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Lecture - 21 

Scheduling with Startup and Holding Costs 

 

Welcome to another lecture on design and analysis of algorithms. We will see 1 more 

problem which can be solved nicely using dynamic programming today. The problem we 

are going to solve is scheduling with startup and holding costs. Let me define this 

problem for you. 
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So, in this problem we are given a machine which has the capacity of producing 1 unit of 

something whatever it is per day. However, if I want to start a machine a machine on 

some day which is so, what I mean by that is that if the machine was not on today. And I 

want to get it working today then I have to pay a startup cost and that startup cost is some 

S units which is defined as the part of the input. Clarifying again if the machine was on 

yesterday then I do not pay a startup cost today if I want to keep the machine working. If 

the machine was off yesterday, but I want to start it today then I will have to pay a 

startup cost. We also have a warehouse to hold units which have been produced. So, if I 

produce something today and it is not to be delivered today itself then it goes to a 

warehouse. But of course, if I place something in the warehouse I have to pay some rent. 



So, let us say that we will call that the holding cost and that holding cost will be some H 

rupees per night. The main input to the problem consists of a daily demand for n days. 

So, we are given the vector D of 1 through n in which D of I represents the demand for 

the ith day. 

We are also given the startup cost S the value of S and the value of H the holding cost 

and what we are supposed to produce is a schedule. So, we are supposed to produce a 

vector P of 1 through n in which p of I denotes whether or not the machine is to be kept 

on the ith day or in other words whether the machine should be producing anything on 

the ith day. So, the final requirement which is which might be obvious perhaps, but let 

me state it nevertheless is at the end of n days all the units that have been manufactured 

must have been delivered. So, we cannot be left with any inventory at the end of n days 

and of course, it is possible that the demand that is being given to us is just not 

satisfiable. Because after all our machine can produce only 1 unit per day. So, in n days 

the machine can produce n units. So, certainly if the total demand is more than n we will 

not be able to meet. There will be other conditions under which the demand could not be 

met, but whatever these conditions are our algorithm must report if the given demand 

cannot be met. 
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So, let me now take an example to illustrate this problem better. So, in this example this 

is the demand vector that is given to us. So, what this means is on day 0, day 1 nothing 



gets to be delivered nothing needs to be delivered, day 2 nothing needs to be delivered. 

On day 3 there is a order of 2 units which has to be delivered day 4, day 5, day 6 nothing 

has to be delivered and on day 7 there is an order of 3 units. The holding cost that is the 

cost of storing 1 unit in our warehouse is 1. So, it is 1 per unit and the startup cost is five. 

So, here is 1 possible schedule or 1 possible production plan which will meet this. So, I 

have shown this in a tabular form over here. So, we have days on the x axis. So, 1 

through 7 since there are 7 days the demand is given as 7 days on the third day there is a 

demand of 2 as specified over here. And on the seventh day also there is demand and in 

this case the demand is 3. Here is a production plan which will meet this demand. So, 

notice that on this day 2 units have to be delivered and on any day we can deliver only 1 

unit. So, which means we have to start producing earlier. 

So, say in this case we have to start producing on day 2. So, we will produce on these 2 

days and then for to meet for this demand we will produce on these 3 days machine will 

be idle on this day and not this day. Since the machine is going to start having the idle on 

the previous day there will be a startup cost on day 2. So, this will be a cost of 5 similarly 

on this day the machine will have to start again been idle on this day. So, there will be 

another startup cost on this day, day 2 whatever has been produced is not going to be 

delivered. It is only going to be delivered the next day. So, it will have to be held in the 

warehouse and. So, there will be a inventory cost of 1. Similarly, on this day whatever 

has been produced will have to be held in the warehouse whatever is been produced in 

the warehouse on this day will also be held. So, at this point there will be 2 units in the 

warehouse. So, holding cost of 2 will be incurred here this is of course, not the only plan 

here is another. 

