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HMM, Forward and Backward Algorithms, Baum Welch Algorithm 
 

Today, we would like to discuss the training of the hidden Markov model, this is an 

supervised learning, the strings which are output by the machine or observed from the 

machine are given. And because each output sequence can be the result of more than one 

state sequence, we need an algorithm for training the hidden Markov model, whereby we 

obtain the transition and observation probabilities of the machine or a combinations 

thereof. 

So, in the last lecture, we had discussed forward algorithm and backward algorithm and 

how to compute them efficiently; these two algorithms are used in the training of the 

hidden Markov model. That is why the training algorithm is also known as the forward 

backward algorithm or more famously possibly as the Baum Welch algorithm. So, we 

proceed with the material on the slide. And I have written here, HMM Forward and 

Backward Algorithm, Baum Welch algorithm. 

(Refer Slide Time: 01:38) 

 

So, just to remind ourselves of the forward and backward probability calculation. 
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We remember we defined F k i as the probability of being in state S i having seen O 

naught O 1 O 2 up to O k, which is the observation sequence up to the K th times step. 

So, this particular expression was defined as the forward probability and the expression 

for that is P O naught O 1 O 2 up to O k comma S i. So, the machine has seen up to this 

symbols or the machine might have output, this symbols O naught 1 up to O k and then 

enters the state S i. M is the length of the observed sequence, so one can write the 

probability of the observed sequence as P O naught O 1 O 2 up to O m and which is 

equal to sigma P from 0 to m with S p, the state introduced, this is marginalization and it 

can be written as the sum of forward probabilities m comma p with p varying from 0 to 

N. 
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Then, we also found a method to compute the forward probability recursively, from its 

definition itself. So, F k q is a probability of seeing, k plus 1 symbols O naught O 1 O 2 

up to O k and then being in state S q. So, this then can be broken into 2 parts, the symbol 

of the sequence itself, so O naught O 1 up to O k minus 1, the last symbol is isolated, 

which is O k and S q remains. 

So, we now refer to the whole situation where, O naught O 1 up to O m is a complete 

observation sequence, after seeing O m, the machine enters the final state S final, which 

is one of the given states, in the hidden Markov machine and S naught is the starting 

state. So, as is shown in the output and state sequence, the transitions are state to state 

with a particular output symbol shown on top of the arrow. So, we see that, this O k S q 

is there, in the expression and then we introduced S p and this is marginalisation P going 

from 0 to N sum is also introduced. 

So, now we have this pattern here, S P O k S q. So, this is the pattern, which exists in the 

observation sequence state sequence. So, we isolate this part probability O naught to O k 

minus 1 with S p, this part is isolated, this is then multiplied by the probability of O k S q 

given O naught to O k minus 1 and S p. This nothing but the chain rule and in the next 

step, the only conditioning factor S p is written nothing else affects, this probability of 

the observed symbol O k and the next state S q and therefore, we drop this whole 

sequence O naught to O k minus 1.  



Now, P o naught O k minus 1 with S p nothing but the forward probability F k minus 1 P 

and P O k S q S p is written as the transition S p to S q with O k as the output symbol. 

So, there is whole probability F k comma q is nothing but sigma F k minus 1 P P going 

from 0 to N and each F k minus 1 P is multiplied, by the transition probability P S p to S 

q with O k. So, this whole deduction is completed by applying marginalisation here and 

then chain rule here and the Markov assumption after that, marginalisation chain rule 

Markov assumption.  

And this produces the recursive expression, for F k q and it is easy to see that F k q can 

be looked upon as, the sum of the feeding probabilities F k minus 1 P multiplied by the 

transition probability. And each of this can entered be computed from F k minus 2 and 

another index, let us say t varying from 0 to N and this way the whole computation can 

be completed. 

The boundary condition for this comes from the initial probability F of 0 and P where, O 

naught is the symbol seen, which is nothing but abstellen and having seen abstellen, what 

is the state. So, these are the initial probability values of the states, the probability that 

the machine is one of these initial states, so this is the way, F is computed from output 

sequence, state sequence and the expression for it. 
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Similarly, we could compute the backward probability B k comma i, we remember B k 

comma i is defined to be the probability of seeing O k O k plus 1 up to O m, given that 



the state was S i. So, B k comma i is nothing but probability of O k to O m given S i with 

m is the length of the observed sequence.  

