
Design and Analysis of Algorithms 

Prof. Sunder Vishwanathan 

Department of Computer Science Engineering 

Indian Institute of Technology, Bombay 

 

Lecture - 14 

Pattern Matching – I 

 

We next look at the problem called pattern matching. This is something I am sure you 

used before. 

(Refer Slide Time: 01:02) 

 

So, the problem is this you given as input, text and pattern. And you want to find, if you 

going to determine if this pattern occurs in the text and where. Output is find an 

occurrence of the pattern in the text. You could changes to say find all occurrences, it 

really does not matter for. So, the time being we concentrate on this, we want to find and 

occurrence of this pattern in the given text. 

Grep is something that does it. So, I guess you are used uniques, we use uniques. Then, 

the command that does is it grep, you can grep for a string in a file. So, intake of file and 

the string as input. And look for this string in this file and I am sure every other operating 

system provides this facility, it is a very basic sort of facility, which is provided and 

which is used quite extensively. 



So, what we going to do is design and algorithm for this problem, which is given a text 

and pattern, find an occurrence of this pattern in the given text. So, what is the first thing, 

first algorithm that you would write. Well, take the pattern and you sort of look for the 

pattern at every possible position in the text. 

So, the text is say n characters long, you started the ith character in check whether, the 

pattern. There is an occurrence of pattern starting of the ith character do this for every i. 

So, for every possible position, you check whether the pattern does. In fact, occur that 

position you could do this in a loop. So, you can sort of scan the text, character by 

character starting at you know from left to right say. And for each character from this 

character onwards is there is a pattern exist. So, you check for this. 

(Refer Slide Time: 03:53) 

 

So, symbolically let us say this is the text, well that is the pattern I start matching 

character by character here. If there is a complete match, then I know that the pattern 

occurs here. If it does not, let us say there is a mismatch somewhere here, then I shift the 

pattern by one, one character to the right. And now I start comparing from this second 

character onwards. I check whether the second character, that text equals the first 

character the pattern etcetera. 

So, I check whether the patters occurs here, if it does output. If it is does not I again shift 

this pattern by one more and so on. So, each time I sort of shift the pattern, along the 

text. And well when the pattern, when the sort of pattern is at some place let us say here. 



So, this is the pattern in that is the text, I just check whether the match character to 

character. I just check that these two character as same. If all of them are the same, then I 

actually found the pattern here of the text and I can output this index. 

This is where the pattern occurs. So, this is sort of a ((Refer Time: 05:19)) and the sort of 

the first thing that you would do, first algorithm that you would come up with to search 

for a pattern in text. How much time I guess is the question, that we asking throughout 

this course and we will ask again. 

So, how much time does it takes, first you this can be sort of return in a I mean I hope all 

of you can write code for this ((Refer Time: 0547)) algorithm is putted in the loop. And 

you sort of you know move the pattern across the text. So, this is should be able to do 

and if you doubtful I would suggest you, you just try this before we proceed further. 

Then, we come back to this question how much time does it take. Well, you compare let 

us say that of the size of the text. 

(Refer Slide Time: 06:19) 

 

Let us say the text as n characters and the pattern as m characters, size of the pattern is 

m, size of the text is n. Then, for each starting point in the text we search for the pattern. 

So, in the loop there are I have to check for starting with n characters. And each time and 

the worst case I may make m comparisons. So, the total sort of time is O m n, this is the 

total time. This should be clear, because for each of these n characters ((Refer Time: 

07:11)). 



So, I when I start comparing from here I could go you know most of the pattern, I could 

sort of go down most of the way and then pattern discover a mismatch. In which case, 

you know the total time taken is o m for each of these indexes and there are o n indexes. 

So, well the total time is order m n or objective is to can we do faster. So, this is the 

question that we would like to address. 

And in fact, we will do faster. So, by the time this lecture ends. You see that we can do 

much faster than o m n, that is you have written. To see how we can how do we go about 

doing this, the first thing do is to check out the few examples, which is what we will do. 

