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Today, we will discuss the HMM and it is algorithm aspects, we have seen that HMM is 

a very critical machine, very useful machine for statistical natural language processing. 

And our goal would be to understand the algorithm aspect to this machine, we remark 

that there are three important problems that are solve by hidden Markov model. The first 

is that we would like to compute efficiently, the probability of the observation sequence. 

The next problem which is most important is that we would like to compute, the 

probability of the state sequence, the best possible state sequence given the observation 

sequence. So, we would like to find out the best possible state sequence, given the 

observation sequence and the meaning of best possible here is the sequence has the 

highest probability, given the observation sequence. 

And the third problem is to find out the transition and observation probabilities or 

parameters of hidden Markov model, given the output sequence or the observation 

sequences, which are accepted by the machine or generated by the machine. So, we 

concentrate on the second problem now, to find out the best possible state sequence in 

terms of highest probability value given the observation sequence. 



(Refer Slide Time: 01:55) 

 

So, we first start with this particular diagram, which we called a probabilistic finite state 

machine. This is nothing but the hidden Markov machine of a order k equal to 1, that is 

why, we can draw this kind of states with only one state symbol unit S 1 going to S 2 on 

symbol a 2. If I look at this arc for example, this means that the probability of going to 

state S 2 with output symbol a 2 is 0.4. So, this you would remember is very definite 

probability. 
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We look at the paper and I would written it for you, the paper shows the meaning of the 

probability of a 2 being 0.4 on the arc going from to S 1 to S 2, the meaning of this 

probability value is p a 2 comma s 2 given s 1 is 0.4. Now, this particular probability can 

be written as p a 2 given s 1 into p s 2 given s 1, which is equal to 0.4 and the next 

probability that is p s 2 given s 1 the second probability expression; mix this 

independence assumptions that the probability of state depends, only one the pervious 

state and nothing else. So, the meaning of this particular picture is probability of a 2 

given s 1 into probability of s 2 given s 1. 

So, going back to the slides we have this machine with us and the question that is been 

asked is, what is the most likely state sequence given the output seen. We will take a 

particular output sequence, which is a 1, a 2, a 1, a 2 or output sequence will be a 1, a 2, 

a 1, a 2. Now, we would like to predict the best possible state sequence, corresponding to 

these observation sequence. So, we are going to find out the best possible state sequence, 

in terms of s 1 and given the observation sequence a 1, a 2 all right. 
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So, here is the tree which clearly depicts what we have to do. So, initially the system is in 

the start state and from there with probability 1.0, it goes to state S 1 and the probability 

is 0.0 goes to S 2, which means the machine starts from state S 1. The next symbol is a 1 

when a 1 comes in, then from S 2 we go to S 1 with probability 0.2 from S 2 to S 2 with 



probability 0.3. So, this is as per the finite state machine, which we has shown before 

with probability value on it. 

Now, what will happen is that, this probability will get multiplied by 0 and therefore, the 

probability of state sequence S 2, S 1 and S 2, S 2 will be equal to 0. So, we need not 

consider these probabilities and these notes anymore, there is no point advancing these 

notes, they will always get multiplied by 0 and the probability value will be 0. So, we 

concentrate on these part of the tree and from S 1 here on a 1 we see that the probability 

of the state transition from S 1 to S 1 is 0.1 on a 1, S 1 to S 2 is 0.3 on a 1 the probability 

of sequence S 1, S 1 on the observation sequence epsilon a 1 is 1 into 0.1, which is the 

product of these probabilities and sequence probability here is 0.3. 

So, S 1, S 2 sequence probability given the observation sequence epsilon on a 1 is 0.3 

and the sequence probability of S 1, S 1 is 0.1. Next symbol that comes in is a 2 here, we 

advance the note here S 1 to S 1 and S 2 these note S 2 is also advanced to S 1 and S 2. 