So, from this definition, it is clear that probability of the observed sequence is nothing 

but the probability of the observed sequence given the initial state as 0, so this is nothing 

but B 0 0. So, the first 0 is the starting index of the sequence, we will observe until the 

end and the second 0 is the state, in which the machine is before this observation 

sequence is seen. 

(Refer Slide Time: 08:23) 

 

So, again we have a recursive way of computing B k p where, k is any index within the 

observation sequence and we can recursively compute this. So, since this is backward 

probability, we will gradually look into the smaller and smaller segment of the 

observation sequence towards the end. 

So, naturally k will now increase in its value 1 by 1, so let us see how the process is P O 

k O k plus 1 up to O m given S p, this is isolated now, we take up O k separately and O k 

plus 1 to O m is the shorter sequence. So, this is O k plus 1 to O m with O k given S p, 

we introduce the variable state S q as is seen in the picture here, S p was the starting state 

before O k to O m was observed S q is the starting state before O k plus 1 to O m was 

observed. 



So, now we have P O k plus 1 to O m with S q and this can now be used and P O k S q 

given S p is isolated, now on marginalisation, now on chain rule, we have to have the 

term P O k plus 1 to O m given O k S q and S p. Now, the only conditioning factor for 

this term is S q. So, O k and S p can be dropped, which is dropped. And the term that, we 

have now S p O k plus 1 to O m given S q P O k comma S q given S p, so this can be 

written as B k plus 1 comma Q p S p to S q with O k as the upward symbol. So, 

therefore, we have again like forward probability a backward probability expression 

recursively computed from shorter segments up to the end of the sequence. 

Here also the boundary condition is obtained from the final symbol O m, the state before 

O m and the final state. So, these probability values have to be given again these 

backward probability can be computed in linear time proportional to the length of the 

sequence, for which the probability backward probabilities calculated. So, both backward 

and forward probability can be calculated in linear in the length of the sequence. Now 

both these probability values are very useful for various kinds of computation involving 

hidden Markov model and we will now proceed to see how these 2 probability values are 

used for training the hidden Markov model. 
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So, we come to this topic of H M M training the algorithm known as Baum Welch or 

forward backward algorithm. 
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Now, to understand this algorithm, we will first clear up a notion of counts of transitions 

with output symbol within the sequence, which is produced by the machine. Let us 

suppose, that a b b a a a b b b a a a is the sequence, which is produced by the machine 

shown above, now this is a machine where all transitions are possible. And therefore, 

given this observation sequence many many states are possible, which produce these 

output sequence.  

So, one of the output sequence is shown here q to r a, so the machine goes from q to r on 

a and from r on b, it comes back to q, then from q it takes b and remains in b, it could 

have gone to r also and then from q to a, it goes to r q to r it goes with a and then r it 

comes back to q with a q to r again with a r to q again with b and so on. So, this is the 

whole state sequence, which produced corresponding to the observation sequence all of a 

symbols are written on top of the arrows. 
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Now, when this sequence is given, we can make a frequentist approach to probability 

calculation, so for example, the probability of q going to r on a or with a is found out to 

be 5 by 8, how do we get this value. So, we make a record of the transitions and the 

corresponding output symbols, as they obtain in the output sequence. So, we find that in 

the output sequence and the corresponding state sequence, we have the transition source 

to destination q to r with the symbol a, this happens 5 times. 

Now, to get the probability value of q to r on a, we have to find out what other transitions 

from q are there in the observation sequence. So, we find that, there is transition from q 

to q with the symbol b, so these are the only 2 cases of transition from q, with q as the 

source. So, therefore, it makes the total count of transition where, q is the source state as 

8 5 plus 38 and out of that due to r with a is 5, that is why the probability of q to r with a 

is nothing but 5 by 8.  

Similarly probability of q to r with b, it should be q to q with b is 3 by 8, so in general the 

probability of a transition from S i to S j with symbol W k is the count of S i to S j with 

W k number of times, this occurs divided by all the total number of transitions from S i 

to any state with any symbol. And here, we have shown the index to be going from 1 to a 

where a is the alphabet symbol and this W m, all possible symbols and l from 1 to t 

where, S l is the destination state and t is the number of states alright.  



