
Design and Analysis of Algorithms 

Prof. Abhiram Ranade 

Department of Computer Science Engineering 

Indian Institute of Technology, Bombay 

 

Lecture - 2 

Framework for Algorithms Analysis 

 

Welcome to the second lecture of the course on Design and Analysis of Algorithms. In 

today’s lecture, we are going to develop a Framework for Algorithm Analysis. In this 

course, we will be designing many algorithms for solving many different kinds of 

problems. We will want to compare these algorithms and even just plain evaluate them. 

And for this, we will need some sound mathematical bases. 

And that is, what we are going to do. We are going to design a formal framework using 

which we can evaluate algorithms. And we will and also compare them. This is going to 

the topic of this lecture and also the next few lectures. The framework that we designed 

could be used not only for comparing the execution time of algorithms, which is what we 

primarily mean; when we say algorithm analysis. But, it could also be used for 

comparing other resources that an algorithm might use. 

For example, an algorithm might use varying amounts of memory. So, we could use 

essentially the same framework that we are going to discuss very soon. And use that 

framework to formally compare the memory requirements of different programs or 

different algorithms. The basic idea in designing in the framework that. We are going to 

discuss today, is actually very related to the kind of analysis that we did in the first 

lecture. 

Except we are going to make it a little bit more formal. Essentially we are going to make 

a mathematical model of a computer. And then, we are going to take our algorithm and 

mentally execute that algorithm on that model. And then through this execution and by 

mentally executing, we will be able to tell how much time. The algorithm takes and that 

is essentially going to be involved in doing the analysis. That is what the analysis is 

going to have. 



(Refer Slide Time: 02:58) 

 

So, let me write that down the basic idea. We will make a mathematical model for 

computer. And we are not going to execute our algorithm on any specific real computer. 

But, will execute it mentally will imagine it is execution on this mathematical model. So, 

let me write that down as well, mentally execute algorithm on computer model and 

evaluate the time. This is the basic scheme; this is the basic idea that we are going to 

develop. 

In order to develop it, we need to answer several questions. So, the first question 

naturally is what is this mathematical model going to be? Which essentially is the same 

thing as saying how long should be assign, what time should, we assign for each of the 

operations. That is comprised that is used in our algorithm. So, we need to answer 

questions like. What is the time required on the model for every operation that an 

algorithm might perform. 

Then, we also said that we need to execute. We need to mentally execute the algorithm 

on this model. However, every algorithm or most interesting algorithms will require data. 

Some input that needs to be given to this algorithm. So, an important question that we 

need to answer is, what data should we be giving, what should be the input data. This is 

an extremely important question, because the time of execution in general will depend 

upon the input. 



So, when we say we want to estimate the time taken by an algorithm. We have to be very 

clear in saying what input is being given to that algorithm. We may make mathematical 

models. And we may develop them and we may estimate the time taken on those models. 

Of course, there is the important question, which we need to answer, which is how does 

all this relate to real computers? 

(Refer Slide Time: 06:17) 

 

So, how does our model relate to real computers? If our model is terribly different, then 

our conclusions for the model might not be too useful for real computers. And of course, 

we do not really care that much about the mathematical model. We want our conclusions 

to eventually apply to real computers. And therefore, this is an extremely important 

question that we need to consider. 

Over the next few lectures, we are going to answer these questions and also many of the 

other relevant questions. And you will see that all these questions can be answered 

nicely. And in that, we will be we will finish our development of our framework. 



(Refer Slide Time: 07:32) 

 

Here is roughly what I am going to talk about in the next few lectures. I am going to start 

by discussing some fairly basic terms. So, we will try to formally define or at least semi 

formally some basic terms. Then, we will present our mathematical model. After that I 

will discuss, the general overall analysis strategy which we are going to use. 

These will for example, answer questions like what should be the input. We will also be 

taking a number of examples of algorithms and their analysis. And finally, we will 

conclude with a discussion of the limitations of the model. This will essentially be an 

answer to the question of how well do our conclusions to the conclusions that we draw 

for the mathematical model relate to real computers. And of course, I do not strictly I 

would not strictly discuss these points in the order I have written them. 

I will discuss examples and I will discuss limitations and may be alternate a little bit. 