So, in this case what we have done is instead of keeping a gap on day 4. We have begun 

the production earlier, but notice if we begin the production earlier then we have our 

holding cost here as well. So, infact, the 4 dates we have to hold in our warehouse 

whatever unit has been produced. On the fifth day whatever has been produced has also 

to be held in addition to whatever have produced yesterday the day before that. And 

finally, whatever is produced in the sixth day there have to be held and all these 3 units 

will have to be delivered on the seventh day which of these is better. Well, let us 

calculate the time taken and the cost of each the cost of the first plan that is simply the 

startup cost which is 5 plus 5 here plus 1 plus 2. So, this cost for the first plan is 14 the 



cost for this plan is 5 startup 5 for the startups and then 1 plus 1 plus 2 plus 3 which is 

written over here and this adds up to 12. So, eventually this plan is better our question in 

general is going to be to consider all such possible plans and figure out which is the best 

1. 
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So, this naturally suggests a brute force algorithm. So, we will generate all possible plan 

for each will evaluate the costs and then will pick the best. Unfortunately the number of 

such schedules or such plans is going to be exponentially n where n is the number of 

days. So, this is going to be just slow and we would like to have a faster algorithm this is 

where the dynamic programming comes. So, here is a quick view of the dynamic 

programming. So, the first idea is to find some kind of a repulsive solution. How do we 

do that? Well, we cast our problem as a search for some object over certain search space. 

So, it is useful to define the search space quite clearly as well as it is important to define 

clearly an objective function which is to be minimized or sometimes it has to be 

maximized whatever it is it has to be defined very clearly. Then we design a algorithm 

which searches the space typically the algorithm is going to partition the search space.  

So, it is going to say let us divide the search space into spaces and each space or each 

part of the space each subspace is going to be searched separately. So, I search the first 

subspace and I get the best solution. And I get the optimal solution in it what I mean by 

that is the solution which minimizes the objective function. Or if we want maximization 



the solution which maximizes that objective function. So, we calculate the best optimal 

in each search space and then return the best of the best. So, that is the general idea of 

getting a recursive solution dynamic programming; however, does not stop at this point. 

It proceeds further in the following sense the idea is that will characterize what the 

recursive calls are in this part. So, essentially we are going to ask the question what is 

that we are what are the problems that we are solving? So, we essentially make a table of 

all those problems and in each cell of the table we would like to store the results of those.  

So, we will define such a table then will define a procedure for filling table entries and 

this procedure will be a direct procedure it would not very particular and it will assume 

that if I want to fill a certain table entry I can use entries which have been filled earlier. 

So, this will fill entries in the table given that other entries have been already filled. So, 

in this recursive procedure the recursive procedure might be slower, because it might 

calculate the same quantity several times. Whereas, in this case when we make the table 

we will carefully think about what it is that needs to be calculated and will calculate that 

exactly once. So, that is going to give us our efficiency. So, what we would like to do 

now is apply this whole idea to our given problem. The first step in this is to find the 

recursive solution. So, we want to cast our problem as a problem in the recursive fashion 

our algorithm in a recursive fashion. 
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So, here is how you might think of a recursive algorithm for our problem. So, we would 

like to solve a n day problem. So, typical steps in that might be that we somehow solve 

the first day and then we recurse on the remaining n minus 1 days. Now, unfortunately 

recursing on n minus 1 days will depend on what happens on the first day. So, say for 

example, if the machine has been switched on on the first day then when I recurse this 

information is very useful to me. So, if the machine is on then on the first day of 

recursion I do not have to pay the startup cost. So, which means our recursion must 

somehow include additional history information the most natural way of doing this is to 

generalize our problem. 
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So, let us see that. So, our generalized scheduling problem looks something like this it 

has the same inputs as before except there are some more. So, it has inputs the demand as 

inputs the demands for n days the startup cost the holding cost. And then there are 2 

additional inputs and input I which gives the initial inventory. What I mean by inventory 

is that how many units have already in stock on day 1? So, when I begin the whole thing 

it is possible that I already have some units in stock? So, that number is specified as a 

part of the input and that is this number I. Then on the day which I begin the machine 

might be already on or off and that is specified by this variable m. So, M can take values 

on or off I can take values any integer the rest is similar well I should point out that our 

old problem which we had defined earlier corresponds to having I is equal to 0 that is no 

inventory when we start and M equal to off. So, this is the generalization in the sense that 



now we allow I and M to take on a wider range of values our output is as before. We are 

supposed to produce a production schedule and the requirements are same that at the end 

of n days everything that has produced must be consumed. 
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So, let us now try to define a recursive algorithm for this problem. So, the first step was 

to design or think about a search space for this problem and the objective function. So, 

let me call S the search space. So, what is the search space for the input problem as 

given. Well the search space will contain all possible schedules for this instance under 

instances characterized by these inputs. So, a instance is defined as D S H I M where D 

is a vector of n elements if it helps us to think about will think of each schedule as being 

as n bit vector. So, each bit specifies whether the machine is to be on or off on the 

corresponding day. The objective function is the cost and it just consists of the sum of 

the holding and the startup costs. 

