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Welcome to another lecture on Design and Analysis of Algorithms. Our topic for today 

is Matric Chain Multiplication. Let me begin with an informal statement of the problem 

that we have. 

(Refer Slide Time: 01:02) 

 

So, our problem is something like this. We are given n matrices. Let us call them M 1, M 

2, all the way till M sub n. And we would like to multiply them and form this product. 

So, this is the usual matrix product. We would like to do this as fast as possible. Here are 

some of the issues involved in doing this. If the first issue is what algorithm should be 

use, when we just multiply to matrices together, because we are going to use this 

algorithm repeatedly. That is how we are going to solve this problem today. 

The second issue is since matrix multiplication is associative. How do we parenthesize 

this product. Because, that will, it will be clear zone. That will also affect the time 

required to do the entire to perform the entire product. So, let us look at the first issue. 
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So, let us say we want to compute C equal to A times B. Where, A is a p by q matrix. B 

is q by r matrix. A and B are given to us. And C is a p by r matrix, which is to be 

completed. The simplest algorithm for doing this is to use a definition of matrix 

multiplication. Matrix multiplication is defined as C i j is equal to summation over k, k 

going from 1 to q of a i k times b k j. Computing the single term such as C i j will require 

O of q time. C has p r elements overall C is a p by r matrix. So, it has p r elements. So, 

the total time will be O of p q r. 

Now, terms out that there are faster algorithm possible. But, we are going to strict to this 

algorithm for simplicity. So, we will assume for the rest of the lecture. That if I want to 

just multiply 2 matrices together my time is going to be O of p q r or to wake it even 

simpler. I am going to just say p q r is the time required for multiplication of 2 matrices. 

p by q matrix by and q by r matrix. 
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The second issue concerns associativity. Let me explain this with specific example 

involving only 3 matrices So, say n is equal to 3 over here. Now, we need to compute the 

product M 1 times, M 2 times, M 3. There are two ways to do this. One possibility is 

multiply M 2 and M 3 first. And then multiply that with M 1. Or multiply M 1 and M 2 

first. And then multiply that with M 3. Let us, take a specific example. 
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So, let us assume that M 1. M 1 is a 3 by 2 matrix. M 2 is a 2 by 4 matrix. And M 3 is a 4 

by 1 matrix. So, now if you want to multiplied according to this manner ((Refer Time: 



04:23)). Then here is what will happen. So, we will first compute matrix M 4, which is 

M 2 times M 3. So, M 2 was 2 by 4 matrix. And M 3 was a 4 by 1 matrix. So, the 

product will be following over formula p q r, it will be 2 times 4 times 1, or it will be 8. 

Now, given M 4 our final answer can be computed just by multiplying M 1 with in. 

M 1 is a 3 by 2 matrix. And M 4 we calculated ((Refer Time: 04:58)) 2 by 1 matrix. So, 

this will require time 3 by 2 by 1 or 6. So, this will require 6 matrix multiplication, 6 

scalar multiplication this will require 8s scalar multiplications. Then the total number of 

multiplication required will be 14. Another possibility, which I have indicated over here, 

is to first form M 1 times M 2. So, we compute M 5 equals M 1 time M 2. 

Remember, that M 1 was in 3 by 2 matrix. And M 2 was a 2 by 4 matrix. So, the total 

time over here, to calculate M 5 is equal to 24. The answer now, can be obtained by 

multiplying this M 5 which is just this, which we calculated by M 3. Now, M 5 in the 

product was 3 by 4. So, it is P and Q are 3 and 4. M 3 is 4 by 1. So, Q by R is 4 and 1. 

So, this product requires time 3 times 4 times 1 or 12. The total time for this way of 

doing things is therefore, 24 plus 12 which is equal to 36. So, clearly this first way is 

better. 

(Refer Slide Time: 06:18) 

 

The problem now is that, if we are that we can take our product. And we can 

parenthesize it in this way or we can parenthesize it in this way. We could speak of 



parenthesization. But, I would like to point out that these parenthesization can be you can 

also be thought of it rooted trees. So, let me explain that. 
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So, here are our metrics to be multiplied M 1, M 2, M 3. So, if I want to first form the 

product M 2 times M 3. Let me represent it in our usual fashion by drawing vertex over 

here. And this vertex represents there product. The next thing I do is, I take the product 

of these two. And this is my final answer. So, this corresponds to the parenthesization M 

1 times M 2 times M 3. Alternatively, I could also have done something like this. So, I 

could take product of M 1 and M 2 first. So, this is the first way of doing things. 

