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Today, we are going to discuss two important concepts with respect to hidden Markov 

model, the forward algorithm, the backward algorithm. The forward and backward 

probability values and their application in hidden Markov model training, this algorithm 

is also known as the Baum Welch algorithm or forward backward algorithm. Now, the 

training part is important, because the strings which are accepted by the hidden Markov 

model and we will discuss it in the context of bigram probabilities. 

The states are bigram sequences, we will take two sequence states and with respect to 

that we find out how the parameters of the hidden Markov model can be found. We 

remember that, hidden Markov model is defined by it is transition probability and the 

observation probability. The idea is to be able to learn these values, there is a very 

famous technique called the expectation maximization, which is at the heart of this 

algorithm and we will discuss this in detail. 

(Refer Slide Time: 01:36) 

 

So, continuing with the slides, forward and backward probability calculation is what we 

are going to do, and we make some very useful definitions. 
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We define F k i as the probability of being in state S i having seen the observation 

sequence O naught O 1 O 2 upto O k. So, this sequence is seen, this observed sequence 

and having seen that the system is in the state S i. So, F k i can be written as probability 

of the string seen being O 0 1 upto O k and the state after that being S i, it is a joint 

probability; the probability of two events happening. With m as the length of the 

observation sequence, the probability of the observed sequence is the whole sequence is 

P O naught O 1 O 2 upto O m. 

And now, imply marginalization and this probability can be written as equal to 

probability O naught O 1 O 2 upto O m comma S p. S p is any state which comes after 

seeing the whole sequence of observations and we have to make this random variable, 

take all possible values. And so p is going from 0 to N, there are total number of N plus 1 

states and this equal to sigma p 0 to N, F m p. So, we apply straight forward, the 

definition of forward probability and F m p is the representation of P whole sequence of 

observations and the next state. 

So, if we sum the forward probabilities of the observation sequence and the state the 

machine is inn after the observation sequence then we will get the probability of the 

whole sequence. So, this is simply applying the law of probability, the marginalization 

law, and so we find that, the probability of the observation sequence is equal to sigma p 



going from 0 to N, F m p. So, this is the way, the forward probability is used to calculate 

the probability of the whole observed sequence. 

(Refer Slide Time: 04:27) 

 

Now, the question that comes naturally is, how do we calculate this forward probability, 

the final forward probability is that of the whole observed sequence. Can we do it 

efficiently, can we sort of divide and conquer, can we build the whole computation from 

small intermediate computations on segments of the observed sequence. So, the picture 

shown here, clarifies lot of issues regarding the situation, so S 0 starting state, S 1 is the 

next state, which can be one of the states, which are the constituents of the hidden 

Markov model. 

O naught is typically epsilon where, we go into one of the starting states or if there is a 

unique starting state, we go there. Then O 1 O 2 O 3 O k O k plus 1 O m minus O m is 

the whole observed sequence and after O m, the system enters a final state which can be 

one of the given states in the machine. So, when we do so we find that we are transiting 

from state to state with a output observation O k. So, S p to S q, there is a state transition 

and O k is the observed output symbol. 

Now, this is a diagram which is capturing the relation between the observed sequence 

and the state sequence. So, for every state, there is an output symbol and a transition to 

the next state. So, when we have this picture in front of us, we can very easily see that, 

the forward probability k comma q which means nothing but observing the sequence O 0 



O 1 O 2 upto O k. And then being in state S q, this is by definition and this is equal to P 

O 0 O 1 O 2 upto O k minus 1, I isolate the symbol O k, the last symbol on the output 

sequence and I also have this S q. 

So, the whole probability expression now has three parts, O naught to O k minus 1, the 

symbol O k and then the state S q. Now, I introduce the state S p, so it is helpful to look 

at the picture, when we look at this expression. So, what was F k q, F k q is referring to 

this part of the output sequence and this part of the state sequence. So, one sees this 

whole output sequence and comes into the state S q. Now, when we have S p then surely 

the output symbol is the previous one, which is O k minus 1 and S p is the previous 

symbol. 

Now, since we are introducing this variable here S p, p has to again go from 0 to N, all 

possible states of the hidden Markov model then therefore, a sigma sign is introduced. 