So, now, the point that is being made is that, if we have a single output sequence, single 

state sequence corresponding to an observation sequence, then this kind of taking the 

count is alright, this is valid. But, if there are multiple state sequences for an observation 

sequence, what do we do, we have a number of state sequences for an observation 

sequence. So, the idea is to weight, these counts to prorate or weight, these counts with 

the probability of the state sequence given the observation sequence. So, you would like 

to write this expression and explain with the formula. 
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So, suppose there is a state sequence S and the observation sequence is W and suppose a 

pattern S i to S j on W appears in this, so the count of this, we are seeing will be as 

follows. So, the count of S i to S j on W will be found by waiting the number of 

appearances by probability of S given W, which sort of make sense, because now we 

have the number of these patterns, obtaining in the observation sequence and the state 

sequence. 

And if it if this pattern appears in multiple state sequences, resulting from the 

observation sequence, then it makes sense to give weight age to these counts and the 

weight comes from the probability value of S given W, S given p S given W and if the 

pattern appears in s then that count will be multiplied by the probability of p S given W. 

So, this is intuitively acceptable and this is the way, we would like to obtain the count. 
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So, going to the slides once again, lets illustrate this procedure of computation, so P S i 

to S j on W k is nothing but C S i to S j on W k divided by total number of count of 

transitions from S i to S l on symbol W m. Where, this is the count of all those patterns 

where, S i is the source and any W m and any S l are the corresponding, output symbol 

and destination state respectively. C S i W k S l that is the count of this pattern, is 

obtained by finding out the number of these pattern S i W k S j in the context of the 8 

sequence 0 to n plus 1 and the observation sequence 0 to n. So, this is the context, in 

which we are seeing this pattern and this is the number, we weight this number by the 

probability of the state sequence given the observation sequence. And we have to take 

this expression for all possible states, which result from this observation sequence, that is 

why there is a sigma of all possible state sequences S 0 to N plus 1, given the observation 

sequence. 

So, this is a nice intuitive formula the count multiplied by the probability value and these 

the probability is found from this count, the count is found from the probability value. 

So, the way the method starts, that we first assume some probability values of these 

transitions from there, we obtain these count values from there, we obtain these count 

values, from this probability of transition, we can very easily compute P s given W, this 

is nothing but the Viterbi algorithm.  



And for bigram sequences, this is nothing but the multiplication of the transition 

probabilities. So, we obtain this count and from the count, we obtain new probability 

value from the new probability value, we obtain the new count, we obtain the new 

probability value. This is the way the computation proceeds from probability to count to 

probability. 

And eventually after sometime the algorithm terminates when, we see that there is no 

appreciable change, in the probability values, this algorithm is called expectation 

maximisation. So, we expect a value for the count and then maximise the probability of 

the observation sequence, through this alright. So, this is the basic idea and these are the 

2 controlling equations. 
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We illustrate this procedure with this example here, here is an H M M where, the 2 states 

are q and r, the transitions are on a and b, it is shown that from q to r a transition can 

happen with a probability of 0.67 where, the output symbol is a. And from r to q the 

transition is on b only and this a certain transition, there is no non determinants here, so 

the probability is 1.0. From q v find that apart from transition to r on a, we also have 

transition back to q on b with probability 0.17 and back to q on a with probability 0.16. 

So, this is the machine, which is given to us, we have to learn this machine, now let us be 

careful about the meaning of learning here, you would like to write certain important 

comments here.  
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So, the Baum Welch algorithm, Baum Welch learns the probability values on arcs, not 

the structure of the H M M, this is important to remember, this is H M M, so we never 

learnt the structure of the machine, we learnt the probability values on the arcs. So, this is 

an important point in whole of machine learning, it is very rare, that we learn the 

structure of an automaton or the contestry rules of a probabilistic, contestry grammar.  