The probability values on the arts are 0.2, 0.4, 0.3 and 0.2, meaning thereby, S 1 on a 2 

goes to S 1 with probability 0.2, S 1 and a 2 goes to S 2 with probability 0.4, S 2 to S 1 is 

0.3, S 2 to S 2 is 0.2, these we are seen before in the probabilistic finite state machine. 

Now, when we look at the sequences S 1, S 1, S 1 the probability of that comes out to be 

equal to 0.1, which is the accumulated probability of the subsequence S 1, S 1 into the 

transition probability which is 0.2 on a 2 and the probability value now becomes 0.1 into 

0.2 which is 0.02. So, the probability of that sequences S 1, S 1, S 1 on a 1, a 2 is 0.02. 

Similarly, the probability of sequences S 1, S 1, S 2 on observation sequence a 1, a 2 is 

0.04 that of S 1, S 2, S 1 is 0.09 that of S 1, S 2, S 2 is 0.06. Now, it is quite easy to see 

that what is have to doing is correct, we will do a slight amount of mathematical 

calculation to show the our theory is fine, as far as doing this mathematical task is 

concern. 
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So, we are saying that we would like to compute the probability of s 1, s 1, s 1 given the 

sequence epsilon a 1, a 2. Now, by chain rule this is probability by Bayes theorem and 

chain rule and Markov assumption, we get this as p epsilon a 1, a 2 given s 1, s 1, s 1 into 

probability of s 1, s 1, s 1 and the denominator is probability epsilon a 1, a 2. So, this 

denominator is not computed, because this probability values are useful comparison and 

they are not use, because the denominator is same for all the notes which are compared. 

So, this will be equal to probability of a 1 on s 1, into probability of a 2 on s 1, into 

probability of s 1 on s 1, into probability of s 1 on s 1 and that is equal to probability of s 

1 on s 1 on a 1 into probability of s 1 to s 1 on a 2. So, we can take product of these two 

probabilities and compute the probability of the sequences, this is due the application of 

Bayes theorem, chain rule and Markov assumption. 
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So, looking at slide once again, we see that the sequence probability can be found out, 

simply by the multiplying the transition probability with the accumulated probability, so 

far. Now, when we do this and when we have got this four children, ending in S 1, S 2, S 

1, S 2 then we compare those sequences which end in the same state. So, sequences 

ending in S 1 are S 1, S 1, S 1 and S 1, S 2, S 1 the probability of S 1, S 2, S 1 is 0.09 

that of S 1, S 1, S 1 is equal to 0.02. Now, we observe that the children of this S 1 will 

never be able to win over the children of S 1 coming from here, so this again we can 

illustrate by writing. 
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So, we have an S 1 here and the sequence is s 1, s 1 and another s 1 here, the sequence is 

s 2, s 1. So, s 1, s 2, s 1 and the accumulated probability here is 0.02, accumulated 

probability here is 0.09. So, the probability of the sequence s 1, s 1, s 1 is 0.02, 

probability of the sequence s 1 is to s 2 is 0.09, so these equal to p s 1, s 1, s 1 given a 1, 

a 2 and this is equal to p s 1, s 2, s 1 given a 1, a 2. Now, when the next symbol comes 

which is a 1, we will be advancing this state’s this will be s 1, s 2, s 1, s 2 and the values 

here, will be multiplied by the transition probabilities. 

And now, we see that we are always multiplying by the same quantity for a same state 

transition. And when this happens, this note will always be less than this note, the 

accumulated probability here will be more than accumulated probability here, similarly 

the accumulated probability here, will be more than the accumulated probability here. 

Therefore the children of these notes will never be win over the children of this note 

therefore, there is no point advancing this note and we cancel this out. 
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So, when we cancel this out we look at the slide once again, here this S 1 need not to be 

advance any more, we have to advance this S 1 this S 2 need not to be advance anymore 

we have to advance this S 2. 
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So, going to the next slide we have this S 1, S 2 with their accumulated probabilities 0.09 

and 0.06. Now, the next symbol comes in which is a 1, the transition probabilities are has 

shown here 0.1, 0.3, 0.2, 0.3 accumulated probabilities multiplied by these transition 

probabilities. The new accumulated probabilities are 0.009, 0.027, 0.012 and 0.018 

which is the product of previous accumulated probability and the transition probability 

alright. 