And our goal is to get the minimum cost schedule from this space S. Next comes how we 

are going to partition this here is a natural way in which the space can be partitioned? So, 

we will ask what does what happens on the first day. So, in sub space S sub p we will put 

all schedules in which machine is producing on day 1. In space sub space S sub I we will 

put all schedules in which machine is idle on day 1. Now, this union this is this in the 

sense that in every schedule in every element of s. Either the machine is producing on the 



first day or it is idle on the first day and therefore, this is equal to this union this. So, we 

have partition S and so the next question is how do you search each of these sub spaces. 
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So, let us look at S sub p first and we will try to think of how to search S sub p. Here is 

the key idea in devising recursive algorithms for optimization problems. So, if p is the 

least cost element of S sub p then the question we should be asking is will parts of p 

themselves be least cost solutions some smaller instance. If they are then we can use 

recursion. So, this is called the so called optimal sub structure idea. So, if p is an optimal 

solution in this subspace S sub p. The question is will parts of p will also be optimal for a 

smaller sub problem and in fact; it turns out in our case that that is true. 
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So, let P 1 through n be a least cost schedule in S sub p will show the parts of it will have 

to be optimal for a sub problem for a smaller instance. So, if p is the least cost schedule 

what do we know about it well we know that P of 1 is equal to true, why because p is the 

least cost schedule in S sub p and S sub p is a set of schedules in which the machine is on 

in the first day. So, P of 1 must be true P of 2 n is the rest of the schedule, but now I can 

think of P of 2 as a schedule for the residual instance from D 2.  

So, let me clarify this. So, our original instance was this D S H I M when n integer 

vector. The residual instance is just a part of this which begins in the second day. So, in 

the residual instance we have only demands for days 2 through n then S is the same the 

startup cost does not change. The holding cost does not change; however, the inventory 

on day 1 is going to be different on day 2 is going to be different on day 1 the inventory 

is 1. And on the first day we produced of the inventory that was present on day 1. We are 

going to deliver D of 1 which was what the problem require has to deliver and then it 

will add whatever we produced on day 1. 

So, this is the inventory for this instance beginning on the second day the final 

component is the machine status. So, over here the machine status could have been 

whatever now we know since we did produce on the first day the machine status had 

better be true. So, this I the residual instance and clearly p 2 n must be a schedule which 

satisfies this residual influence. Here is the key lemma this lemma says that not only 



does it satisfy the residual instance, but in fact it has to be a optimal schedule for this 

instance. Or in other words it has to be a least cost schedule for this instance the 

argument for this is fairly straight forward. And it is of the typical argument in dynamic 

programming arguments. So, well do the argument by contradiction. So, we will assume 

that p 2 n is not an optimal schedule which means there are better be a schedule Q 2 n 

which is optimal for this instance and it is cost be better smaller than the cost of p 2 n.  

So, cost of Q 2 n must be smaller than cost of p 2 n, but now let us consider this schedule 

R where R follows p on the first day. Or in other words R is true on the first day and on 

the remaining days it follows Q clearly this is a valid solution for the original instance 

right. Because well on the first day we produced and then we were left with this instance 

and that is what Q took care of. Now, what is the cost of R? Clearly cost of R must be 

smaller than the cost of p why because cost of R is nothing but the cost for remaining 

days plus the cost of p.  