This is this is what I do first and then I take the product of those. So, the parenthesization 

corresponding to this is M 1 times M 2 whole times M 3. So, this is this we have doing 

things which we had early indicated earlier. In this particular example, we found that this 

((Refer Time: 07:49)) superior. But, of course, with other choices of the matrix to 

mentions, other way could be superior this could be superior. We want multiply M 

matrices ((Refer Time: 08:04)) just 3. So, let us do one more example, what if we have 4 

matrices. 



(Refer Slide Time: 08:07) 

 

So, in this case, we have addresses M 1, M 2, M 3, M 4. So, the parenthesizations here, 

will corresponds to 4 trees with 4 leaves. So, one possible parenthesization, which I 

might indicate is something like this. 
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So, say for example, I could compute say the product of M 2 and M 3 first. Then, maybe 

I compute product of M 3 and M 4 next. And then finally, I compute this. So, this is my, 

this is the tree. Of course, there are many such trees possible. And in fact, in this case let 

me just write down all the values all those. So, say for example, here is another tree. So, 



here is another tree, in which we first multiply and 3 and 4. Then multiply that with M 2 

and then with M 1. 

But, that is not only one here is another. And then, we also have things like and also. So, 

in this case, it terms out that there are 5 trees in which M 1, M 2, M 3, M 4 can be the 

leaves. And therefore, 5 ways of parenthesize in this product. As you saw to go from 3 to 

4 we went from 2 to 5. If you keep doing this, you will see that the number of tree is 

grow is very fast. In fact, you can prove you should be able to prove that it grows 

exponential. So, in the pointers that we want to pick a tree from one of these possible 

trees, and we want to pick the 1, which minimize this the total time taken. So, we are 

now ready to give a formal statement of the problem. 
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So, our input consist of an array d zero through d n. So, this is going to represent the 

dimensions of the matrix. So, d i minus 1 and d i respectively will give the number of 

rows and columns of matrix M i. So, this means that the columns of the number of rows 

of matrix M i plus 1, will be d i. So, which will be equal to the number of columns of 

matrix M i. Which is as I should be, because only then can be think of the product M i 

times M i plus 1. 

So, although we have M matrices, which are being multiplied and this is supposed to 

represent the dimensions of N matrices. We only have a, have N plus 1 numbers over 

here. Our output is suppose to be a rooted binary tree with M 1 to M n as leaves. And 



this whole thing should give us the least time for computing the product. Let me now, 

state as state again. That if you give me a tree, I can estimate the time required for the 

tree. And the algorithm here is actually fairly straight forward. 

So, if we give me a tree, then the time required for the left sub tree can be estimated 

recursively. The time required for the right sub tree can be estimated recursively. And 

then, I just add up the two times. But, that does not finish the time the total time. I have 

to take the product represented by the left tree. The product represented by the right tree 

and I have to multiply them together. So, I need an additional term over here. So, just to 

clarify suppose, we have we consider a tree, in which the left sub tree has I leaves. 
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So, say M 1 through M i belong to the left sub tree. And M i plus 1 through M n are 

leaves for the right sub tree. And so we take the product over here. So, this has some cost 

let me call it C L and let me call the cost of this C R. So, what is the cost of this entire 

tree? Well, So, the cost is going to be C L plus C R plus computing the product of these 

matrices with the product of these matrices. But, what is the product of these matrices, 

what is the dimension of the product of these matrices. 

So, that is simply the number of rows in this matrix, which is d 0, times the number of 

columns in this matrix. So, let me write over here. So, this are here, this product is going 

to be d 0 times, the number of columns over here. So, times d i, this product is going to 

be d i times d n. So, as a result, what we are going to get is the total time or the time to 



computer this lost product, which is the only term remaining over here is d 0 times d i 

times d n. 

So, stated here, the time taken is, the time for the left sub tree, time for the right sub tree 

plus d 0 d i d n. So, here I was using subscripts. Here, I will just use array accesses, but 

you know there will be in the same thing. I mean the same thing by them. 
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So, how do we solve this problem. So, here is a simple brute force algorithm. So, we 

generate all possible n leaf trees. And will use, will calculate the cost for each or cost is 

really the same as time in optimization ((Refer Time: 15:00)) more customer is to think 

of cost. So, I might use or I will use cost to represent time in the rest of the lecture. So, 

we calculate the cost of each of these trees. And then, will be return the 1 with the 

minimum cost. As remarked earlier, this is going to be too slow, because a number of 

trees is going to be exponential in n. 
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We would like to solve this problem or we would like to see, if dynamic programming 

can be used to design an efficient algorithm for solving this problem. So, let me give a 

quick overview of what dynamic programming the whole dynamic programming ideas. 