So, now when we look at the sequences ending in the same state. So, here is the 

sequence ending in S 1, sequence ending in the S 1 here, has higher probability than the 

sequence ending in the S 1 here. Therefore, we retain this note and this cut this note 

similarly, this note S 2 probability with 0.27 which is more than 0.018 is retain the other 

note is discarded and we find that now, we have S 2 and S 1 here, the next symbol is a 2 

when a 2 is presented or when a 2 is output. 

Then, the sequence that results is ending in S 1, S 2, S 1, S 2 with this four notes and this 

particular note has the highest probability of 0.0081. Therefore, this is the winner note 

and when work backward, we can recover the state sequence which has the highest 

probability corresponding to the observation sequence a 1, a 2, a 1, a 2. So, the winner 

sequence should be S 1, S 1, S 2, S 1, S 2, S 1. So, S 1 is S 2, S 1 is S 2, S 1 is the winner 

sequence. And this is the best possible state, as far as the output observation sequence is 

concerned. 
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Now, this particular algorithm is known as the viterbi algorithm, this is known as the 

viterbi algorithm, this is used for predicting the state sequence given the observation 

sequence. Very efficient algorithm, time complexity equal to number of states into 

observation length. So, number of states into length of observation is a complexity, so 

how is the complexity number of states into length of observation. 

(Refer Slide Time: 15:56) 

 

So, let us see what is going on in the way the algorithm proceed. 
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So, we have seen that initially when the first symbol is obtain, we have two states 

coming out from S 1 at S 1 and S 2. When we have a next symbol then both S 1, S 2 

produce two children each, but only two out this four are retain, other two are discarded. 

So, if there is k states in the machine then at every level, we retain k states and we 

discard the others and that is done by, noting all those sequences, which end in the same 

states and retaining that sequence whose probability is the highest. 

So, at every level we retain exactly k states and the numbers of level, is equal to length 

of the observation sequence. So, numbers of states into length of observation sequence, 

is the complexity of the algorithm, if we were advancing the all states, at the every level 

then you can see the complexity would be number of states to the power, length of the 

observation sequences. So, because of Markov assumption because of the fact that a state 

is depend only on the previous state, we are able to bring down the complexity from 

exponential to linear, in the length of the observation sequence. So, these a tremendous 

amount of saving and that is possible because of dynamic programming. The way the 

algorithm words is that it makes use of the accumulated probability seen, so far; so these 

the way algorithm works and the tree based discussion makes it quite loss it. 
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Next, we show a tabular representation of the tree which is very useful for computation 

implementation of the algorithm. Here is the table, which is used as a data structure for 

the running of the viterbi algorithm. This particular table has a number of columns equal 

to length of the observation sequences plus 1, which corresponds to epsilon and these 

particular column with epsilon, indicates what the first state of the system is system goes 

to S 1 with probability 1.0. 

However, if the both the states are possible right at the beginning, then we will distribute 

this probability between the two rows here, let us understand the next set of columns. 

Here, the rows indicate the ending states the sequences which ending that particular state 

for example, this particular row is for all those sequences, which ending state S 1 this is 

for all those sequences which ending state S 2. Now, when a 1 comes as a symbol, then 

we have the transition probability of 0.1 and 0.2. 

Now, we record at every cell a topple, so these topple is the record of all the accumulated 

probability of sequences, ending in that particular state. So, the sequences which can 

ending state S 1 are two in number coming from a previous S 1 or a previous S 2. So, we 

see here the probability of those sequences are 1.08 into 0.1 and 0.0 into 0.2, so 0.0 

comes from this particular cell here, 0.0 is the probability of the sequence ending in S 2 

when epsilon is same; that means, we have no symbol is same. 