But, this is basically going to be the gist of this lecture and the next. Let us, begin now 

with some basic terms that we are going to use. In day to day life, we often use the same 

term to mean different things. In scientific discussion, it is important to fix the meanings 

for every term. So that we do not confuse ourselves later on and we do not end up with 

fallacies of any kind. 



(Refer Slide Time: 10:06) 

 

So, let us start by discussing the very first very common term that we are going to use 

which is problem. Before, I give a definition of a problem I would like to give some 

examples. And from those examples, I will try to motivate this definition. When I say 

problem in this course I will mean, what we usually mean is, in the sense of the problem 

of computing the GCD of two numbers. 

Or say something like the problem of finding the shortest path on a map or maybe say 

finding the meaning of a word in a dictionary or may be even something like given an X-

ray determine if there is any disease. You may notice that when we are talking about a 

problem. There is typically certain input which is which needs to be supplied and a 

certain output that needs to be generated. 

Let us take an example of this. So for example, if you are asking about the GCD of two 

numbers. We could say that the input consists of say numbers like say may be 36 and 48 

the GCD of which will obviously, be the number 12. Say for the problem of finding the 

shortest path in a map may be the input could look like say name of a city may be 

Mumbai and say a city say Aurangabad. 

And we would have to supply which map we are going to use. So maybe, we use the 

western India Automobile Association map and that will also have to be supplied. That 

will also that map will also have to be supplied as a part of the problem definition. For 

finding a word in a dictionary may be we have to supply the word. 



Say for example, we take the word evolution. And we will also have to name what 

dictionary we use, say may be the oxford dictionary or something like that. For the last 

problem, we will have to supply an actual X ray. Say some actual picture and in this case 

the output would be something like either there is disease. Say we just a yes or no. 

For the shortest path, the output would be say the actual map, the actual path on the map. 

For the evolution for finding the meaning of the word evolution the output would have to 

be the actual meaning that you would get while after looking at the dictionary. At this 

point, we have I think we have a good sense of what a problem is and we can write down 

a reasonably simple definition. 

(Refer Slide Time: 14:19) 

 

So, let us do that. So, when we say problem in this course. We will mean a specification 

of what are valid inputs and what constitute acceptable outputs? Acceptable outputs for 

each valid input. So, we looked at this earlier. So for example, for the GCD problem 36 

and 48 constitute valid inputs. And for these the acceptable input is 12. 

Finding the shortest path names of two cities in the map constitutes a valid input and 

acceptable output would be the description of the path and so on. Of course input which 

is valid for one problem need not be valid for another problem and typically is not. So, 

numbers will not make sense as input for say the dictionary problem or and words will 

not make sense as inputs for the GCD problem; obviously. 



We often use the phrase input instance and this is nothing but a valid input value for a 

given problem. So, I will say that a value x is a input instance for problem p if x is a 

valid input as per the specification. So, 36 and 48 are 36 and 48 together constitute an 

instance for the GCD problem. Mumbai Aurangabad and map constitute an instance for 

the GCD problem for the shortest path problem and so on. 

(Refer Slide Time: 17:17) 

 

Another important term that we need is that of a size of an instance. We will often not 

necessarily use the term input instance, but we will just stick with instance. Instance will 

always mean input instance or we could even say problem instance. So, when we say the 

size of an input instance, we mean in a formal sense we will mean a following. Will 

mean the number of bits needed to represent the input, the input instance. Let me just 

clarify that. So, a specific input instance will have a certain specific size. 

So, again let us go back to our examples. (Refer Slide Time: 10:06) So for example, if 

you look at 36 48 which constitutes the input instance for the GCD problem, then we will 

have to ask the question, how many bits are needed to represent 36x and 48? So, here 

there is a question of how we represent numbers in the first place. 

So suppose, we say numbers are going to be represented in binary. Then, 36 will require 

6 bits. And so will 48. So in this case, the input instance will have length 6 plus 6 or 12. 

As far as, the shortest path in the map is concerned, somehow or the other we will have 



to represent the map. There are various ways of this representation we will see some of 

them later on in the course. 

In general a map can be thought of as a graph which you have probably seen in the 

prerequisites for this course. And a map could be represented as a matrix. And a matrix 

could be represented as an array bits if you like and in that way we can represent maps as 

well. This definition that, we have given. This formal definition that we have given is 

often a little bit inconvenient for directives. 