So, in dynamic programming the first step is to cost the problem as a search for an object 

over a certain search space. So, this certain search space, we have to define a ((Refer 

Time: 15:50)) clearly, just to clarify our thoughts. 

Then, we also need to define clearly an objective function, which is to be minimized or 

maximized. In our problem, we have really done this step. Because, the search space is 

simply the search space is simply the space of all possible trees. And the cost function is 

the time and that is to be minimized, the objective function or the cost function. The next 

step is to design an algorithm, which partitions search space. And each partition is 

searched to find the best, the best element in it or in our case the best tree in. 

Now, here is the key idea, each partition is to be searched, but we can do this recursively. 

So, we find the best element in each partition. And since, we want the best element in the 

entire space, which is staying the best of these best. Dynamic programming does not stop 

at this step 2. The last and most important step perhaps or the most unusual steps perhaps 

is that we are going to characterize, the recursive calls which over made over here. 

So, in this we will making several recursive calls, we will ask the question. Is there 

anything interesting about those calls, is there any property that we can identify for those 



calls. Or somehow, can be say that the calls are only made on these arguments. So, once 

we get a characterization, we are going to build the table, in which the results of all these 

calls are going to be stored. So, we have identified, which are the calls which are going 

to be made over the lifetime of this algorithm. 

And will have an entry in this table corresponding to each such call. Then will define a 

procedure, which I will call fill, which will be able to fill the table entries using other 

table entries. The key requirement is that fill should not be recursive function. If we can 

do this, we will have a dynamic programming algorithm. And if everything works right 

this will the a fast algorithm. So, let us see how we can make this work. So, the first 

thing is to look at the search space. So, let us quickly take a look at that. 

So, the search space in our case is all possible trees with M 1, M 2 the matrices at the 

leaves. Note, that we have not actually been given the matrices. And we do not need 

them, we do not we are not actually going to calculate the matrix product. We are just 

going to design scheme for calculating the products. 
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So, even though I say, that M 1, M 2, M n are the leaves. I really mean, so I really mean 

there are some place holders M 1, M 2, M n where the matrices can eventually be placed. 

So, there are these place holders M 1, M 2, M n which are going to be the leaves. And 

we are going to consider all possible trees and that going to be our space S. Our object 



function is going to be a cost. We call it a cost, because that is something that we want to 

minimize. 

So, our cost is going to be the time required for a tree. And we have already seen, how 

we calculate this time. So, our goal is to find the minimum cost tree from this S. The next 

step is to partition this S. Now, there are several ways. in which you could partition. If 

you have so this is the place, where we require some creativity. However, I am going to 

point out a very natural way of doing this partitioning. So, S is the space of all trees. I am 

going to define S sub i is that sub space. 

So, that sub space in which consists of all trees, in which left sub tree of root has M 1 

through M i at the leaves. And right sub tree of root has M i plus 1 to M n at the leaves. 

So in fact, it is going to be a tree which looks like this. So, ((Refer Time: 20:22)) in this 

picture, I have M 1 through M i at the leaves of the left sub tree. So in fact, let me call 

this sub tree L and let me call this R. Now, I have told you, what structure L is going to 

have, it could have any structure what so ever. 

I have told you what structure R is going to have, that could also have any structure. So, 

all such trees, which have this form R going to be in this sub space S i. So, I am going to 

consider as a sub space for each value of i, i going from 1 to n minus 1. Because, I want 

at least 1 leaf in this side and 1 leaf in this side. So, if I take the union of these subspaces 

S 1, S 2 all the way till S n, S n minus 1. I will get my original space. So, every tree in 

this original space is place, somewhere in one of these subspaces. 

The next question is how do I search S i. So, if we can design an algorithm for searching 

S i. Then will be able to find the best in S i. And then, will take the best of the best as we 

has said earlier. So, whenever we look for something it is usually a good idea to 

characterize to design some property to define some property of it. So, as I am looking 

for a tiger in a forest. Well, it will be useful, if I say that a tiger has strips or it is yellow 

or it is a large animal. 