What, we learnt are the probability values corresponding to the elements of the machine 

and the structure is a priori given, learning thus the structure. And then learning the 

probability that is known to be a difficult problem, that is seem to be difficult problem 

the structure learning does not happen in such cases, typically we learn the probability 

values. 
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And the way, we learn this is being shown here, so then it is clear that, we are given this 

machine, the transitions are given a b a b and so on. For example, we know that, from r a 

transition is only possible to q and that to only with symbol b alright. But, we do not 

know the exact probability values, this is our problem, we need to learn this. So, initially 

we start with a guess, for the probability values, so we see that from r to q only one 

transition is possible, which is on b and we give it a value of 1.0. We know nothing about 

the transition probabilities on b and a here and this a here, so the probability values are 

assumed to be 0.48 and this should be actually 0.04 only, that will make the total 

probability value equal to 1. This is 0.0.04, I would like to correct it sometime and these 

probability values are the initial estimates. 
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With these initial estimates, lets see what we can do, so now, the probability of the path 

given the observation sequence, which is nothing but a b a this should be b b a b a b b b. 

So, a b abstellen to a is the first observation, then a to b b to a a to b and b to b, so the 

whole sequence is actually, a b a b b and this, we know how to find the probability of we 

simply multiply the probabilities of the transitions. So, to a on q, we know the 

probability a to b on r, we know the probability, so we simply multiply these probability 

values, we can make a we can make a check and against the machine, which is given to 

us, through initial guess. And once we do that, we find that the probability of the path is 

0.00077. 
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So, this gives us the first factor of this expression P s naught n plus 1 given W 0 to n, this 

n is the count. 
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Now, we can see that, the number of times, this transition happens q to r on a, so q to r 

on a happens here also and no more, so there are 2 such appearances of q to r on a. So, 

we have to multiply the probability of the path given observation sequence, which is 

0.00077 by 2 and get a new probability of q to r on a as in this state sequence with 

respect to this state sequence and this observation sequence as 0.00154. 



We have to do get this expected count, through the computation of all the states. So, 4 

such state sequences are possible, here the probability value is 0.00442, the probability 

of the path and q to r on a appears only once. So, this is multiplied by 1 and we have 

0.00442, in this case also, we have the path probability as 0.00442 and q to r on a 

appears only once. So, multiplied by 1.00442 the probability of this path sequence is 

0.2548 q to r on a does not appear here. So, this is 0 therefore, path probability into count 

gives me 0. 

I have to sum all these probabilities and having taken the sum and round and having 

rounded it to 2 places of decimal, we obtain the new probability value as 0.01 or the new 

count expected count then expected count of q on r q to r on a as 0.01. Similarly, we can 

find out the expected count of r to q on b from here 0.01, then q to q on a as 0.06 q to q 

on b as 0.095. So, these expected counts of various patterns have found out 

corresponding to this observation sequence.  

So, next what we have to do is that, we have to normalise these counts to get the 

probability values as given in the formula to get the new probability values. So, this is 

nothing but q to r on a and then q to q on a and q to q on b, so these counts are taken and 

put in the denominator, it is a 0.01 divided by 0.01, which is itself 0.06, which is nothing 

but this and 0.095, which is here. So, when we divide 0.01 by these normalising counts, 

we get the probability value as 0.06.  

(Refer Slide Time: 29:59) 

 



So, we started with the initial probability q to r on a q to r on a as 0.48, we have to reach 

a value of 0.16. So, this has to reduce q to r on a sorry, q to r on a, we started with 0.04 

and we have to reach a value of 0.67. 

(Refer Slide Time: 30:18) 

 

So, it has to increase and we find that, it has increased, it was 0.04, now it has become 

0.06, the probability of r to q on b, there is no other transition from r and therefore, it has 

to be divided by 0.01, itself and we get the value 1. Q to q, similarly is normalised and 

we get the new the probability as 0.36 and the new probability for q to q on b 0.581. 

So, this is the new probability value, after we have seen, the observation sequence a b a b 

b and if this was the only observation sequence, then after the first iteration, these are the 

new probability values. And from these new probability values, we will again be able to 

compute the new path probabilities, from the new path probabilities, we will get new 

expected count here and then we will obtain the new normalised values, so which will be 

new probabilities again.  