 



So, when we advance that particular note, we have to multiply the probability of the 

transition with 0.0 and we get 0.0 here. Similarly, we get 1.08 into 0.1 here and this is 

bold faced. The meaning of these topple is that from S 1, we get a sequence ending in S 2 

with probability value of 0.3 and from S 2 we get a sequence ending in S 2 with 

probability 0.0, this is the 0.0 alright. The next symbol makes thing much clearer, in a 

next symbol we find that the topple has 0.02 and 0.09, the topple here has 0.06 and 0.04. 

This is 0.09 comes from, the accumulated probability 0.3 multiplied by the transition 

probability of S 1 to S 2 or rather S 2 to S 1 on the symbol a 2. And this is the winner 

probability of the sequences ending in S 1, similarly the winner probability here is 0.06 

of the sequences ending in S 2. In the next symbol a 1 the topple is 0.009 and 0.012 this 

is the winner probability here, this is the winner probability finally, 0.0081 is the winner 

probability here. Now, from this table we can work backwards and recover the states 

sequence. 

So, final state as we see from the bold faced portion here, is S 1 the state sequences 

ending in S 1 and it came from S 2 because this is the second topple here, it came from S 

2. So, we come here this is the bold faced number this is the first component of topples, 

so this must have come from S 1, so we go to this cell. Now, the bold faced is number is 

this which is second components, so it must have come from S 2. So, we come here and 

then the sequence comes out to be equal to S 1 to S 2 to S 1 to S 2 to S 1. 

So, this is the way the computation proceed with the observation sequence and after the 

computation is over, we can recover from the data structure the whole state sequences. 

The bold faced value in each cell, shows the sequence probability ending in that states 

going backward from final winner sequence, which end states in S 2 indicate going to the 

second topple we recover the sequence. So, this particular tabular representation which is 

the data structure corresponding to the working of the viterbi algorithm, is very 

convenient to store the computation and also the finally, recover the path. 
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So, this gives rise to the algorithm for viterbi and it is the version that appears in James 

Alan, natural language understanding second edition, Benjamin Cummins publisher 

1995. So, what is given to the algorithm is HMM, which means we are given the start 

state S 1 the alphabet a 1, a 2, a p which is the observation symbols, the set of states s 1, 

s 2, up to s n, the transition probabilities for various state pair and output symbol 

combination. And this is nothing but P S i going to S j on symbol a k, which is equal to P 

S j comma a k given S i. 

So, the probability of all these combinations are given to us form the transition and other 

observation probability tables and the output string we have been told is that a 1, a 2 up 

to a t you have to compute the probability of the best state sequence, which corresponds 

to this observation sequence. To find the most likely sequence of states C 1, C 2, C t 

which produces the given output sequence that is C 1, C 2, C t is equal to arg max over c 

of P C given a 1, a 2 up to a t with mu as the model. 
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For this algorithm, we have a data structure which is a N by T array called the sequence 

score to maintain the winner sequence always, N is the number of states. So, N rows, T is 

the length of the output sequence, so the number of columns would be equal to T plus 1, 

another N into T array called back pointer to recover the path. So, the three distinct steps 

in the viterbi implementation are initialization, iteration and sequence identification. 
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When we initialize, we make sequence score 1 1 equal to 1.0 that is to show that S 1 is 

the starting sequence, back PTR 1.1 is 0 to show that this is the first state, no state 



perceive this and for 2 to N do sequence score i 1 equal to 0.0. So, we make the 

probability value 0 in all states rather than S 1. 

Now, come iteration step for t equal to 2 to capital T do for i equal to 1 to N do. So, this 

means we go of over the observation sequence, symbol by symbol T equal to 2 to T, the 

capital T is the length of the observation sequence. And for every symbol on the 

observation sequence, we do and iteration over the number of states. So, this is to record 

the state in which the sequence is ending. So, sequence store i comma t is max of j equal 

to 1 plus N, sequence score j comma t minus 1 into probability of S j to S i for the 

symbol a k. 

So, this essentially is multiplying the accumulated sequence probability which is 

sequence score j comma t minus 1, by the transition probability from S j to S i on symbol 

a k. So, this particular max make sure that we advance only k states at a particular level. 