The cost of the first day this is the cost of R cost of p is cost with the first day plus cost 

of the remaining days which is not Q 2 through n, but p 2 through n. But in p we are 

adding this whereas; in R we are adding this; this is smaller than this. And therefore, the 

cost of R must be smaller than cost of p, but remember we assume that p is a least cost 

schedule in S sub p. But here we are showing there exists a schedule R which has even 

less cost than p and also the first element of R is true, because it is P 1 itself. So, R also 

belongs to S sub p and therefore, we have a contradiction. And therefore, our basic 

assumption must have been false or in other words our lemma must have been true then 

this is also optimal for instance the residual instance. So, this tells us how to search the 

space S sub p and a similar idea works for the S sub r. 
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So, let us say I 1 through n be a least cost schedule in S sub i. Then I 2 through n is a 

least cost schedule or is optimal for the instance D 2 n S H I minus D 1 false or this is the 

residual instance. So, see that the last component the machine status is false, because S I 

consists of schedules in which the machine is off on day 1. Therefore this is false and the 

original elementary was i but on day 1 we delivered something without producing. So, 

the new entry is I minus D 1. So, this is the residual instance and this remark claims that 

I 2 through n must be optimal for this residual instance. So, we have accomplished the 

goals that we set. So, we have shown how to search S sub p and how to search S sub I 

and this has been done by using recursion. 
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So, we are essentially ready to build a recursive algorithm for sorting this problem. Here 

is a outline. So, we will call our algorithm opts schedule arguments the entire demands 

and when I write D 1 through n over here I simply mean that D is going to be a vector 

with n elements. It will take additional argument which is the startup cost the holding 

cost the current inventory at the beginning and the machine status at the beginning. There 

will have to some best case that will have to take care of, but this is sort of the main core 

of the recursive algorithm. So, this part in this part we are going to search the space S 

sub p. So, we are going to find the optimal schedule for the recursive residual problem. 

Assuming that on the first day we do produce and that will be our schedule P 1 through n 

I 1 through n will likewise be the optimized schedule for S sub I and in this case. On the 

first day we are not going to produce anything and this is just the residual problem given 

that we do not produce anything on the first day. 

So, these are the problems which we exactly looked at in the 2 lemmas that we just saw. 

And then we are going to look at the cost of the first schedule the cost of the second 

schedule and we are just going to return the best of these. So, this is the best of best idea. 

So, this is the best solution in the first sub space this is the best solution in the second sub 

space what we are returning is the best of the bests and number of details have to be 

filled up over here. However, you should be able to argue that this algorithm will take 

time O of 2 to the n see just try to recurrence and this will just come over. So, what we 

are going to do now is not to fill up the details the remaining details and there are a few 



important details which are missing over here. But what we have done is we have 

essentially identified what kind of recursion we are going to have. So, we will just 

proceed to the next step of our agenda. 
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So, the next step is the dynamic programming idea. So, this step is the key step of 

dynamic programming which is characterizing the recursive calls. So, the first 

observation is that opts schedule is always called using arguments D J through n and S H 

I M where J can be any number. So, let me just observe let me just point out why this is. 

So, initially opts schedule is going to be called with the entire input. But later on it is 

going to be called with the residual problem in which we are only going to pass the sub 

array beginning with the second index. Now, what happens in this call itself in this call 

we are again going to throw out the first element of the demand array and then we are 

going to call it with the rest of it. So, when we are doing the recursion on it we will be 

calling it with D 3 n and then when we recurse on that we will be calling D 4 n and so 

on. So, in other words the argument is going to be of this form that we will be that the 

first argument that is going to be passed will be some sub range. 

Well, it will always be a terminal sub range of our input D. So, suffix of that D array and 

then these could be pretty much anything. So, J has to be some number between 1 and n. 

So, the largest index is n. So, J could be anything until n S and H get passed without any 

change what so ever the inventory can be at most l why is that? Well, we have n days 



during which the machine produces 1 unit per day and therefore, the inventory cannot 

ever build up to more than n. So, this argument will be an integer at most l and the last 

argument could either be true or false. So, we have a reasonably good characterization of 

all the recursive calls that could get made in our recursive algorithm. So, the 

characterization says that these are the arguments that are going to be passed and each 

argument can vary in this manner or not vary at all. The next step of dynamic 

programming says well now that you have identified what the recursive calls are going to 

be make a table in which we are going to store the table. So, we will construct a table T 

in which T will have 3 indices J I and M. So, T of J I M will store the result of 

optschedule of D J through n S H I M. The point of making the table really is that we just 

want to focus we just want to make a list of what are the sub problems that we are ever 

going to solve. 