So often, we settle for a somewhat more informal definition. But in fact, this typically is 

something that is more useful. And informally we might say the size of an instance and 

we might mean any parameter which roughly grows with the official definition of the 

size of the instance. 

(Refer Slide Time: 17:17) So, let me write that down. Any parameter which grows 

roughly the growth may not be exactly predicable with the formal notion of size. So, let 

us go back to our GCD problem. There we said that the size was the size for 36 48 was 

12 bits. But, instead of making this is the definition of size. We could say that the size is 

simply the sum of the numbers. So, 36 plus 48, which is 84. 

So, we could think of 84 itself as our notion of size of the input instance rather than 12 

bits. In fact, if you go back to the first lecture you will see that this was the parameter 

that we used when we analyzed the GCD algorithm in the first lecture. So, we said that 

the size the sum of the numbers u and v will keep on decreasing. 

And in fact, this is really the reason why we are interested in the notion of size. Usually 

we will expect that the time taken by an algorithm will increase with the size of the 

instance. And therefore, if you are going to evaluate an algorithm it is only natural and it 

is only fair in some sense that we also mention what the size of the input instance is. 

So, if an algorithm takes a long time on a large instance on an instance of large size. 

Then, that is but if it takes large time on an instance of a small size. Then, we should 

potentially say that that algorithm is not a good algorithm or at least it is not a fast 

algorithm. 



So, let us go back to the other problems and maybe we can think of what the notion of 

size is going to be over there. So, going back to our shortest path problem, a notion of 

size could be the size of the map, so the number of roads in the map or the number of 

roads and the number of cities together. So, clearly finding a shortest path in a map 

which only involves one road is going to be really easy. 

And therefore, we should expect we should an algorithm which takes us takes us short 

time on such a small instance should not really be thought of as a great algorithm. On the 

other hand if an algorithm takes a small amount of time on a map which consists of 1000 

cities and 2000 roads. Then, that algorithm we should certainly say is a god algorithm. 

So, essentially that is the idea, we want to when we evaluate algorithms. We want to 

evaluate that in comparison evaluate the time taken in comparison to the size of the input 

instance. 

For the dictionary problem the size of the dictionary the number of words in the 

dictionary that is would be a good indication of the size. And for the x ray problem, we 

will somehow have to take that x ray and convert it into bits of some kind. So, we could 

say for example, that the size of the x ray say the number of the if the x ray is has a 

resolution 1000 by 1000. Then, they could say that the size is a million or something like 

that. 

We often use the phrase problem size also to denote the size of the instance. So, if you 

say if you hear the phrase problem size it is really talking about the instance of the 

problem rather than the problem directly. But, that is a term which is very commonly 

used on the literature. 



(Refer Slide Time: 24:37) 

. 

They next important term that we need to discuss is algorithm. When I say algorithm, I 

mean an abstract computational procedure which takes some value or values as input and 

produces a value or values as output. I use the term abstract in order to denote that an 

algorithm can be expressed in many ways. So, a program is an expression of an 

algorithm. 

So, the same algorithm might give rise to different programs say in different languages. 

A program has been concrete and algorithms has been abstract. Of course even for eve 

for discussing algorithms, we will need to have an ocean of a language. So; however, this 

notion is not going to be as rigid or as strict as the notion that we have when we discuss 

programs. When we discuss programs, we have a very well defined very, very strict 

language which has very, very strict rules for syntax. 

We will not be worrying about all of that when we discuss algorithms. We would like to 

think of algorithms as the idea behind the program. And so long as we are able to convey 

that idea in as in very clear terms you will happy. So, the basic our goal in this course is 

going to be description of algorithms. So that human beings can understand, what is 

being said and we will not worry so much about the precise syntax that is used. 

Initially, we will describe algorithms at a fairly great level of detail. As the course 

progresses, we will abbreviate our descriptions. And it will become clear to somebody 

who has gone through the course exactly what is being met. The reason for describing 



algorithms is of course, one reason is to convey what is the idea. And the other reason 

why we will be discussing algorithms in this course is of course to evaluate their time. 

So, I tell you what an algorithm is. It should be clear to you, what exactly are the 

operations that I have in mind. And you should be able to write the program, but not only 

that. It should also be clear to you how that program will execute on a machine. And 

especially, on the model machine that we are going to talk about and that is going to be 

another important purpose another important point that we want to keep in mind, when 

we discuss algorithms. 