So, this the main most important part of the viterbi algorithm, we do not advance any 

state whose probability value is less than the winner sequences probability value, ending 

in the particular state. Back pointer I comma t is equal to index a that gives the maximum 

the above, it is a way of keeping the pointer to be able to recover the states sequence. 
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Sequence identification finally, C T equal to i that maximizes sequence score i comma T. 

for i from T minus 1 to 1 do C i equal to back PTR C i plus 1 comma i plus 1 and this 

produces the, state sequence which has been found to the highest probability state 



sequence. Now, the back pointer can be an single dimensional array and the sequence 

score can be of order T square. 

One can compare this viterbi research, with A star and beam search and the reason for 

this comparison is that, both this algorithms are finding and recovering sequence. So, it 

will be the interesting idea to compare the nuances of the algorithms. 
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Now, we come to an important topic called the forward and backward probability 

calculation, we will make use of some mathematical expressions for this case. 
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We go back to the definition of hidden Markov model because this will by require for 

forward and backward probability calculation. The state of states is S where, the number 

of state is equal to N the start state is S 0 and the probability of S 0 is equal to 1, output 

alphabet is O, where the number of output symbol is M. The transition probabilities is a 

matrix A with values small a i j state i to state j transition probability is given through the 

number a i j, emission probabilities B is b j o k probability of emitting or absorbing o k 

from the state j. Initial state probabilities pi is equal to p 1, p 2, p 3, p n and each p i is 

equal to probability of output symbol being epsilon and the state being S i given the state 

S 0. So, it is the essentially capturing the probability of the system being in a particular 

state initially. 
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We now define the forward probability F k comma i, the forward probability F k comma 

i is probability of being in a state S i having seen O 1, O 2, O 2 up to O k. So, this is 

better expressed by working through the mathematical calculations. So, we are working 

out the forward probability. 
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So, the diagram is useful here we have the symbols O 0, O 1, O 2, O k minus 1, O k, o k 

plus 1, O m, the system starts from S 0 and goes to some state here. Let us assume, the 

probability of the state is s or the state is S q where the symbol O k is same and before 

that the state was S p, S p to S q 1 symbol O k. So, the forward probability F k comma q 

is the probability of seen O naught, O 1, O 2 up to O k and being in state S q. 

So, this is joint probability which expresses the fact that we have seen, the sequence O 

naught, O 1, O 2 up to O k and we are in the state S q. So, it is quite easy now to express 

probability of the whole all four sequence O naught, O 1, O 2 up to O m this is nothing 

but probability of O naught, O 1, O 2 up to O m comma S i, i equal to 0 to N. So, this is 

nothing but marginalization. So, this whole sequences probability O naught, O 1, O 2 up 

to O m is appended with S state S i and we have to take all possible values of S i, i go 

goes from 0 to N where N is the number of states. 
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So, this means that the final output probability or the probability of the sequence p O 

naught, O 1, O 2 up to O m is nothing but sigma F m i, i equal to 0 to N. So, by using 

forward probability we can may goes up, we can find out the probability of output 

sequence O 0 to O m. Now, how to efficiently get F m i this requires us to peep into the 

subsequences of O naught, O 1 to O m. 
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So, if you invoked this diagram once again O naught, O 1, O 2, O k minus 1, O k, O k 

plus 1, O m. And we have the state as S p and state at here S q, the state here is 0 and 



goes to n state S 1, S 2 state etcetera. So, now, F k q is nothing but the probability of O 0, 

O 1, O 2 up to O k and S q, it is probability O 0, O 1, O 2, up to O k and S q. So, this I 

can write as, this is the sequence on which I am operating and I am trying to see, if I can 

make use of the subsequence’s property to compute this probability. 