So, if we can define some properties for the best tree that we are looking at. So, let us say 

T is the least cost tree in this S i. And if we can define some properties for it, then it will 

help us in actually finding T. 
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Now, here is the main property of T that we are going to use. And it is actually a fairly 

natural property. So, the main lemma that we are going to prove is this. So, left L be the 

left sub tree of T, which is a least cost tree in the side. I am saying a, and not b least 

((Refer Time: 22:41)) cost tree, because there could be several least cost trees. So, T is 

just a least cost tree in our subspace S i. And L is it is that sub tree. The interesting 

observation or the interesting ((Refer Time: 22:57)) perhaps right now. 

Is that, if t is a least cost tree. Then somehow, we expect that L also should be a least cost 

tree. But, L is only over the L only is computing the product M 1 through M i. And so, 

our claim is that L must be a least cost tree for computing the product M 1 through M i. 

And the proof of this is very follows in the standard dynamic programming ((Refer 

Time: 22:28)) argument. So, we are going to assume ((Refer Time: 22:30)). 

So, we will assume that L prime be the optimal or the best tree for this product M 1 

through M i. And it is cost sorry and the cost of L is actually, greater than the cost of L 

prime, which has to be the case, if you want to claim that L is not optimal. So, L has cost 

strictly bigger the L prime. So, let me draw picture over here another picture. 
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So, this is L, this is R and say this is my tree T. Now, what we are just claimed is that 

there is T L prime. And this has leaves M 1 through M i. And the cost of this is smaller 

in the cost of this. Of course, L must also have leaves M 1 through M i. And let me write 

down the leaves over here as well this should be M i plus 1 through M n. Here, is what 

we are going to do. Here is sort of the standard dynamic programming idea. I am going 

to construct another tree T. 

But, this time I am going to place L prime instead of L. So, my tree t is tree T prime is 

going to looks something like this. So, I am going to have L prime over here. And I am 

going to retain R as it was. And I am going to connect these two together. So, this is my 

tree T prime. So, I start, so T is known to be optimal. So, this T is optimal and I do not 

know anything about this. But, I would like to estimate the cost of this. So, let us look at 

the cost of T first. 

So, cost of T is equal to cost of L plus ((Refer Time: 25:35)) cost of R plus d zero d i d n. 

So, this just comes from this observation, which we had made earlier. Now, what we 

know about cost of L, cost of L is bigger than cost of L prime. So, if I substitute L cost of 

L prime over here. I get that cost of T is bigger than cost of L prime plus cost of R plus 

all of this. Now, this entire expression really, if you look at thus picture over here, you 

can see is nothing but cost of T prime. 



So, this entire expression ((Refer Time: 26:16)) is equal to cost of T prime. So, what 

have you proved, we have proved the cost of T is bigger than cost of T prime or ((Refer 

Time: 26:27)) T prime has a smaller cost than T. But we had made a claim about T. So, 

we had claim the T is optimal. So, T is optimal for this space S i. So, T is the best 

possible tree of this form with I least on the left side it is a least cost tree. But, we have 

just found ((Refer Time: 26:52)), that t prime has even smaller cost than that. So, we 

have a contradiction. 

So, we have a contradiction and therefore, our basic statement must be true. That L must 

be ((Refer Time: 27:07)) L must also be a least cost tree. So, if T is a least cost tree, then 

its left sub tree L must also be a least cost tree. But, ((Refer Time: 27:18)) we can apply 

the same argument to the right side as well. So, we can argue that the right sub tree of T 

must also be the optimal sub tree over it is leaves. So, we are now, ready to design a 

recursive algorithm. 
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So, we will call our recursive algorithm MCM stands for metrics chain multiplication. It 

will take as argument then array, the array which gives the dimension of the matrices. 

And it will return the optimal tree. We do not have the leaves the matrices themselves. 

So, the tree will just P the tree will just have an adequate number of leaves. And the 

leaves will serve as place holders for the metrics. We are only interested in the structure 

of the tree anyway. 



So, we are not actually going to perform in the matrix multiplications themselves. But, 

we are just going to indicate the order in which the matrix multiplication should be 

performed. The basics for writing this algorithm is going to be the lemma that, which has 

proved. But we need to first take care of some base cases. So, suppose our array only 

represents a single matrix, in which case this n could be 1. We could be given just two 

number, the number of rows and the number of columns. 