So, the this is the main idea of the algorithm you must have observed, how probability of 

the sequence, gets recomputed from the new probabilities and these gave give rise to new 

expected counts, new expected counts give rise to new probabilities. So, what has been 

illustrated is just one iteration over one observation, the question that arises now, which I 

would like to write is. 
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If multiple observation sequences are given, how to run the Baum Welch algorithm, so 

what we do is that, we find the values of new probabilities over each observation 

sequence. 
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Get the new probabilities, for each observation sequence do this for one iteration get the 

values, after one iteration over all observations, this is called an epoch. So, lets write this 

definition here. 
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Epoch is nothing but one iteration over all observation patterns, one iteration over epoch 

is nothing but the what one iteration over all observation patterns. So, after each 

iteration, we get the updated probabilities, this is done until convergence.  
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So, I hope this gives you a correct idea about, how the computation proceeds, now lets 

understand the theory of the Baum Welch algorithm, the procedure was illustrated by 

this example, lets understand the theory. 
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This is a computational part and we will understand the mathematical expressions 

involved in this, so term of interest C S i going to S j on W k, S i is the source state, S j is 

the destination state and W k is the observed symbol. We are supposed to get the count 

of this pattern S i to S j on W k, in the context of the state sequence and the observation 

sequence. So, this is a number, we have to multiply it or weigh it by the probability of 

the state sequence given the observation sequence as has been understood.  

And this task has to be done for all possible states that results from, the observation 

sequence. Now, this part P S given o can be converted into P S comma sorry, P S given 

W, can be converted to P S comma W, it is a joint probability and we have to divide it by 

probability of W, the observation sequence. And this W does not depend on S and there 

is taken out of the summation symbol. 

Now, we have the expression where, we have the state sequence observation sequence, 

state sequence observation sequence and the pattern that obtains. Now, one can see that, 

this whole number of the patterns can be converted into, an equivalent expression of the 

probability of the t th state being S i t plus 1th being S j and the t th observation symbol 

being W k. 

So, this whole pattern S i to S j on W k is equivalent to S t being S i, the t th state being S 

i, t plus 1 state being S j and the t th observation being W k and this happens in the 

context of the state sequence S and observation sequence W. So, previously itself, there 



was this summation over all possible state sequences. Now, we introduce the summation 

over all possible t where, t is varying from 0 to n, which is nothing but a position, t 

records a position in the output, in the observation sequence. 

So, you can see that, this number this expression with the count with the number of the 

pattern is equivalent to this expression where, the pattern is searched for at every location 

of the output sequence or the observed sequence. This 2 expressions are equivalent, 

because wherever wait I do not see this pattern, the probability will be 0, otherwise there 

is some probability, which is equivalent to this expression. 

Now, we what we can do is that, since S 0 to n plus 1 is present here as a joint 

probability expression and since there is a some overall possible state sequences, this 

particular variable can be dropped by the law of marginalisation. And having dropped, it 

we have the pattern have the probability expression here with source state S i at t th 

location S t plus 1th state is S j, that t th observation symbol is W k and the whole 

observation sequence is W 0 n. And we have a multiplying factor of 1 by P W 0 to n, so 

this is the expression, we have and this can be pasteurised by means of the observation 

sequence here, W 0 to W n and state sequence n 0 to S n plus 1. 
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Now, we look at the expression P, S t equal to S i S t plus 1 equal to S j, W t equal to W 

k and W 0 n. So, here again, we can make use of isolating parts of the string, that are 

useful to us and applying marginalisation chain rule Markov assumption etcetera etcetera 



to get a useful expression. So, the way we work is that, we isolate the part 0 to t minus 1 

as the observed sequence and with the state S t being S i.  

So, this part is isolated, so that we can have a forward probability up to t th location and 

then S t plus 1 being S j and the observation sequence from W to plus 1 to n, this will be 

useful to us, in terms of the backward probability and W t is equal to W k. We have also 

done, 1 thing that, we have isolated this pattern here, S t equal to S i, S t plus 1 S j and W 

t equal to W k, which should give us something like a transition probability.  