So, we will take some patterns, some simple pattern we will see how would once search 

for this pattern in a given text. 

(Refer Slide Time: 08:26) 

 

So, let us say so here sample 1. So, supposing my pattern is a b to the k, this means it is a 

b b b there are k occurrences of this. You can take k to be 20 for instance, real exact 

value of k does not matter. But, the pattern looks like this and your searching for this 

pattern in a text. So, let us just see what happens here. So, let us say this is the text and 

you started searching from this point onwards. 

So, this is the pattern you sorted searching from here this is a let us say. So, there is a 

match, then you sort of check maybe, this is also a match. You go down you know of 

few characters their own matches and then there is a mismatch. So, here I have a 



mismatch, before the pattern ends, which is the pattern ends here. So, somewhere here is 

a mismatch, which means this is not a b I know that this is not a b. 

Now, what can we do well the ((Refer Time: 09:55)) algorithm you know what ((Refer 

Time: 09:57)) algorithm have done, it will have shifted this pattern by one character. 

And then, started comparing, this a would have been compared again this b. You would 

have immediately got a mismatch, then again go down one more you would have a again 

have a mismatch. 

Because, well all of these are b’s up to here, because the pattern is match. So, for all of 

these are b's. In fact so all these when I start shifting, all the initial shifts are useless in a 

sense. Because, when I shift by let us say this amount up to this. I know this a is go to 

have a mismatch with the b. So, I am going to start shifting again I am not going to find 

the pattern. 

So, the pattern this pattern is suddenly not going to start anywhere here. If at all it is 

going to start here. So, if there is a mismatch I can for this pattern, I can move this all the 

way up to here. So, I can start comparing here now. So, I move the pattern all the way 

here and I start comparing. I do not need to sort of shifted one by one I can shifted all the 

way here and I start comparing. 

So, there was a mismatch at this position I move the pattern all the way and now I start 

comparing. So, for this pattern this algorithm works. So, I start comparing, you know the 

text in the pattern, here the text in pattern. And if there is a mismatch in the ith position 

of the pattern, I just move the pattern all the way up to here. And I start comparing now 

with the first character of the pattern. 

So, essentially we have some more use the factor, you know the text as match the pattern 

up to here. So, we know that these are all b’s. And my pattern must start with an a. Since, 

there is a mismatch here, there is a good chance I mean there is some chance that there is 

an a here. So, we cannot sort of move it even further, this is what we move the text of 

tool. 

So, supposing we follow this algorithm for this pattern, if there is a mismatch I am move 

it all the way here. And know again start comparing, I compare this with a I go down 

here. Suppose there is a mismatch I move the pattern all the way here. So, how much 



time does existing. Well this is the crucial argument, because some such argument will 

use in general. 

When, the time the total number of comparisons by time will just say the total number of 

comparisons is actually 2 n at most 2 n comparisons now why is that. Well we look at 

each position of the text I claimed, that for each positional the text. I will make at most 

two comparisons. Why is that well, let us see we start here for these positions of the text 

I make only one comparison. Because, once there is a match here I never make anymore 

comparisons for this position in the text. 

If there is a mismatch I may make one more comparison, which is the pattern shifted all 

the way. Now, I match a with this, if this does not match I shift the pattern and I move 

ahead. So, for each position in the text I make at most two comparisons. So, the time 

here the total number of comparisons that I make for this, that I need to make for this 

pattern this 2 n. So, well there is a ((Refer Time: 13:49)) that maybe we can do faster 

than m times n. So, let us takes another example. Again any simple example, but this will 

again illustrate what we are trying to do. 

(Refer Slide Time: 14:05) 

 

So, example 2, so earlier we took a b to the k that is now take a to the k times a to the k b 

which is nothing but a, a, a k times followed by b. This is the pattern we are looking for 

in a text. So, how much time does it take, how many comparisons do we have to make, if 

we sort of do things not just namely, but in an intelligent way. 