So, we have to describe algorithms at such a level of detail. That it is fairly easy to 

analyze how long they will take on our mathematical model. All these issues will 

become clear, when we describe our mathematical model which we will do right now. 

(Refer Slide Time: 28:48) 

 

The mathematical model of a computer that we are going to use in this course is called 

RAM. And RAM stands for random access machine. This is a very simplified computer 

model. And it only consists of basically consists of two parts. So, there is a processor 

which will be executing programs. And then, there is going to a memory. 

The memory is going to be a correction of locations. And in fact, it is convenient to think 

of the memory as an array with numbers on it. So, the locations start with a certain say 0 



and there might be say m minus 1. The last number could be m minus 1, if there are m 

locations overall. So, each location has a number which is also called its address. 

So, we can refer to locations by assigning by describing the number. Of course that is 

going to extremely inconvenient in general. And so while writing algorithms, we will 

want to do something which is more pleasant. And let me start describing, how we I will 

describe, what exactly, how we are going to refer to the locations. 

(Refer Slide Time: 30:58) 

 

And in fact, as we describe the RAM model I will also be describing how we program 

the RAM model or how we design algorithms for the RAM model. So, the first thing to 

notice that although the RAM model contains locations which are addressed by numbers 

we will in fact allow variable names. So when we describe algorithms, we can say that 

say the value is contained in this variable a. A certain value is contained in variable 

rather than a certain value. We stored in the location fifty three or something like that. 

In fact, we will allow a variety of data types. Say, we will allow plain, simple plain 

simple variables. But, will also allow say arrays and will also allow structures. I would 

like to think of these two as sort of the primitive data types. And of course, let me write 

down simple variables along with them. In addition of course,, we will allow other things 

like trees lists and so on as well. 



You will be able to build your own data structures as well, but somehow or the other 

they will have to be built out of these data structures. So, this is as far as the memory is 

concerned. There will be a memory which will store the program as well. But, we will 

think of it as being quite separate. So, the program and data do not mix. So, here is again 

our picture (Refer Slide Time: 28:48) of the RAM model. So, there is a memory and then 

there is a processor. 

(Refer Slide Time: 33:10) 

 . 

Now, I have to tell you what the processor can do in each step. So, basically this is going 

to be a description of the instruction set of the processor. So, the processor is going to 

have a number of instructions and will assume for simplicity that all instructions execute 

in one step. 

There are basically three, four groups of instructions that we will have. So, one group is 

arithmetic and logical operations. So in this, you will be allowed in your program to say 

take two locations from memory. Add their contents and deposit them in a third location. 

Let me, write down how you will actually express this, when you write programs. And 

do not worry; it is going to quite in a quite friendly. This is going this can be represented 

in a very friendly pleasant manner. 

So, for example, you could say A equals B plus C as a part of your algorithm. And this is 

going to be one instruction. As we said an instruction is going to be taking two operands 



B and C which are stored in two locations, add them up and put them back. So, this will 

happen in one step. 

Then, you will be allowed to have conditions jumps and conditional jumps. And this will 

also execute in one step. So, correspondingly as a part of your program you will be 

allowed to write something like go to. This will happen in one step or you will be 

allowed to write say something like if A greater than B then go to. This will all happen in 

one step. 

Defining our model, we want to keep this definition reasonably simple. You may be 

wondering at a stage, real computers probably do not look like this. And you are right 

and we will take that question a little bit later. I would like to make another comment 

over here. Although, the very second group of instructions that I am talking about 

concerns go to is this does not suggest. This should not suggest to you in any way that 

when we design algorithms, we recommend use of go to is far from that. 

Algorithms as I said are intended to be read mostly by human beings. And therefore, 

structured programming presenting the algorithms in a nice readable manner is extremely 

important. However, when we talk about machines go to is are a very convenient 

mechanism. And that is the reason, why we have go to is in our instruction set. We will 

soon come to instructions which are more structured which, but that will be built out of 

those will be built out of our basic instruction set. 

So, they will take several instructions and several cycles of execution. We will come to 

that very soon. There is a third group of instructions which is important and which I will 

call as pointer instructions. So, these are simply operations of the form say B equals star 

C, where I am using C style pointer notation. So, I am going to think of C as a pointer or 

C itself contains the address. 