This is the law of marginalization and this shows that, we have introduced S p here, O 

naught to O k minus 1 is the observation sequence, O k is the symbol and, S p and S q 

are the states. So, one should particularly note this pattern S p O k S q where, S p is the 

source state, S q is the destination state and O k is the output symbol. 

So, we are essentially referring to the pattern that obtains at the state and observation 

sequence as shown here, so this will be our pattern of interest. Now, what we can do is 

that, we can take this probability value and isolate the part P O 0 O 1 O 2 upto O k 

minus 1 and S p here then we have symbols upto O. Then we have this symbol here, S p 

and this should be O k, so P O k S q and the condition part is S p O 0 O 1 O 2 upto O k 

minus 1, so this is actually O k. 

So now, we have this part which is nothing F k minus 1 p, so the probability of seeing O 

naught O 1 upto O k minus 1 and being in state S p, so this F k minus 1 p. And this 

particular probability here, we can ignore everything other than S p, because the previous 

observation symbols do not influence this probability according to Markov assumption. 

So, P O k comma S q given S p and this by definition is nothing but P S P O k arrow S q. 

So, this is nothing but this transition probability of going from state S p to S q as shown 

here in this whole sequence and F k minus 1 comma p is the forward probability up to k 

minus 1. So, we have this way of computing F k comma q from F k minus 1 comma p 



and this transition. So, we can depict this forward probability calculation pictorially as 

follows, I would write this diagram. 
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So, F k q is nothing but a summation of F k minus 1 p values, which is nothing but 0 then 

F k minus 1 1, F k minus 1 2 and so on F k minus 1 comma N and let us also thrown in 

one more term, which is F k minus 1 N minus 1. So, we take this forward probabilities, 

multiply them by the corresponding transition probability values, which is nothing but F 

p of S 0 to S q with output symbol being O k. And this probability here would be S 1 to S 

q with output symbol being O k and here, this probability will be S N to S q with output 

probability being O k. 

So, this very clearly shows, how the forward probability at any point in the sequence at 

the k th place can be computed in terms of, whatever probability value, whatever 

forward probability value has been accumulated so far upto k minus 1. We simply take 

those forward probability values for different states at k minus 1 and multiply each such 

forward probability with the transition probability involved and then sum them up, we 

get the forward probability. So, this means that, the computation of these F k comma q 

can be done by performing an addition of N plus 1 previous computations multiplied by 

a probability value. So, we have N plus 1 operations giving rise to the computation of F 

k comma q. 
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So, if we can write a complexity expression in the next slide, complexity expression for 

computing F k comma q, let us call this T k, T k is clearly equal to i is equal to 0 to N, T 

k minus 1, so this in terms of the recursive expression. 

(Refer Slide Time: 14:45) 

 

And we can write the boundary condition as F 0 comma q is equal to P q where, P q is 

the initial probability of being in state S q that is, S 0 to S q. So, this shows us that, the 

forward probability can be computed very easily. 
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And it is not difficult to show that, forward probability can be computed in time 

proportional to the length of observation sequence, so it is a linear time computation. So, 

this expression we can take up in more detail later, in particular what we will emerge is 

that, the forward probability or the probability of the observation sequence, which in 

terms of the output, in terms of the forward probabilities. This forms a lattice like 

structure, so this what we would like to show ((Refer Time: 16:27)). Now, we will move 

on to the complimentary probability, which is called the backward probability. 
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Backward probability, we call it B k i and look at the slightly different definition of B k i, 

B k i is the probability of seeing O k O k plus 1 O k plus 2 upto O m given that, the state 

was S i. So, just compare this with the definition of the forward probability, forward 

probability says that, we begin from the start of the observation sequence and go to the k 

th observation symbol and then we note the state we are in, from there. In backward 

probability, we start from the k th observation symbol, go on upto the end of the string 

and this is the observed sequence given that, the state was S i. 