So, this is what we will do. Now, we can work with this table T; however, dealing with 

schedules is a little bit cumbersome because we are going to simplify the problem just 

for a few minutes. So, instead of working with entire schedules we will just work with 

the cost of optschedule. In the table T we were planning to store in each cell the entire 

optimal schedule instead of that we will build a different table let us call it C for cost. It 

will have same very similar entries similar number of entries with similar indices and in 

this we will just store the cost of the optimal schedule. So, now, we are now going to 

work with this table and what dynamic programming requires to do is to figure out how 

entries in this table depend upon each other. So, in another words if the entry C J I M has 

to be filled assuming the remaining entries are full what is the exact computation that 

needs to be done. 
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So, we need to derive some kind of recurrence for C J I M let me just remind you that C 

J I M is the cost of this optimal schedule for the sub problem or for the residual problem 

actually D J n S H I M. Let me just remind you that you did not have S H in the table, 

because they are fixed throughout the execution anywhere. Here is what the optimal 

schedule for D J n is going to look like. So, I claim that the optimal schedule for D J n S 

H I M is going to be the schedule with the lower cost from this schedule and this 

schedule. This really comes from the procedure that we wrote a minute ago. So, let us 

just see that. 
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So, let me just write this term. So, my claim is or what I want to examine is the optimal 

schedule for D of J through n S H I M this is what I want to understand and I want to 

figure out how what will the optimal schedule to this be? So, let us go back to the code 

that we wrote or the recursive algorithm that we wrote. And we said that the optimal 

schedule for D 1 through n SH I M is going to be one of these 2 now, one of these 2, 

when D is passed as the entire array is this, but only when a small smaller range is 

passed. So, the first argument is 1 what will this be? So, the first schedule will simply be 

true concatenated with optschedule and this time instead of passing 2 through n. I should 

really pass J plus 1 through n, because this was just dropping the first element. So, if I 

drop the first element from this this will become D of J plus 1 through n S H I M what 

about this? 

So, this will become false and optsched D of J plus through n S H and in the inventory I 

should really remove what was present on day 1. So, or not on day 1, but on day J and I 

should have M this is what I should have. Here instead of inventory being I i should 

really have I minus D of J plus 1, because since the machine was on the first day I had to 

have a plus 1 over here. So, you can see that this is a this is exactly what I have written 

over here. So, true concatenated with optimal schedule for the demands D J plus 1 

through n S H I minus D J plus 1 and true and the other schedule which is optimal 

schedule false concatenated with optimal schedule of D J plus 1 through S H I minus D J 

and false. So, now we understand what optimal schedule is. So, we just now have to 

figure out what the cost relationship amongst the cost is going to be? 
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So, C J I M is simply the cost of this. So, what is that going to be well this is the least 

cost of this? So, C J I M better be the minimum cost of the cost of these 2 schedules. So, 

what is the cost of these 2 schedules? Well, the first schedule starts with keeping the 

machine on day 1. So, here there is some potential for incurring a startup cost whether 

the startup cost is incurred depends upon whether this n was on or off or true or false to 

begin with. So, if M is true then there is no startup cost or the startup cost is 0. If n is 

false then the startup cost is S. So, this expression which I have written down over here is 

to be understood as the C expression that is the C expression mark true value colon false 

value. So, if M is true then this bracket evaluates to 0 otherwise it evaluates to false in 

other words this bracket over here represents the startup cost it is either 0 or it is 

depending upon M. Then on day 1 there is going to be some inventory cost. So, this 

inventory cost is given over here. So, the inventory for day 1 is going to be this whatever 

the inventory subtract whatever was delivered on D J add whatever was produced. So, 

times H will be the inventory cost and then there is a residual cost. So, it is just the cost 

of this part of the schedule. But this part of the schedule the cost of this is simply C J 

plus 1 I minus D J plus 1 true. 

So, we have related the J I Mth entry to the J plus 1 I minus D J plus 1 2 entry. So, we 

have to take the minimum of this quantity and this quantity and in this case the 

computation of the cost is actually simple. Because there is since the machine is off on 

the first day this is false there is no startup cost, but there is some holding cost. So, what 



is the holding cost on day J something gets deleted the inventory gets reduced by I minus 

D j. So, the inventory is just this and the inventory cost is just this and this is the cost of 

the residual problem. So, now, we have a recurrence connecting C J I M to other entries 

in the table. So, this is the one other entry and this is 1 other entry there are some 

problems though. So, when we wrote down these numbers, we did not we have not so far 

considered the possibility that I minus D J plus 1 or I minus D J might become negative 

that does not make sense. So, I minus D J plus 1 or I minus D J is the inventory. So, it 

does not make sense for the inventory to become negative. 