And I am going to fetch that location whose value is contained that location whose 

address is contained in C and B will get that value. I can also have a store based on 

pointers. So say for example, I could write star C is equal to B. And all B’s and both of 

these will also be executed in a single step. All of these algorithmic actions will take just 

one step. 



Pointers and arrays are very related and the C language in particular mixes pointers and 

arrays a lot. And in fact, our machine our random access machine is also going to treat 

pointers and arrays in a very similar consistent manner. So in fact, in this group itself I 

will put down array operations and here I mean one dimensional array. So for example, 

you are allowed to say A of I equals B or B equals C of I. I do not mean this C to be the 

same as this C. Just C is just some array which you have declared. 

Going back to arrays, let me just make one comment about that. So, we said that arrays 

that our machine will contain arrays and structures will assume the usual C like 

representation of arrays. So, if an array has size 100, then we will assume that the array 

is stored in 100 contiguous locations in memory. Similarly, if an array if we have a 

structure which consists of three components then the structure will be stored in three 

contiguous locations in the memory. 

So coming back, we have a processor and a memory a processor whose basic instruction 

set I have just described, a memory which consists of a location. I have not told you what 

a location is really. A location simply is a collection of bits. It has to be a fixed number 

of bits. 

Say does not really matter what number it is, but it has to be fixed once. And for all say it 

could be a number like 64 which is the number which is used in most modern computers. 

So, there is a notion of a word and a notion of a word really goes along with this notion 

of a location. 



(Refer Slide Time: 40:38) 

 

So, we looked at the basic instruction set and the basic algorithmic actions that are 

possible, what I am going to do next is think about more complex algorithmic actions 

more complex algorithmic statements. So, we said that for example, we allow these 

instructions, but naturally these should suggest to you some more complex instructions 

or statements that you would like to have. 

For example, we would like to write down a statement which looks like this. So, say A 

equals B plus C times D minus F, how long does this take. Well our rule is very simple. 

We will have to break this down into out elementary instructions. So here, we have three 

operations and therefore, this will take three elementary steps. The three elementary 

instructions and therefore, this will take three steps. 

So, we will allow use of such statements in our algorithm. But, when we count the time 

we will have to count 3. We will also want to use arrays in such expressions. So for 

example, we might want to say A of I equals B of I plus C of I. Again, we have to see, 

how this statement is going to be represented in our basic instruction set. So, here is how 

this could be represented. 

So, first we need to fetch the value of B, the element of B. So, this could get translated to 

say something like X equals B of I. And this, itself is a primitive statement that we 

allowed and we said this takes one step. Then, we can similarly fetch C equals sorry say 



Y equals C of Y. And this can also again be done in a single step, because this is our 

basic instruction itself. Then, we could compute Z equals X plus Y. 

So now, we have ahead of the two values one of B of I and C of J and the second of C of 

J. And we have computed their sum and all that remains is that this sum needs to be 

stored into A of I. So now, we can write A of I equals Z. So, this simple statement well 

simple which we wrote down very simply in that sense. Really has to be translated into 

four machine instructions so to say. And therefore, this entire statement will take four 

steps during execution. We could also have multi dimensional arrays. 

So for example, we could have an instruction which looks like C equals A of I comma J. 

So here, we will have to decide, how two dimensional arrays are stored. But, we will 

assume that two dimensional arrays are built on top of one dimensional arrays. 

(Refer Slide Time: 44:19) 

 . 

So for example, if we have a two dimensional array which looks like this. So, say this is 

an array A which has two rows and four columns. Say here at two rows and four 

columns. Let us say it stores elements a b c d. In the first row, e f g h in the second row. 

Let us say that the array is indexed c style. So, let us say this is row index 0, row index 1. 

This is column index 0 column index 1, 2 and 3. Now, on our machine on our RAM, we 

are going to store this using one dimensional array. We are essentially going to simulate 

it using the one dimensional array. But of course, the array must have the same number 



of elements. And so that is 8 2 3 4 5 6 7 8 and these elements will have to appear in this 

one dimensional array somehow. 

Let us say they are stored row wise. Many possibilities are there, but we are just picking 

one. So, a b c d e f g h, so essentially every time you want to access this two dimensional 

array, we will be accessing some element of this one dimensional array. And by the way 

remember that the index set of this is 0 1 2 3 4 5 6, how do we know, which element of 

this array we access. In order to access a particular element of array of this array well 

there is a very simple correspondence. 