In this case of course, there is no multiplication to be done. But, this is the base case and 

here we will written a tree. But, this tree will just consist of a single vertex. Now, we are 

ready to generate the algorithm that we use the lemma generate our algorithm. The basic 

idea is that we are going to explore each subspace S i. So, here is the code for doing that. 

So, I here is going to be the subspace that we are going to be exploring. And I will take 

value is 1 to n modulation one. 

So, for each subspace we will first calculate, the best left sub tree that must be made that 

must form, the that must be a part of the optimal sub tree optimal tree for that. So, as for 

the previous lemma the left sub tree of the optimal sub tree optimal tree for this subspace 

must itself the an optimal tree. So, to do that, will recursively call MCM. But, this time 

we only want the optimal tree over the first I leaves. So, likewise we will only we 

passing the i plus 1 elements of this array. 

So, i plus 1 elements will define the rows and columns of the sizes of the number of rows 

and columns of the first i matrices and that is what we will pass. Likewise, will construct 

R i, which will be the optimal right sub tree, which will be the part of the optimal tree for 

S i. So, this will be done by this call MCM of d i through n. And this will simply be the 

dimensions of the remaining n minus i metrics. C sub i is going to be the cost of this. 

This is going to be computed using this observation. 

So, it is going to be the cost of L plus the cost of R ((Refer Time: 30:50)) and the cost of 

multiplying the two the results together. So, this is what we have over here. So, it is 

going to be cost of this tree, cost of this tree that we get and the time required or the cost 

required to multiply the results corresponding to these two. Note over here, that I am 

using this, this expression cost of L i. And you may think of it either as a function, but 

more accurately you should think of it as a field selector. 



So, when we return the tree itself, the tree will also contain its cost. So, we are just 

extracting the cost out of it. So in fact, as we designed the algorithm we should consider 

that we are not only written in the tree. But, we are also written in the cost of the tree. 

Next, we will have all these C i ‘s and we just want to find the minimum C i. And let us 

call that i for which C i is minimum. And let us call that i, lets us use i to denote time. 

And then, we are simply going to take the corresponding tree in the corresponding left 

and right sub trees and make a tree out of those and written that. So, this will typically 

we something like L i will be a pointer to the left sub tree or I will be a pointer to the 

right sub tree. So, we will construct the new node, which will be the new root. And we 

will make the root point to align R i. And since we also want to written a cost, we will 

attach an additional field, which is C i over here. So, this is the end of the procedure. So, 

this is the end of the recursive algorithm that we wanted. 
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Now, we could work with this, but to simplify a matrix. We will only consider will 

consider an algorithm, in which we only compute we only compute the cost and not the 

tree itself. So, the idea is going to be very similar to the previous algorithm in that it 

going to be simpler. So, earlier we said that, if n is equal to 1 then be written single 

element. In this case, we are not going to written a element, but we are going to written 

its cost. So, in this case, we are going to written 0. 



In the previous algorithm, we L i equal to MCM of this. But here, now we are going to 

use MCMC. So, MCMC is the cost the cost of the optimal tree. So, will L i will now 

become the cost, arrive will also become the cost. And so the total cost is going to be not 

cost of L i, but just L i plus R i plus whatever this was. And now, we are going to find 

the i for which this is the minimum. And then we will write this C of i. So, we will work 

with this and the rest of the dynamic programming procedure will work will use this. 
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Actually, we would like to simplify, we can simplify the whole thing. And here is 

however, simplify it. So, let me go back to this and let me try doing this one paper 

((Refer Time: 34:01)). So, you can see both the things at the same time. So, the idea over 

here was that we are going to calculate this expression and take the minimum. So. In 

fact, this whole part I can replace by the following expression. 
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So, I will just write this as return the minimum over all possible values of i, of what are 

say in fact, i going from 1 to n minus 1. And what is it that we are going to take the 

minimum of it is just going to be this C of i over here. So, instead of L i, I will just 

substitute this MCMC. So, I will write that as MCMC of d 0 through i plus MCMC of d i 

through n plus d of 0 times d of i times d of n. So, I just taken this expression ((Refer 

Time: 35:25)) and I have substituted MCMC over it here. 