So, again let us see what happens. So, here is my text I start comparing, let us say from 

here. I have done all the way up to here and I am sort of comparing from here. And let us 

say that is the pattern and I have a mismatch here. So, I have a, a, a here all the way up to 

b this is the pattern. In the text I know that I have a is here. Here, there is a mismatch, 

this could be anything. This is the mismatch well what can I do. 

So, in the ((Refer Time: 15:28)) sort of thing I would have shifted this by one, this would 

have shifted by one and I will was started comparing again. And you know that again 

there will be a mismatch here. There will be matches all over here and there will be a 

mismatch here. This is known, because I know what the patterns. So, if you want to do it 

intelligently, you know that starting the pattern anywhere here all the way up to here is 

useless. 

Because, I need you know string of size a is of size there should be k a’s and they do not 

occur here. This is not an a, so I can in fact, start the pattern right here. So, once as a 

mismatch I can start comparing right here. So, I can move the pattern all the way after 

the mismatch. Once, as a mismatch I just move the pattern up to here. So, I know 

because the reason is I cannot find pattern, anywhere here I have to start here. 

Because, pattern has to start with an a and then I need to see k a’s. And I do not see that 

here, this is not an a. So, again I use some information about the pattern to move the 

string all the way. There is one more case here, which is when the mismatch is at b. But, 

before we do that let us maybe do that and then come back and see how much time takes. 



(Refer Slide Time: 16:54) 

 

So, here is my text now the mismatch is here. So, this is the mismatch, but text matches 

all the way up to here, except you know there is a mismatch now what do I do. So, now 

there is a good possibility, that this is a. There is a good possibility that the place, where 

there is a mismatch, in the text it actually is a. In which case, if this is a b the next thing 

is a b, then you will miss I mean you cannot move it by more than one. 

So, I have to try this the pattern shifted by one. This is quite possible a, a b if there is a 

mismatch at this position, it is quite possible that the pattern occurs here. So, I can at 

most shift the pattern by one. So, this looks like you know worst case I cannot shift by 

more, the pattern by more. This looks like a worst case and be a back to looking 

something looking at the ((Refer Time: 18:12)) algorithm. 

But, while we are shifting the pattern by one, there is something you are gaining. What 

we are gaining is that, we know that there are up to this position there is a match. While I 

shift the pattern by one I do not have to again match all of these as I did in the ((Refer 

Time: 18:31)) case. Remember, then ((Refer Time: 18:35)) algorithm I shifted by one, 

then I started my comparisons here do this match, do this match, do this match and so on. 

Here, I do not have to do that, I can start comparing from here. I shift the pattern by one 

and then I start comparisons here. So, this is an a if there is a match, then I move up 

again, this fellow moves up a again this moves. Now, I see whether this is b, if there is a 



mismatch I am moving the pattern by one, but the text pointer remains where it was. So, 

the text pointer remains where it was. 

So, how many, so I hope if the algorithms in this case is clear it is slightly more 

complicated than a b to the k. But, I hope the algorithm is clear. So, how much time does 

it take. So, what is the time, which means how many comparisons do we make in the 

case of a to the ((Refer Time: 19:35)). 

So, let me again let us over this ((Refer Time: 19:37)). Suppose, this a mismatch in one 

of these positions I move the pattern all the way here. I the move the pattern here, if there 

is a mismatch at b well I am move the pattern by one by one unit. But, I start 

comparisons here, this takes with this pattern. Now, of course there could be a mismatch, 

if there is an mismatch, then I move the pattern all the way up. 

If there is a match, then I move this point by one, this point by one and I compare. That 

is the ((Refer Time: 20:10)) algorithm works. How much time does it takes, well the 

claim is again for look at each position in the text. By look at this position in the text, 

then the number of times is compared is at most 2. If there is a match, then the text 

pointer moves forward. If there is a match text pointer moves forward and that position is 

never compared again. 