So, A of i j if you want to access the i, jth element. So, row i column j, then that 

corresponds to an element of A prime which element well it is simply i times m plus j 

where m is the number of columns in a which in this case is 4. So, wherever we see a i j 

we really should be reading it as this as far as the problem of accounting how much time 

it takes. 



(Refer Slide Time: 46:54) 

 

So, let us do that. So, C of A I J well we should really be thinking of as C equals A prime 

of I minus 1 times m plus J. But once, we think of this statement in this manner. Then, 

estimating the time taken for it is fairly straight forward because now we know that we 

have to do one subtraction. We have to subtract 1 from I. 

Then, we have to do one multiplication in the multiplication with m. Then, we have to do 

one addition and then we have to do a plain indirect axis. So, this whole thing will take 4 

steps. Let us, now turn to some structured computing statements. 

(Refer Slide Time: 47:54) 

 



Let us take a loop. So, let us say we have for loop. For i equals 1 to n, let us say we do 

something like C of i equals A of i plus B of i. So as I said, we have to translate these 

instructions into our basic constructions and here is a possible translation. So, we are 

going to have to start off by initializing. So, we will write i equal 1. That is how the 

initialization step will be. 

Then, we have to have the loop test. So, we will write this as if i greater than 1 greater 

than n, then go to end of loop. Then, we will write something like fetching the ith 

element of A. So, we write something like X equals A of i. Then, we will write Y equals 

B of i and then we will write say Z equals X plus Y in the manner that we just discussed 

and now we have to store it back. 

So, we will write C of i equals Z. At this point we have to step through the loop. So, we 

will write i equal i plus 1. And now we will just go back. So, we will go to let me 

number these statements 1 2 3 4 5 6 7 8. And so we are going to go back to 2 and this 

should jump out of loop. So, this has to go to 9. So, this is going to be a translation of 

this. 

So, although in our algorithms, we will write this for statement and just for completeness 

may be we will have an end for as well. But, as far as the purpose of accounting is 

concerned, this is the time, this is the code that we should be considering. So, when we 

want to analyze the time taken, this is the code that is going to be of interest. 

(Refer Slide Time: 50:44) 

 



So, let us try and analyze this code. So, the analysis is going to be reasonably straight 

forward. We are just going to go over each statement and we have to see how many 

times it is going to be executed. So, let us try statement number, how many times will 

statement number one we executed. Well this will just be executed 1 time. 

This part A of i to this part is what might be thought of as the body of the loop. This will 

be executed n times. This loop counting and this jump back will also be executed n 

times. And this loop test let me write that down here. This will be executed once for each 

iteration. But, it will also be executed one more time. Because, that is when the machine 

is going to determine that we need to exit. So in fact, this statement will be executed n 

plus 1 time. 

So, the total number of steps taken for all of this is going to be b times n, where b is the 

number of instructions in the body. Plus these 2 steps plus these 2 n steps plus 2 n plus 

these n plus 1 plus this extra 1. So, this is going to be nothing but 2 plus n times b plus 3. 

So, this is our final answer. Let me write that down in big letters over here 2 plus n times 

b plus 3. This is going to the number of steps needed to execute this loop. Of course for 

this loop b has the value 4 and therefore, that is going to be the time. 

(Refer Slide Time: 52:48) 

 

We will also allow functions calls in our programs. And when we will assume for 

simplicity that the number of steps is needed for the function calls are going to be the 

number of arguments passed. So, time equal to number of arguments. Of course I should 



say something about the syntax of the function calls. And the syntax is going to be pretty 

much like the C language, what I mean by this, is that arrays and structures will be 

passed by reference which means that you can modify them in the called procedure. 

And the modifications will be seen by the calling procedure, whereas variables will be 

passed by value. So, this basically concludes the description of our random access 

machine. There are a number of issues that we need to consider and I will mention some 

of them. 

(Refer Slide Time: 54:17) 

 

Now and these have to do with how the how this machine relates to reality are real 

computers like this or are they different. Then, we have to ask questions about we will 

want to take algorithms and see their complete analysis. And finally, we will want to say 

what part of our analysis is really interesting, when we consider real computers, what 

features of our analysis are really relevant for real computers. So this, we will do in the 

next lectures. 