And this MCMC over here and I get this expression. So, that entire part could be 

represented as this. So, we are going to take this expression for all values of i and we are 

going to find the minimum fit. And that is what we are going to return. So, this is the 

resulting expression ((Refer Time: 35:47)). So, if n is equal to 1 again will return 0 

otherwise will return this, which is what I have return over here. The final step in 

dynamic programming is to characterize the recursive calls. 
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So, our recursive calls, which we made ((Refer Time: 36:04) for this procedure MCMC 

of d 0 through n. And we called d 0 over i over here and d i n over here. So, we MCMC 

((Refer Time: 36:14)) was called these arguments. So, if we look at how MCMC would 

progress further, you will notice that each time we are taking our original range. And 

then we are splitting get in some way. So, here we are taking a prefix of the range. Here 

we are taking the suffix of the range. 

If we take a prefix of the suffix then we will get some range for not necessarily a suffix 

or prefix of this. But, never there is always some sub range of this. So, our 

characterization could be something like this. That MCMC is always called is a sub 

range d j k, where j k is the sub range of 0 through n. So, our entire array was d 0 through 

n. But, will call it with some d j k. So, this allows just define a table. 

Since, we know what all the recursive calls are going to be, we are going to allocate one 

entry for each possible result. So, here is the possible result. So, d j k, where 0 less than, j 

less than, k less than n. So, this result of the call MCMC on this is going to be store in 

table entry T j k. Our next step is to define a non recursive procedure fill, which will be 

used to fill this. So, if we call fill with j k, we should get exactly what is suppose to be 

filled over here or it should return MCMC of d j k. 

So, MCMC of d j k, so you need to figure out what exactly is MCMC of d j k. So, let us 

try and execute MCMC with the arguments d j k. So, for that we need to go back to the 



definition of MCMC. So, here is what we need to do, we want to execute the call MCMC 

of d j k. 
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So, here is our basic procedure ((Refer Time: 38:25)) MCMC. So, this is being called the 

parameters over here are the entire sub range 0 through n. However, we want to call it 

with this sub range. So, assume of course, that the compiler will rename and make this 

appear like 0 through n. But, when it does that, what exactly will this return. What 

exactly how exactly will this execute. That is what we need to understand. So, the 

condition n equal to 1 over here. Just say, whether this last index is 1 plus this first index. 

So, this condition really should be thought of us. If the last index k is equal to j plus 1. In 

that case return 0. Otherwise, it is going to return this expression. So, we are still going 

to return this expression, but wherever the first index 0 appears will just put in j and 

wherever the last index n appears we just put in a k. So, that exactly what we are going to 

what that procedure should be doing. So, MCMC even called on d j k will work 

something like this. So, it will return say min our i going from not 1 to n minus 1. 

But, instead it will go from j plus 1 to k minus 1. And it will compute MCMC of d of j i 

plus MCMC of d of i k plus instead of this we are going to have the corresponding right 

bounds ((Refer Time: 40:29)). So, we are going to get d of instead of 0, we will get j 

times d of i times d of k. 
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So, this is the value that should be return by fill. So, here is what fill in fact, as. So, fill is 

going to do exactly this ((Refer Time: 40:56)). However, fill is not really allow to 

reference MCMC and in fact, filled does not need to reference MCMC. So, when it 

wants to compute MCMC of d j i. It fill knows that this is going to be stored in d j i. So 

in fact, instead of MCMC fill is just going to return d of j i. Instead of MCMC of d i k fill 

is just going to return T i k. And then this part is going to be the same as before. In fact, 

that is what fill is going to be returning. 

So, this procedure fill that we have defined over here is the right procedure it is non 

recursive. It does not think talk about MCMC does not call anyone else, but it is look at 

the table entries. So, this is what we needed, we want it to have a procedure, which tells 

us how to fill the j k th entry assuming that other entries are full. So, this is what it is 

doing. So, now we are really pretty match ready to right the dynamic programming 

algorithm. So, what we need to do next is to characterize how fill works. So, let me write 

down over table first. 
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So, our table T is going to look something like this. So, here is the first index, index 

which is i here is the first index, which is the second index which is j, sorry our first 

index is j and the second index is k. So, let us now look at the first step the first statement 

and fill. So, it is says that fill ((Refer Time: 42:56)) the table must contain as 0, if k 

equals j plus 1. So, this is 1 1. So, this will be the entry 1 1. So, this is not of interest. So, 

if k is equal to j plus 1. So, this entry is going to be a 0. This is where k equals j plus 1. 

