But, what is that, so summation over i of i less than j of this expression, well. What is the
first term? So, i begin from 1 and so, first term is simply 2 upon j. And next term is 2
upon j minus 1 and so up on until 2. But, what is this? So, this is let me write it down

again.
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It is 2 upon j plus 2 upon j minus 1 plus all the way till 2 upon 2 or written differently, it
is 2 times 1 plus half plus one third all the way upon till 1 upon j. And this we know
simply I n n by treating this sum to an integral, converting it to an integral. So, this is a
good estimate or in fact, this is an upper bound.
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— - Rl
, For i to be compared with |, either 1 or | must be chosen as a splitter
beofore one of the olements i betwoen, i @ elements i+1, -1

Prfi or j chosen before i+1.1-1] = 2/(j-1+1)
Fracton of Ts in row (i) = 2/(j«+1)

Total number of Ts in entire table
-n 5_””2,‘(3-001)
en! E’!? Lo ) 2e1)

nE i)
=nl Oininnj

Thus the average number of Ts per column = O(n In n)

Average running time: « Oininn) = O log n)
A

So, finally we have this whole thing as n factorial times sum over j of O of | n j. But, if
you are going to take the sum over j, what do we get? Well, we get n I n and n. So, we
get n | and n over here, what is n | and n? So, we have total number of T s in the entire



table list n factorial times n I n n. So, what then is the number of T s per column or what

is the average number of T s per column?

Well, how many columns are there are there? There are n factorial columns. And
therefore, we divide this total number by n factorial and then we get O of n | n n. So,
average running time is O of n | n n and why is that? Because T s represent the number
of comparisons, and we said that the average that the time is in fact proportional to the

number of comparisons. So, the average running time is going to be O of n I n n.

But, O of n I n nis simply O of n log n as well. So, here the base was the natural base
was e or this was the natural logarithm. Here the base is 2, but that does not matter log of
nand | n of n are within a constant factor of each other. So, let me conclude. So, | would
just like to say that, a similar idea works for selection as well. So, suppose we want to
select the rth smallest element, then something like this will also be fine.

Thank you.