So, it at most once a match occurred at a position with text at most once. How many 

times can a mismatch occur, will again I claimed that the mismatch will occur at most 

once. Well, if the mismatch occurs at a position, which is not b at one of the a’s, then the 

text moves forward. So, this is the case, if the mismatch occurs at one of the a’s, then the 

pattern is moved all the way up here. 

And the text pointer, which was here now moves up by 1. If there is a mismatch text 

pointer moves by 1 I never compare this again, I never compare this character again. If 

there is a mismatch at b, the text is again here, but the pattern has moved. Now, check 

what can happen, either there is a match in which case the text moves or there is a 

mismatch at an a again the text moves. 

So, there can be at most two comparisons per text character. So, for each character in the 

text, there can be at most two comparisons. So, the total time is 2 n number of 

comparisons. So, number of comparisons at most 2 n. So, in both cases we see, that the 



number of comparisons is at most 2 n. And this gives as scope, that maybe we can do it 

you know faster. For instance, it is ((Refer Time: 22:47)) asking can we do it o n time for 

all patterns. 

(Refer Slide Time: 23:00) 

 

So, what is the scene, suppose it should be able to do this, what is the scene? Well, the 

question is... So, if I have this is the text and I have, now this is the pattern. And I match 

some of them and here I have a mismatch. In each of the earlier cases, we some more 

used this matched information. This information, that this portion of the string matches 

with this portion the text was used in both cases. 

So, this is what we would like to use. So, can we use the match information, which 

means the information that this portion of the string actually match this portion of the 

text can we use this. And this is what we would like to do, somehow use this 

information. What you would also like to do, like in the previous case is try and shift the 

pattern as much as possible. 



(Refer Slide Time: 24:23) 

 

So, here is one goal, so shift pattern as much as possible. So, what does this mean, I 

mean. So, here is my text we going to see many of these two line highways throughout 

this, this stock. So, here is my pattern in fact, if you see this figure this is a text in ((Refer 

Time: 24:54)) pattern I am not going to keep writing this text pattern will miss. Now, let 

us say this is a mismatch here. 

Now, when can I say that moving it by one is not necessary. When can I say that this is 

useless. Well, this is useless if this portion will not match this portion of the text. If this 

portion does not match this same portion of the text, there is no point and moving it by 

one. We in some ways no this portion with text, because it has exactly match this portion 

of the pattern. 

All this I have a match, in the text up to here I have a match this is my first mismatch, 

which means if this portion of the pattern, does not match with this portion of the pattern. 

Forget the text for the time being, just look at the pattern. This is the original pattern and 

here is the pattern shifted by one character. If this portion of the pattern, does not match 

this portion of the pattern, there is no point and shifting it by one, because if there is a 

mismatch somewhere here, there is going to be a mismatch there also. How about two 

characters, again it is a same thing only now I am concerned about this portion of the 

text, this portion and you see that portion of the pattern. In general, so let me draw this 

again, well the crucial idea again is that. Once I have matched up to here, then whether to 



shifted by one or two or three or four it is only something do with the pattern, it has 

noting do with the text in some sense, because the text is already matched. So, this 

decision I can make by looking at only the pattern what do I mean by this. 

(Refer Slide Time: 27:20) 

 

So, here is my pattern. So, thing of the text sitting up there, I have a mismatch here. And 

let us say, you know the best way to do it is to shift by you know some i units. 

Essentially, I do not by shifting I do not want to miss and occurrence of the pattern, in 

the text. So, that is what I do not want to miss, otherwise I would like to shift as much as 

possible. 

