
Natural Language Processing 
Prof. Pushpak Bhattacharyya 

Department of Computer Science and Engineering 
Indian Institute of Technology, Bombay 

 
Lecture - 18 

HMM, Viterbi, Forward Backward Algorithm 
 

Today, we will concentrate on the algorithmic aspects of HMM. Our focus will be on, 

how we can actually use the hidden Markov model for the purpose of tagging a 

sequence, labeling a sequence, doing different kinds of machine learning tasks, which 

depend on probabilistic techniques, so we continue with the discussion. 

(Refer Slide Time: 00:47) 

 

And we have seen in the last class that, the hidden Markov model is defined by a set of 

states S where, the number of states is equal to n. The output alphabet O, where the 

number the number of output alphabet is K, there is transition probabilities a ij. The 

meaning of a ij is the row column combination i and j, it is a table after all and the value 

they indicates the next state for a particular state. The emission probabilities is associated 

with the output symbols and the initial state probabilities are pi and the complete 

machine is defined by the initial state probability, the output probability and the 

transition probability. 



(Refer Slide Time: 01:42) 

 

Now, there are two very important properties of Markov processes, on which the theory 

of hidden Markov model rests. The first properties that of limited horizon, so this says 

that, given previous t sates, a state i is independent of preceding 0 to t minus k plus 1 

states. This is expressed mathematically as follows, the t th states is equal to i, 

conditioned on the fact that, they are having the states X 0, X 1 upto X t minus 1, this is 

equal to the condition probability X t equal to i, given that previous k states are X t 

minus 1, X t minus 2 up to X t minus k. 

So, this shows that, beyond k states which come before the t th state, we can ignore 

everything, so this is the limited horizon or window property. And since k states, 

previous states determine a particular state, we call this Markov process or k Markov 

process and these possibly is the most important property about the Markov process. The 

time invariance property, we show it only for k equal to 1 says that, the dependence of 

the t th state on t minus 1 th state that means, the dependence of a particular state on the 

previous state is same everywhere. 

That means, over the whole sequence, wherever we have X t preceded by X t minus 1, 

the states being i and j, this probability will not change from place to place over the 

sequence. Why is it called time invariance, we should remember that hidden Markov 

model was inspired by processing of speech signals and online speech has an association 

of time with it. At every time instant, we sample a part of the speech signal and that is, 



some kind of a wastage of that previous state or affairs, in which hidden Markov model 

is discussed. Now, we are essentially concentrating on sequences, this sequences may or 

may not be synchronized with time. But, what is important is that, there is a sequence 

and the time invariance essentially says that, at this probability is position invariant. This 

conditional probability has changed from place to place over the sequence. 

(Refer Slide Time: 04:28) 

 

So, the three basic problems given in the HMM are the following, first problem is 

likelihood of a sequence. So, given a output sequence, what is the probability of the 

sequence, so there is a forward procedure for this and there is a backward procedure, 

which we will see very soon. Problem 2 is the best state sequence probability, this the 

famous viterbi algorithm, which we did last time, we will mention this once again. And 

problem 3 is the re estimation problem, where the algorithm is called to Baum Welch 

algorithm or forward backward algorithm. 

So here, the problem is to get the parameters of the HMM which are nothing but the 

transition output probabilities. And we know that, for a order 1 Markov process, the 

transition in output probabilities can be combined and a probability can come on the arg 

of the machine. So, these are the three problems and we will be concerned with, how to 

solve these problems algorithmically. 



(Refer Slide Time: 05:31) 

 

Now, there is a term introduced probabilistic inference, here the observation sequence O 

is given and the state sequence S is to be found out. So, given O, we need to find out a S 

star where, S star is a arg max p S O, given O called the probabilistic inference. Now, we 

call this inference, because we are inferring the hidden state sequence from the observe 

sequence, so this is also called inference. And we have another kind of inference coming 

from the domain of logic, predicate calculus and proposition calculus. So, here we find 

that, the logical inference is based on the logical expressions and their operators there 

and their inferences. So, let us write down some of the differences that exists between 

probabilistic inference and the logical inference. 