So, B k i can be written now as probability of seeing O k O k plus 1 O k plus 2 upto O m 

that is, the end of the sequence given that, the state before outputting O k was S i with m 

as the length of the observed sequence. So, P observed sequence therefore, can surely 

written as P O naught O 1 O 2 upto O m, which is equal to P O naught O 1 O 2 upto O m 

given that, the state was S naught, which is always true and that can be written simply as 

B 0 0. 

So, we take the probability of observing O naught to O m given that, the starting state 

was S naught, which simply is B 0 0. So now, you can compare that P probability of the 

complete observed sequence could be expressed as a sum of forward probabilities and 

probability of the same observed sequence is nothing but a single backward probability 

with arguments 0 0. 

(Refer Slide Time: 19:02) 

 



Now, we try to see again just like forward probability, how the backward probability can 

be calculated and again this state sequence is, which was also used for forward 

probability calculation. So, we have the observation sequence O naught O 1 O 2 O 3 

upto O m, which is the last observation symbol and S naught S 1 S 2 S 3, etcetera are the 

state symbol, so with S final as the final state. Now, each of these S 1 S 2 S 3, etcetera 

can be one of the constituents states of the hidden Markov model. 

So, we take up these expression P O k O k plus 1 upto O m given S p, now this again can 

be broken up into two parts. We isolate the part O k and leave this part O k plus 1 to O m 

and the conditioning part remain same, which is S p. And now, we introduce a margin 

variable, which is S q and S q you can see here, is the state at this point in the state 

sequence after O k. So, this is the picture and we correspond this with the picture here. 

Now, this is sigma q 0 to N, P O k comma S q comma S p, so this part I isolate, this 

particular pattern I isolate O k comma S q given S p. So, we are doing nothing but trying 

to capture the probability of this pattern, which obtains at the output and observation 

sequence. So, P O k comma S q given S p and then we have the other probability part P 

O k plus 1 O k plus 2 upto O m and now, I apply chain rule, so O k and S q come as the 

conditioning part and S p is of course, there. 

So, this particular part P O k comma S q given S p is written here and our part here, P O 

k plus 1 O k plus 2 upto O m given O k S q S p can simply be written as p O k plus 1 O k 

plus 2 upto O m given S q. So, this becomes the probability expression, because this 

observation sequence is not influenced by anything, other than the state from which it 

started, which is S q. So, look at the picture here, O k plus 1 O k plus 2 upto O m, the 

state before O k plus 1 was S q and this is the only thing, which influences this whole 

observation sequence, this is by virtue of the Markov assumption. 

So, this is what we have here and P O k comma S q given S p is nothing but the 

probability of this transition S p to S q with the output symbol O k. So therefore, we can 

write B k p as equal to B k plus 1 q, P S p to S q with output symbol O k and q going 

from 0 to N on the sum here. So, from this again, we can write a small expression for the 

calculation of the backward probability B k p. 
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So, when we write on the paper B k p can be seen to be simply implemented by B k plus 

1 0 B k plus 1 1 then B k plus 1 2 and then B k plus 1 N. So, this is what is the 

expression, which is used for computing B k p. And we have to sum these probability 

values after multiplying each of these backward probabilities with the probability of S p, 

B k p, so probability of S p to S 0 on O k, probability of S p to S 1 on O k, probability of 

S p to S 2 on O k, probability of S p to S N on O k. 

So, we have these probability values, which are computed from a shorter string, because 

k plus 1 to N is a shorter string compared to k to N, the total length of the string starting 

from k and we multiply this by the probability values here. So, again the time complexity 

will be exactly like the forward probability and we have a linear time algorithm for 

computing backward probability. Thus, we have found two very important probability 

values, the forward probability and the backward probability. 

So, both these probability values can be computed by making use of a recursive 

expression and the expression is such that, for both very efficient linear time algorithm 

exists. So, for the whole output sequence, we can get the forward probability in time 

proportional to length of the output string. Similarly, we can express this probability 

value in terms of backward probabilities and again, this is a linear time algorithm ((Refer 

Time: 25:46)). 