So, here is the text, supposing this is shifted by i units here, supposing you know if i is 

the best you can do, what is this mean? This means, that this portion must match this 

portion. This portion which is a prefix of the pattern, must match the suffix of this 

portion of the pattern. This prefix must match this suffix and this must be the largest 

prefix I cannot have a larger prefix matching this, for instance if instead if I move the 

pattern by less. Let us say I minus 1, then I have a and there is a match, then I should not 

you know miss that opportunity. So, what I am saying is this. So, here is my text, so here 

is the pattern, let us say this is shifted by j, which is less than i, this is j which is less than 

i. The mismatch is at the same position, this is the same position is that. 

Now, I can safely do away with this j's, if this is not a prefix. This prefix is not a suffix of 

this. So, for all j less than i this prefix is not a suffix of this portion of the pattern. So, this 



is this portion of the pattern is the same as this, these two are the same. So, any prefix 

which as larger than this length, larger than this will not match suffix, then I can move it 

forward. 

And essentially I want you know the largest prefix of the pattern, which matches the 

suffix at this point. So, if there is a mismatch that is what I want. Then, I can move it all 

the way up to that portion and then start comparing. So, this is what I really want to do. 

So, this data is only pattern dependent, that is the first thing. 

(Refer Slide Time: 31:32) 

 

So, this only pattern dependent this is the data, that tells you how much to shift. And 

what is this data. So, supposing you have a mismatch at the ith position. How much to 

shift the pattern by that is what we want to know. So, how much to shift the pattern by 

well. 



(Refer Slide Time: 31:45) 

 

So, let us look so here is the pattern, this is the ith position I have p 1 through p i minus 

1. And supposing I have an optimal shift, which looks like this. So, p 1 so on and this is 

p i minus, now let us say t minus 1. So, supposing the optimum shift is by t characters, 

which means if I shift by less than something less than t character. Then, this is not going 

to work I mean in the sense there will be a mismatch. 

So, what is that mean. So, if it is less than t to here is my pattern p 1 to p i minus 1. If I 

shift with by less than t then there will be a mismatch somewhere here, mismatch if shift 

is less than t. So, this means that there is no point and time out the shift, I am it as well 

shifted all the way up to t. 

And if the optimum shift is t, this means that you know there is I have a match all the up 

to here, which means p 1 and so on up to p i minus t minus 1 is a suffix of p 1 to pi 

minus 1. So, this is the word and that this is the word with i minus 1 characters. And this 

word is a suffix of this, that is what this shows that these two of the same, these two of 

the same and so on, and because it is a mismatch somewhere here. We also know that p 1 

through p i minus, let us say j is not a suffix of p 1 through p i minus 1 for small for the 

values is j which are smaller than t minus 1. So, for j less than t minus 1. So, the values 

of j is less than t minus 1. So, the shift is less than t which means, the shift is less than t. 

Then, this is not a suffix, when I shifted by t units, then I have a match all the way, 

which means this prefix of this pattern is also a suffix of p 1 through p i minus 1. 



So, given a pattern what we trying to do is for a mismatch. We want to find out how 

much we can shift the pattern by, we would like to shifted by as much as possible, 

without missing and occurrence of this pattern in the text, that is what we are doing. So, 

supposing the... So, let us look at this figure. So, supposing the mismatch is at the ith 

position in the pattern, you the text sort is to here there is mismatch at this position. 

How much should I shift the pattern by. And we saw that, I would shifted by t units, this 

is t units. If the following thing holds, which is this prefix p 1 through p i minus t minus 

1 i minus t plus 1. This prefix is a suffix of this portion and this is the largest such string. 

If I shifted by less than this, then there will be a position where there is a mismatch, that 

is what it says. For all smallest shift there will be a mismatch, here I get a perfect match, 

there is a match between these. So, just says that this is the longest prefix of the string, 

which is also a suffix of the string. I want actually then to be proper prefix of this, which 

is the suffix. So, then the crucial thing, the thing that we want to find out this is. 

(Refer Slide Time: 37:02) 

 

So, the first thing is this quantity is a function of the pattern and can be pre-computed. 