So, this would be equal to P O naught, O 1, O 2 up to O k minus 1, O k comma S q. So, I 

am just dividing this sequence O 0, O 1, O 2 up to O k in a two parts, O 0 to O k minus 1 

and O k. Now, I do marginalization and I introduce another variable O 0, O 1, O 2 up to 

O k minus 1 comma S p, O k, S q where p is equal to 0 to N. So, this I will have to do I 

am just introducing marginalization, here is a new state which is introduced this is S p. S 

p is nothing but the state previous to S q and having seen the sequence O naught, O 1, O 

2 up to O k minus 1, this system is in state S p after that S p is O k and goes to state S q 

alright. So, this is the expression. 
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Now, what I can do is that I can take up this particular term O naught, O 1, O 2 up to O k 

minus 1 comma S p comma O k comma S q p goes from 0 to N this I write as sigma p 

equal to 0 to N probability of O naught, O 1, O 2 up to O k minus 1 and the state S p into 

probability of O k comma S q given o naught, O 1, O 2 up to O k minus 1 and S p. So, 

this is how chain rule operates I have taken out this particular part and I take this part as 

the conditioning, entity in the next probability, which is a multiplied. 



Now, p equal to 0 to N this probability is familiar to us, is nothing but F k minus 1 p and 

this probability, we can neglect O naught to o k minus 1 because we said that the next 

state and the next symbol, depends only on the current state. So, next state and the next 

symbol depends only on the current state. So, this equal to p O k comma S q given S p 

and the term comes out to be equal to p equal to 0 to N F k minus 1 p into probability of 

S p to S q or O k alight. So, this is the expression that we have got and it is a recursive 

expression for the forward probability, giving us a recursive algorithm to compute the 

forward probability. 
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So, what we have got is F k comma q is nothing but sigma F k minus 1 comma p, p is 

equal to 0 to N the recursive expression. Now, from this we can draw a diagram and see 

how this quantity is computed. 
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So, if k comma q is computed by F k minus 1 comma 1, F k minus comma 0, F k minus 

1 comma 1, F k minus 1 comma 2 and so on F k minus 1 comma N and on this, we have 

the probability S 0 to S q on O k probability of S 1 to S q on O k and probability of S n to 

S q on O k. So, how this will be computed is as follow, we get this F values multiplied 

them, by the transition quantity here and sum up all these products to we have finally, 

obtain F k comma q. 

So, F k comma q is obtain from F k minus 1, 0 F k minus 1, 1 F k minus 1, 2 up to F k 

minus 1, N. So, there are these N computation of F and each is multiplied by this 

transition and finally, everything is summed up, so we can see that at every stage we 

have N computations. Now, F k minus 1 0 can again be computed as follows, F k minus 

2, 0 F k minus 2, 1 F k minus 2, 2 up to F k minus 2, N what are the probabilities on 

these arts. 

The probability here would be p S 0 to S 0 on k minus 1 observation, this will be p S 1 to 

S 0 with order k minus 1, with observation k minus 1 this will be p S 2 to S 0 with 

symbol k minus 1 and so on. 
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So, as we develop this tree we will finally, have a situation where we were computing F 

0, 0 F 0, 1 F 0, 2 up to F 0 N and these are used to compute F 1 0 then F 1 1, F 1 2 up to 

F 1 N, alright. And these quantities, which are the boundary conditions really these are 

nothing but p 0, p 1, p 2, p n and these are nothing but initial probabilities. So, the 

boundary condition is the initial probability, these are the terminations points for the 

recursion. 

So, from F 0, 0 F 0, 1 F 0, 2 F 0, N which in turn at the initial probabilities, we can 

compute F 1, 0 F 1, 1 F 1, 2 up to F 1, N. We can see the probability on any art here, the 

probability here for example, it would be this p S N 2 to S 2 on symbol O 1, so this is the 

probability. So, this probability is known these probabilities values are also known, we 

multiplied them and at each note we perform a some of these lower probability values or 

probability values, so we have these probabilities values. So, this is quite easy to see that 

forward probability can be computed in linear time. 
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So, the complexity of forward probability calculation is nothing but number of states into 

length of observation sequence. So, number of states into length of observation sequence, 

we can similarly compute the backward probability which we will see in the next class. 