Now, we apply chain rule and we see this expression here, the summation remains t 

equal to 0 to n, so P W 0 t minus 1 S t equal to S i is isolated, this will give us the 

forward probability, when I isolate this, I have to apply the chain rule and say that P s t 

plus 1 equal to S j W t equal to W k and W 0 to t minus 1 comma S t equal to S i. So, this 

is nothing but a destination state observation symbol and source state and this is a string 

up to this particular observation symbol and can be ignored, because of the Markov 

assumption, this part will give us the transition probability. 

What remains is this part W t plus 1 to n, which is the observation sequence, starting 

from t plus 1th location to the end of the string and this again by chain rule has to be 

conditioned by S t plus 1, S t plus 1 equal to S j, W t equal to W k, S j equal S i and W 0 

to t minus 1 all these will come as conditioning variable for W t plus 1 comma n. And we 

know that, W t plus 1 to n, which is the observation sequence from t plus 1th location to 

the end of the string is dependant only on the state, which existed before this observation 

sequence.  

And that is nothing but the t plus 1th state as S j, so in the conditioning part, we retain 

only this, so from this expression, we see the first part gives us the forward probability F 

t minus 1 i, the second part gives us the transition probability P S i to S j on W k. And 

the remaining part gives me the backward B t plus 1 comma j. So, this is the forward 

probability up to the tth location in the string, this is backward probability from t plus 1th 

location to the end of the string and in between is the transition probability P S i to S j 

given W k. So, this is a neat expression, which is obtained the expected count of a 

particular transition, so the expected count. 



(Refer Slide Time: 42:39) 

 

If you remember is C S i to S j with W k. 
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So, in the context of the observation sequence and the state sequence, we have the 

expression as expected count is nothing but t going over the whole string and we have to 

sum these quantities. And F t minus 1 comma i, this is the forward probability, the 

transition probability and the backward probability, the whole thing of course, has to be 

divided by the probability of the observation sequence. Now, probability of the 

observation sequence also can be expressed, as the product of forward probability and 



backward probability with t bearing over the whole string. So, you should try to show 

this, I right down the expression here. So, it can be shown. 
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That the probability of the observation sequence 0 to n is nothing but t equal to 0 to n, F t 

minus 1, i into B t plus 1 j and the picture is S i to S j on W k, so this means that, we can 

completely wok with backward and forward probabilities. And these backward and 

forward probabilities can be computed in time proportional to the length of the sequence 

in question. 
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So, this is a neat expression where, we get the probability value where, we get the 

expected count from this formula of course, dividing it by the probability of the 

observation sequence and from that count, we can obtain, the new probability values. 
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Then the probability values can be used, in the forward backward formula to obtain the 

new count, this will give rise to new probability value and this will go on. So, as this 

goes on, we finally, come to a situation where, the probability value does not appreciably 

change and that would be the termination of the algorithm. So, there is some interesting 

points about this algorithm. 
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Some of these issues pertain to, the behaviour of the algorithm when it, it gets stuck in a 

local maxima for example, so in this particular algorithm, the computation stops when 

there is no appreciable change in the probability values. Now, this particular state of 

probability values can be a case of local maximum, given this particular initialisation, we 

could, we come to a sort of dead end, I would say because the probability values do not 

change any more. But it is very possible these probability values are not the desired 

probability values, it is a case of a local maximum or local minimum however, way you 

have to you want to look at it.  

And this can be changed only by reinitialising the machine and starting the computation 

all over again, so this phenomenon is the phenomenon of getting stuck in the local 

minimum, looking at the slide once again, we see there are 2 other points, which can sort 

of handicap the algorithm, 1 is the issue of symmetry breaking. So, the symmetry 

breaking issue is that, if we do not randomly initialise the weights, but a kind of 

symmetry exists, which is shown here, you can see that, a value b value and a value b 

value here.  

So, forward and backward transitions with a and b values, they have equal starting 

probabilities. Now, if the incrementation happens with equal amount, then these values 

will never be different and if the target machine has different probability values, it will 

not be possible to reach them. 



And the final problem is the label bias problem, which we will discuss later, if one of the 

probability values dominates, and then it can lead to problems in the computation. So, 

this is the Baum Welch algorithm, which is an important algorithm in this area, a 

probabilistic models hidden Markov model in particular and this is a very useful 

development.  