So, I can pre-compute this value as to for each mismatch how much to shifted by. So, 

what is this function of the pattern, that I want to compute is for each i, for each position 

let us say find the largest prefix which is also a suffix. So, I have actually not defined 

prefix and suffix I hope you know what it is? 



So, given a string a prefix is all the initial portions, the initial the first i portion is a 

prefix. And suffix is just a last portion, this is suffix and this is the prefix. So, given any 

string this is the prefix and that is the suffix. So, given any string I want to find the 

largest prefix, let us say largest proper prefix which is also a suffix. Clearly, if I take a 

string, the string is a prefix of itself and suffix of itself. But, I want the largest proper 

prefix of a string, which is also a suffix. So, this is what I want to compute. Supposing, I 

have computed this. 

(Refer Slide Time: 39:05) 

 

So, I have pattern p 1 through p n is the pattern. Let us say f i is length of the longest 

prefix of p 1 up to p i minus 2, which is also a suffix of p 1 up to p i minus 1. This p i 

minus 2 is just to make it proper prefix. So, any prefix of this. So, length of the longest 

prefix of this, which is also suffix of this I could have written p i minus 1. But, then I will 

mention the longest proper prefix. 

So, supposing I have computed this for each i, for each position in the pattern of 

computer this f i, which is the length of the longest prefix of p 1 through p i minus 2, 

which is also a suffix of this, which means. If I take any other prefix which is longer, 

than f i then it will not be a suffix of this pattern. Now, on mismatch at position i what 

can I say? 



I say, that you can shift the pattern by i minus 1 minus f i. I can shifted by this much, 

given f i which is defined this way. Then, on mismatch at position i, I can shift the 

pattern by i minus 1 minus f i. So, let us see this. 

(Refer Slide Time: 41:31) 

 

So, here is my text, this is the pattern and this is the ith position in the pattern and there is 

a mismatch. Now I know, so let us see what this is ((Refer Time: 41:58)) this says f i is 

the length of the longest prefix, which is also suffix. So, let me if I put the term here. So, 

this is the string that I am considering now. I am only looking at ((Refer Time: 42:15)) p 

1 through p i minus 1 the mismatch is at i. But I am looking at p 1 through p i minus 1 

good. 

So, this is the string I am looking at. And I know that which is the longest prefix of this 

same string, which is also a suffix. This I know as length l i, which means if I move the 

pattern all the way up to this position. Then, there is a match here. If there is a match 

here I know that the text as match everywhere here. So, there is a match in the text I also 

know, that this is a longest prefix which means if I shifted by any less, there will be a 

mismatch at some position, which means you have be a mismatch in the text. 

So, the among time move is this the among the shift the pattern is this, this is i minus 1. 

So, among the shift the pattern is i minus 1 minus l i which is what we had f i this is f i. 

So, I must shift this by i minus 1 minus f i. So, this is what I have said in the previous 

step. So, once I compute these f i's if there is a mismatch of the ith position of the 



pattern, if p i mismatches the text. Then, I just shift the pattern by i minus 1 minus f i. I 

start comparing now. So, let us right this code ((Refer Time: 44:02)) see what this terms 

out. So, initially I am looking for a pattern in a text. 

(Refer Slide Time: 44:12) 

 

So, the pointer to the pattern I will refer by x, the pointer to text I refer by y, the variable 

will be y. Initially my initialization is x is set to 1, y set to 1 and a start comparing. Now, 

what is the generic step look like. So, if p of x is text at y, this is a text, this is the pattern. 

If there is a match then what you do? Well, I need to increment x and y by 1 and then 

continue. Then, x is set to x plus 1, y is set to y plus 1 and I continue, I will have to go 

back in a loop. 

What happens otherwise, if there is a mismatch, then I know that I am a shift the pattern 

by this much ((Refer Time: 43:35)) I shift the pattern by i minus 1 minus f i. So, this is 

where the mismatch is... So, this is where my y this pointer on the string is y, the pointer 

in the text was i here. Now, what do I set it to, I set it to f i plus 1, if it your I initially I 

set it to f i plus 1. If it your x initially I set it to f i plus 1. 