(Refer Slide Time: 06:45) 



 

So, as we write we can see that, we are putting down probabilistic inference on one side 

and logical inference on the other side. Probabilistic inference first of all numerical, 

logical inference is a symbolic, here we work with numbers and here we work with 

expressions. Inference rule like modus ponens, here the inference rule is typically an arg 

max expression. 

(Refer Slide Time: 07:26) 

 

We continue these differences, probabilistic inference and logical inference, so we have 

laws of probability, here we have laws of Boolean algebra. We have axioms of 

probability, here we have axioms of Hilbert, for example in propositional calculus. Here, 

soundness consistency completeness are important, here on the other hand no concept of 



soundness or completeness. So, this is the way it goes, we distinguish between 

probabilistic inference and logical inference. 

(Refer Slide Time: 08:35) 

 

So, we continue with the slides and the probabilistic inference is to be done from arg 

max competition. 

(Refer Slide Time: 08:41) 

 

Some very essential facts about hidden Markov model, which we described last time, but 

we reiterate them in a form of a summary of points. So, Markov plus Naive Bayes is a 

very powerful idea, very frequently used in artificial intelligence, planning, mission 



learning, natural language processing and so on. The hidden mark of model uses both 

transition and observation probability, when it is of order 1, k is equal to 1 and the 

probability of going from the state S k to S k plus 1 on symbol O k is equal to actually, p 

O k given S k into p S k plus 1 given S k. 

So, this notation is very elegant, very easy to be understood by human beings, but it is 

mathematical foundation is this, that it is a product of two conditional probabilities, O k 

given S k and S k plus 1 given S k. This whole thing you can see, can be written as 

probability of O k comma S k plus 1 given S k. So, the condition variable is S k and the 

condition variable at 2 O k, the output symbol and the next state, S k plus 1. So, these 

particular thing when the order is k equal to 1, this effectively makes hidden Markov 

model a finite state machine with probability. 

(Refer Slide Time: 10:13) 

 

The probability of the observation sequence is p O, you can very easily see cannot be 

computed from the transition table and the observation table directly. This p O suppose, 

you are playing a chain rule, the chain rule will give you p O 1 given the O 2, p O 2 

given O 1 p. So, it will first p O 1 into p O 2 given p O 1, let me write it down for clarity. 



(Refer Slide Time: 10:39) 

 

So, p O is equal to p O 0 into p O 0 given O 1 into p O 2 given O 1 O 0, into p O 3 given 

O 2 O 1 O 0, into p O 4 given O 3 O 2 O 1 O 0 and so on, until p O k given O k minus 1, 

O k minus 2 upto O 0. So, this probability sequence which is found by the application of 

chain rule is not very useful, because no probability table either transition or observation 

gives us these parameters, they need to be computed some way. 

(Refer Slide Time: 11:32) 

 

So therefore, what is done as we see on the slide, is that p O is written as p O comma S 

submission over S that means, S is the introduce variable, this process is called 



marginalization. This is the marginal variable S, we attach this with the O and S can take 

all possible values, we sum them up and this is equal to the probability expression shown 

here. Now, this is a very powerful operation from probability, which is useful throughout 

machine learning AINLP and so on, namely the process of marginalization. 

(Refer Slide Time: 12:16) 

 

So, let us remember two things, which I would again like to write, in NLP machine 

learning, two probability laws which are very very useful are, one chain rule which is P 

X 1, X 2 upto X k is nothing but P X 1 into P X 2 given X 1 into P X 3 given X 2 X 1, P 

X k given X k minus 1 X k minus 2 upto X 1. This is the first rule which is very 

important and the second rule is marginalization where, we can say P A is equal to sigma 

P A comma B 1, B 2 upto B n and all B 1, B 2 upto B n take all possible values. So, these 

two rules are extremely important in machine learning natural language processing and 

we have to make use of them often times. 