So, let us summarize what we have learned, you can look at the slide here and for any 

observation sequence and the corresponding state sequence, we have a notion of the k th 

place and we can compute the forward probability upto any point in the observation 

sequence. And we can compute the backward probability from any point to the end of the 

output sequence for any point in the string. So, let me just repeat this point, for any point 

in the output sequence and the corresponding state sequence, we can compute the 

forward probability upto that point and the backward probability from that point upto the 

end of the string. One point leads completion which is that, the backward probability 

needs a boundary condition. 
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So, B k p we have seen is equal to sigma q equal to 0 to N, B k plus 1 q into P S p to S q 

with O k and this k plus 1 goes on increasing towards end of observation sequence. So, 

we must have a boundary condition, so we write this boundary condition here. 
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Boundary condition for B k p, so if you look at the slide (Refer Slide Time: 27:50) the 

boundary condition is very clear. The boundary condition is that, having observed the 

last symbol in the whole sequence, the system can be said to be in a final state. So, this 

should give us the boundary condition, so we can say that, from S m to the final state S 

final on outputting O m is a boundary condition, otherwise we can also propose an 

epsilon transition here and from there, we can say that, there is a final state with respect 

to one of the states of the hidden Markov model. 

So, the probability of going to the final state from the last state S m is the boundary 

condition. So, this would be for B k p is obtained from the last symbol, so we essentially 

have to write B m final where, S final is one of the states of the HMM. So, this gives us a 

complete picture about the forward and backward probabilities, which are useful for 

various calculations in hidden Markov model. 
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We now proceed to, how the training of the hidden Markov model is done, the problem 

of part of speech tagging. We have chosen a particular problem here, the problem of part 

of speech tagging, we have a sequence of words here, people laugh aloud and there is a 

symbol hat, which starts the sentence and a dollar symbol, which ends the sentence. So, 

for hat, the tag is hat itself, people is noun, so underscore noun, laugh is a verb, so 

underscore verb, aloud is an adverb, so underscore adverb. 

So, these part of speech symbols are non standard non conventional, we simply use this 

for the purpose of illustration. So, our problem is to train a hidden Markov model from 

this kind of training data where, this is a supervise situation. But, it is also possible to 

have situations where, the output sequences of the machine are given and from there, we 

have estimate the parameters of the hidden Markov model. So, this is a bit of a degration, 

where we say that, one example where hidden Markov model is used, is in part of speech 

tagging. 

There is a corpus, corpus can be either spoken or written, under spoken corpus we have 

many famous ones, the very well known corpus is the switchboard corpus, which records 

many hours of telephonic conversation. And under written corpora, we have famous 

things like brown corpus, which has about 1 million words, British national corpus which 

has about 10 million words with tags and so on. 
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So, here is a listing of famous text corpora of English, American national corpus, bank of 

English corpus, British national corpus, corpus Juris Secundum, corpus of contemporary 

American English, brown corpus international corpus of English, oxford English corpus, 

Scottish corpus of texts and speech, so these are well known corpora. 
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Now, what about the tag set, tag set is a very important concern in any part of speech 

tagging. We have remarked in one of the previous lectures that, there is no point giving 

detail and intricate tags. If they cannot after all be assigned from a limited context around 



the word, which is the part of speech taggers task. So, here we have some tags from a 

very famous corpora called Penn tree bank tag set, CC is the coordinating conjunction, 

CD is a cardinal number, DT is a determiner, EX is a existential there, FW is foreign 

word, IN is preposition. 

JJ is adjective, JJR is comparative adjective, JJS is superlative adjective, LS is list item 

marker, MD is modal, NN is noun, NNS is plural noun, NNP is proper noun, so a few of 

these tags in Penn tree bank are shown here. Now, all these tags have different examples 

for example, CC is the coordinating conjunction and it can be used for entities like, but 

and while and so on. 

Now, how is this tag set created, the tag set is created by lot of insight into the way, the 

language operates and the words in the language are placed with respect to each other. 

So, some points of thought are wise it that, English has a tag for a singular noun and a 

separate tag for plural noun. Now, one of the important reasons for this is that, in English 

most nouns can be used as verbs, so the plural form of a noun is almost always same as 

the singular number third person present tense form of a verb. 