Because, I have moved it by i minus 1 minus f i or i minus 1 minus f x remember my 

point of ((Refer Time: 46:21)) x here it does not i. But, x if there is a mismatch, I shifted 

by x minus 1 minus f x. So, the point next character I am going to check in the pattern is 

nothing but f x plus 1. So, let us do this. So, else x is set to f x plus 1, this is what I want 

to do. 



There just one case that we need to take care of which is, this actually is true when x is 

not equal to 1. So, this is when x else, if x note equal to 1 then you do this. Now, if x 

equals 1, what is this mean? Let me the first character of the pattern, there is a mismatch 

with the text. And comparing the pattern with the text, if x equals to 1 is the first 

character. 

So, the first character of the match pattern mismatches with the text. Then, I just move 

both pointers I move the pattern by one and I move the text pointer by one. So, let me 

right this all it is inside else. So, if x equals 1 then y is y plus 1. So, I have I just 

increment the text pointer by one. So, all this it is inside the else. So, this is inside the 

else and the whole thing is in a loop. 

When do have success, when do I stop. Well, I stop when x becomes size of p plus 1. So, 

let me write that to success, if x is size of p plus 1 or m plus 1, which means I have 

match successfully the m positions of the pattern. Then, I have found the pattern in the 

text, this is the success and the whole thing is in a loop. So, in a while loop you can 

check whether x is p plus 1 or not. So, this is the procedure this is the algorithm given f 

x. In this function f x for each f i for each position i. Then, the algorithm for searching, 

this pattern in the text is this. And now let us see how much time this takes? 

(Refer Slide Time: 49:31) 

 

So, what is the time, the time let me quickly write the main loop again, it is says if p x 

equals T y, then x is made x plus 1, y is made y plus 1 else the crucial step is... If x not 



equal to 1, then x is f x plus 1. So, you shifted the pattern if x equal to 1. On the other 

hand, then y is y plus 1 in the new loop, this is algorithm and then, you check for 

success. 

So, how much timed does it take, well it is a number of times these statement are 

executed. So, how many times are these executed? Well, I can count number of 

comparisons, this will tell me the order of the algorithm. Now, the number of 

comparisons, that I make totally over is nothing but number of successful comparisons, 

which is number of matches plus number of mismatches. 

So, now let us look at each of these in term, this is very similar to the merge sort. So, I 

would, once you look at this analysis go back and check out merge sort. So, now what is 

the number of successful comparisons. Now, each time there is a successful comparison, 

why increases by one, check out that y increase by 1 y never goes down. The pointer on 

the texts never goes back always goes forward. 

So, the number of comparisons each time y goes up by one it is start set 1 ends up at n. 

So, this is at most n minus 1, because y this smallest value is 1, the largest value is n. 

And each time there is a successful comparison it increases by 1. How number of 

mismatches, well in one case x drops by at least 1, in the other case y increases by 1. 

So, if I look at y minus x, if I look at this function y minus x. This always increases, 

when there is a mismatch. If there is a match y minus x remains the same both of them 

go up by 1 nothing happens to this. If there is a mismatch, this increases initially this is 0, 

the largest this can be is is at most n minus 1. So, number of mismatches is also n minus 

1. 

The other way to see that the number of mismatches at most n minus 1 is that each time 

there is a mismatch. I shift the pattern by at least one. Remember, there is a mismatch I 

shift the pattern. So, I shift the pattern by at least one, the number of time I can shift the 

pattern is at most n minus 1. So, the number of mismatches, number of unsuccessful 

comparisons is at most n minus 1. 

So, the total number of comparisons is twice and minus 1, which is what we had for 

those small examples. But, this now shows that true for any example. All we need to do 



now which we do next time is to compute this function f x. Once we compute that we are 

through. 