But, that is not the only entry. In fact, another entry, which will be 0. Because, of this 

will be this entry and so on. So, these are simply entries above the mean diagonal. So, 

this could be the mean diagonal. And all the entries above the mean diagonal will be 0’s. 

And in fact, the whole thing is going to be define for j less than or equal to k. So, in fact 

it is going to be defined on this side. This side is not going to be use, this side and the 

diagonal are not going to be used at all. 

Now, let us examine how does fill ((Refer Time: 44:01)) a particular entry j k. So, let us 

say this is my j over here. And so this is the entry that I want to fill. And this is the index 

k. So, the jth row kth column this is the entry that I want to fill. How does filled ((Refer 

Time: 44:21)) fill this entry. So, it considers the values of T j i, where j ranges sorry T j i 

where i ranges from j plus 1 to k. So, these are simply table entries in this region. So, let 

me put them in a different color, so it so these are the table entries. 



So, these are the table entries, which are needed for updating this. So, let me put an 

arrow going from here to here. But, it also uses table entries i k ((Refer Time: 44:53)) 

again I going from j plus 1 to k minus 1. So, which are these entries. Well, these are the 

entries, which are below over here. So, the entry is above the main diagonal. But, below 

this element are also going to be used. So, if these entries have been have already been 

defined. And these entries have already been defined. 

Then fill can fill in this table entry. So, then the entire procedure is extremely simple. 

What is that we have to do. We must ensure that when it comes time to fill this entry. All 

these entries must already have been filled. So, ((Refer Time: 45:41)) that such as is a 

very simple order in which we can fill these entries. 
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So, here is my table. So, here is the main diagonal. So, this diagonal I am not going to do 

anything with. But, the entry is above that I am going to mark as 0’s. Then, I am going to 

start filling entries. But, I should fill entries such that if I want to fill this entry. Then, 

everything on this side and everything on this side is already filled. So, next I can fill this 

entry maybe. So, I will put a 1 over here. After that, I can fill this entry. I can fill this 

entry. Then I can fill this entry, this entry, this entry, 7, 8, 9, 10. In general, I can let me 

use another picture. I can take my matrix. 
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So, this is my matrix, this is my table. I will filled the second diagonal with 0’s. Then, I 

will fill the entries, the rest of the entries in this order. First, I will fill these, then I will 

fill these, then I will fill these, then I will fill these and so on. The point is that, if I have 

fill entries in this order. Whenever, it comes time to fill say an intersome where over 

here. I would already have filled these entries and these entries on which this entry 

depends. So, that is the key idea. So, if these entries are already filled then you can fill 

this entries. So, the only thing that remains to be done now is to figure out, how much 

time the whole thing ((Refer Time: 47:28)) will take. 
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So, the total time taken is clearly equal to number of entries in the table. Times time to 

fill 1 entry. So, this is already telling us, everything that we want to know. How many 

entries do you have in the table. Well, T has all this entire range j k, where j k lie 

between 0 and n So, we have a two dimensional table with n rows and n columns. We 

are only using half of it. But, clearly the number of entries is therefore, O of n squared. 

What about the time to fill a single entry. 

So, T j i and T i k are already known, when we ((Refer Time: 48:29)) are going to have 

to compute this product. And we are going to do these additions. But, and this has to be 

done these many times, so far every value between j plus 1 and k minus 1. This range 

can be as large as n. And therefore, the time to fill a single entry is going to be O of n 

again. So, the whole thing is going to be O of n cube. So, that really ((Refer Time: 

48:58)) finishes the entire algorithm. 
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So, the total time is n square times n which is equal to O of n cube. Now, I just want to 

make one more comment. In the comment is about this simplification that we tell. So, we 

said that, we are not going to compute the exact tree that we wanted. But, we are just 

going to compute, the cost of the optimal tree. So, I want to leave you with an exercise, 

which is how can you modify this algorithm. So, that you actually, calculate the tree and 

not just the cost. 
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So, this is exercise. So in fact, the idea is something like this. So, I am giving your hint 

over here. In each table entry, store the root node of the tree along with the cost of that. 

The root node will contains pointers to the left and right sub trees. Now, if you go and 

ask the question, how do I update a single element of the table. You will have to 

construct the root node as well as these pointers and as well as these cost. But, you will 

see that each filling now will still be possible in O of n time. And since the number of 

entries are O n squared the total time should still be O of n cube. So, that concludes this 

lecture. 