So, like John plays, plays is the third person singular number present tense form of play 

and we saw many plays, here plays is a noun. And both these categories that is, third 

person singular number present tense form of verb and plural noun, both of them are 

very every frequent in the language. And the system cannot afford to make mistake with 

respect to their tags and hence, it has become necessary to separate the noun singular tag 

and the plural noun tag. So similarly, each tag has lot of linguistic considerations and 

computational considerations behind it, which we can discuss at some point of time. 
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So, hidden Markov, we come back to hidden Markov model training and this is a very 

famously known by Baum Welch or forward backward algorithm. 
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So, the key intuition here is that, we have a hidden Markov model, we start with some 

probability values assigned on the arcs, capturing the probability of transition from state 

to state with a particular output symbol. And then we use an expectation maximization 

like algorithm for training the HMM. 



(Refer Slide Time: 35:40) 

 

So, if we take the urn example again then in the urn example, we have all the numbers of 

red balls and so on. 
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But, what is not given to us is this transition probability table and the observation 

probability table and we have seen before that, these two probabilities can be marched to 

have a probability value marked on the arcs. Now suppose, this observation is given, 

which is corresponding to the hidden Markov model R R G G B R G R then the viterbi 

question was, what is the corresponding state sequence. What we ask is that, if the state 



sequence is given, no if the state sequence is given that would be supervised situation. If 

only the observation sequences are given and the structure of the hidden Markov model 

is given then how can we estimate the transitional observation probabilities. 
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So, this is a question, in this Markov model we have hidden Markov model, we have 

given the observation and transition probabilities. 
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And they have been combined to produce these kinds of probabilities on the arcs and we 

have this kind observation sequences. 
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From the observation sequences, it is possible to go through either one single state 

sequence or a number of state sequences, but what is given is the observation sequence. 

And we can go through multiple state sequence for sequences for one particular 

observation sequence. When that happens, how do we get the parameters of the F S m. 
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So, why shall we discuss this question of the best possible state sequence given the 

observation sequence, we have seen how hidden Markov model and the Markov 

assumption can do this job. Now, we come to the Baum Welch algorithm and this is in 



terms of counts of the transitions in the output observation sequence. So, to understand 

this point, let us take a sequence here abb aaa bbb aaa, so abb aaa bbb aaa this can be 

produced from a state sequence of this kind. 
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And if this is the only state sequence, which produce the observation sequence then we 

can compute, we can make a good estimate of the probabilities of transitions and the 

output symbols just simply by counting the transitions and the outputs. So, in this 

particular observation sequence and the corresponding state sequence, we find that, q to r 

transition with output symbol a occurs five times, q to q transition with output symbol b 

happens three times, r to q transition with output symbol a happens three times, r to q 

with b happens two times. 

So, from these observation, we can propose that the probability of q going to r on a is 5 

by 8 and probability of q going to r on b is 3 by 8. So, the q to r transition is the only 

transition from state to state possible when the starting state is q and there are two 

possibilities of output being a or b. So, we have therefore, the probability of P q going to 

r on a is 5 by 8, there are eight cases of transition from q and then if we capture the next 

state as r and different symbols as a and b then this is what the probability comes out to 

be. 

So, this can also be expressed by a formula here, probability of S i to S j with output 

symbol W k is nothing but the number of times S i goes to S j with W k. And this divided 



by all the cases of S i going to different states S l with different output different output 

symbol W m. That is why, there are two sigma symbols here, one is for all possible 

output symbols and the other is for all possible destination states. So, this is a simple 

formula, which will work in terms of exact frequency values, if an observation sequence 

produces a single state. But, problem is that, we have non deterministic transitions and 

then multiple state sequences are possible for a given output sequence. So, our aim is to 

find the expected count through this. 
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So, the whole computation happens by an interplay between a probability calculation in 

terms of counts and estimating the counts. Expected counts rather from the values of the 

transitions, the number of transition occurs and weighting it by the probability of state 

sequence given the observation sequence. 
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So, this is illustrated by an HMM here, this is the actual desired HMM and this is the 

initial guess of the HMM. 
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And from this, we can find out the path probabilities and from this, we can make another 

estimate. So, this particular algorithm, we will discuss in detail in the next lecture and we 

will see that, this produces a very interesting algorithm for training the HMM. 