So, we somehow have to take care of that essentially what is going to happen is what 

should happen is that we should check that if we want to consider the schedule. And if 

we are requiring that I minus D J plus 1 be negative then we should not really be 

considering it at all and we should just use this. Here is a very nice fix to this a simple 

fix. So, we are going to define C J C of J I M to be infinity if I is less than 0. So, let us 

see what this does? So, in this example in this alternative for example, if in this table 

entry this is some negative number. So, we are asking for C of J plus 1 some negative 

number true now this entry would be defined as infinity which would mean that this 

number would be infinite. But if this number is infinite then this entire cost would be 

infinite. But since we are taking the min over here, that would force us to look at this 

cost. So, essentially we would be ignoring this cost. 
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So, by defining C J I M equal to infinity we are saving ourselves the trouble of checking 

the indices are less than 0 in this expression and automatically getting the same effect. 

Now, of course, you might ask if we want to do this for all I less than 0, do we need to 

consider a infinite all the infinite negative numbers for I? Well, we do not and there is a 

simple reason for it, remember that the demand on any day cannot be bigger than l. Why 

if the demand is bigger than n then we cannot fulfill that instance anyway. And so, we 

can check at the beginning whether the demand on any day is bigger than n. In which 

case we just reject we just say that this problem is unsolvable.  

So, this algorithm or whatever algorithm we are going to design will only be called if D 

of J is less than or equal to n. But if D of J is less than or equal to n then we are only 

subtracting n from whatever has to be a positive number earlier. So, in which case it 

suffices I is bigger than or equal to minus n. So, we only need to consider I only a few 

negative values of n that is values of I that is values going from minus l to minus n. So, 

in other words our table is not going to become too large the final problem that we need 

to consider is the base keys. So, we relate entries with the table with other entries, but 

this cannot go on forever. So, some entries we have to set ourselves. 
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So, these are the entries for the last day schedule. So, remember that C J I M were the 

indices for the table entries. If you look at the last day then the first index over here 

should be n. So, in this case we are asking for a single day schedule. So, we should be 



able to set this without much doubt. So, here is the idea if we want to figure out what C I 

and M are to be and we need to figure whether there is a legal schedule. So, the main 

condition over here is that whatever inventory we come in with should not be too large 

or should not be too small. If it is too large then even after satisfying the demand we will 

be left with inventory and that is illegal that will not constitute a valid schedule. If it is 

too little we may not be able to satisfy D of n at all. So, the inventory should be just 

enough to satisfy the last day’s demand. 

So, very simply if I is the last day’s demand if I takes the value last demand then we 

should run with the machine we should not produce anymore units and. So, in that the 

cost for the last day is simply 0. So, C of n I M must be 0 if I is equal to D of n if on the 

other hand the inventory is just 1 less as we come into the nth day. Then what the 

demand is then we would better produce to make up the inventory that we want to 

deliver whatever is needed to be delivered. So, we will have the machine be on and now 

for the last day we need to run the machine. So, our cost is going to be 0 if the machine 

was already off was already on and S if the machine was off. So, this is again the C style 

expression which evaluates to either 0 or S for all other values of I other than D n and D 

n minus 1. This means that we have too much inventory or too little inventory in which 

case we should set the cost to be infinite. So, that takes care of the best case as well. 
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So, let me pictorially show what has happened here or let me pictorially show whatever 

table is going to look like. So, our table is going to look like something like this. So, on 

this axis I am going to have I am going to have the days on this axis or this is where how 

J is going to vary on this axis I am going to have inventory . So, this is inventory greater 

than 0 on this side I have I less than 0 and on this axis into the page if you will I will 

have M . So, this corresponds to say on and this corresponds to off. So, I will draw the 

off in a different color. So, it will look something like this. So, there will sort of 2 sheets. 

So, even the second sheet. So, our table is going to look something like this now how did 

we fill the table? Well, in this case we looked at the last column on the days side. So, this 

is what we filled out all right. So, this part we filled out. So, this is nth day and this in the 

second part in the off side also we filled it out. So, these values are known then, because 

of this we divided C J I M equal to infinity where ever I was 0. We have also filled this 

out this part. 

So, these parts are filled out to begin with by very simple ideas. So, the recursion part 

comes only for this part and this part over here. So, how is that filled? Well that is filled 

using these expressions. So, essentially if I want to fill this entry what am I going to use. 

Well, I am going to use some entry in the J plus 1 th column some value from this 

column and also the corresponding column of the off side on the, of the machine being 

off, because I am getting C J plus 1 true and C J plus 1 and false as well. So, this entry 

depends upon the next column. So, now our calculation is quite straight forward. So, this 

part is already been filled up easily by the last 2 days calculation and by this calculation. 

And then to fill each entry we will just use this expression and this entry can be filled in 

constant time as I have seen over here as I have shown over here. So, basically the idea is 

that we fill the entire table in decreasing order of J. So, we start from here and go 

backwards and we fill in the table. So, the number of entries here well let us calculate 

that carefully J ranges from 1 to n. So, here it is 1 and here it is n I goes from minus n 

and it goes all the way to plus n. 
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So, there are 2 n plus values for I and M can be on or off. So, there are only 2 values of 

M. So, that total number of entries in the table is just all possible choices for J all 

possible choices for I and all possible choices for n. So, n times 2 n plus 1 times 2 or O 

of n square time to fill each entry our recurrence can be evaluated in constant time or 

each single step can be evaluated in constant time. So, that is O of 1 and as a result the 

total time is O of n square. So, we will fill the entire table in O of n square time we 

should ask well we have filled this table, but which part is the 1 that we want. 
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So, coming back to this; this is the entry which we want. So, at the end this is our final 

answer or I am sorry not this it is this, this is the final answer or the optimal cost is found 

in entry 1 0 falls of the table. So, 1 is the J value 0 is the, I value. So, it is this entry on 

this axis itself and it is in the off or the false side. So, this just says what is the cost of 

generating a schedule for the entire demand? Given that there is no inventory to begin 

with and that the machine is off. 
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The final topic is how do we find out, how do I find the schedule given the table? So, 

remember that C 1 off was the cost of the schedule. Now, this cost is going to be a 

minimum of some costs which costs well, we note we noted that if I want to calculate 

this cost it is the minimum of some cost in this and some cost in the corresponding 

column over here. So, C 1 off would be the minimum of some expression involving 

some column some element in the next column on the off side as well as in the next 

column on the on side. So, we simply check whether C 1 is equal to the first term or the 

second term it is the minimum. So, it should at least be equal to at least one of these. If C 

1 off is equal to the first term what do we know? We know that this must be generated by 

keeping the by using the first term or by keeping the machine on during day 1. If this 

term is equal to the second term over here then the machine should be off on that first 

day. So, in this way by knowing the optimal cost we were able to and knowing the table 

we were able to figure out whether the machine should be on or off on the first day. 



And we are also able to figure out what the corresponding entry for the optimal schedule 

for the residual plan is is it this or is it this So, then we can apply this argument again and 

again and will get machine status for every day and will does generate the entire 

schedule. So, let me now conclude. So, in this problem in today’s lecture we saw another 

problem for which dynamic programming could be used before using the dynamic 

programming. There was a important step that we took which is quietly an important and 

interesting step very often we are given problems for which to device recursive algorithm 

a we need to generalize the problem formation itself. So, here is 1 such example you 

must have seen similar example in another problem which was the problem of medium 

finding. If we want to device a recursive algorithm for medium finding well, we cannot 

do that very easily or very simply. So, what we do instead is we generalize the problem 

and ask for recursive algorithm for finding the arc smallest. So, some similar issue was 

applicable here as well. 
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I would like to make a comment on dynamic programming and the comment is simply 

the dynamic programming can be thought of as recursion a basic idea. The basic idea the 

first basic idea, basic idea is recursion and the next idea is make sure that you compute 

every value only once. And our table essentially made as focus on what values we were 

computing and we were and we thereby we could only calculate we can make sure that 

we have calculated every value only once. Finally I would like you to I would like to 

draw your attention to recursion itself and point out that when we use recursion in search 



problem in any search problems. It can be thought as a divide and conquer of the search 

space. So, with that I will conclude this lecture. 