(Refer Slide Time: 13:44) 

 

So, we proceed further now and we continue with the urn example, which was discussed 

in the last class. So, if you remember, we had three urns urn 1, urn 2 and urn 3, these are 

three containers, they have distributions of red, green and blue balls within them. So, urn 

1 for example, contains 30 red 50 green and 20 blue balls, urn 2 contains 10 red 40 green 

and 50 blue balls, urn 3 contains 60 red 10 green and 30 blue balls. So, this is the way the 

urns are organized, so to say, with the balls inside them of different colors. 

(Refer Slide Time: 14:30) 

 



And we know, that the probability of going from one urn to another, one of the urns in 

the row to a urn in the column is given by these numbers. So, the probability of going 

from urn U 1 to urn U 2 is 0.1, from U 1 to U 2 0.4, U 1 to U 3 0.5, this is the way these 

probabilities are organized. Similarly, probability of going to U 1 from U 2 is 0.6, 

coming back to U 2 is 0.2, coming to U 3 is 0.2 and so on. These are transition 

probability, observation or output probabilities are functions of their states only. 

So, the probability of drawing a red ball from urn 1 is 0.3, because 30 percent of the balls 

are red, that of drawing a green ball is 0.5, that of drawing of blue ball is 0.2. Now, 

suppose, we have these observation sequence, we had a red ball, followed by another red 

ball, green ball, green ball, blue ball, red ball, green ball and then again red ball. Now, 

our question is, what would be the most probable urns sequence, which produce this and 

how do you know the best possible urn sequence in terms of probability. We have to 

compute it from the transition probability and the observation probability. 

(Refer Slide Time: 15:57) 

 

So, the diagrammatic representation for the transition table probabilities and observation 

probabilities is this, U 1 can come back to U 1 with 0.1 probability, these are transition 

probability. U 1 to u 2 is 0.4 these are transition probability, U 2 to U 3 is 0.2 which is 

shown on the arg. Similarly, from U 1 obtaining the red ball has the probability is 0.3, 

obtaining green ball has probability 0.5, obtaining a blue ball 0.2. So, these are 



observation probabilities from each state and the transition probabilities are between the 

states. 

(Refer Slide Time: 16:39) 

 

Now, from our mathematical treatment last time where, we applied chain rule, applied 

Markov assumption, applied base theorem. Applying all these, we could group terms 

together and we could see that, we did not show the observation probabilities anymore, 

rather we can observe them into the transition probabilities. And we see that, this U 1 to 

U 1 with red ball, green ball and blue ball have this probabilities, this probabilities are 

found by multiplying the transition probability from U 1 to U 1 and the probability of red 

ball coming from U 1 or a green ball coming from U 1. 

So, these probabilities are multiplied, which is a consequence of base theorem Markov 

assumption and chain rule and so on and then the whole probability of observation is 

combined with transition probabilities to give these picture. We consider this state 

transition diagram has only probabilities with respect to the observations marked on the 

args, so this is like a finite state machine and has these probabilities marked on this. 

And actually you can see that, these particular situation of three values coming on an arg 

is actually equivalent to three args coming back to U 1, U 1 to U 1 on arg U 1 to U 1 on 

G, U 1 to U 1 on B. So, these are actually three urns similarly, there are these three args 

for R, G and B and so on. So, we have got this transition, got this probabilistic finite state 

machine which is actually a hidden Markov model. Let us remember, once again that, it 



was possible to draw this machine, because of the Markov assumption. The fact that, any 

state depends only on the previous state, this automated cannot be drawn in the way 

shown if the dependence of state is on previous two states. 

(Refer Slide Time: 18:43) 

 

Now, we have see that, this is our observation sequence, R R G G B R G R and the states 

are S 1, S 2, S 3 upto S eight. Each S i can take either U 1 or U 2 or U 3 as the value, S is 

the state sequence, O is the observation sequence, now S star is the best possible arg 

sequence. 

(Refer Slide Time: 19:05) 

 



Now, the goal is to maximize P S given O where, S is the state sequence and O is the 

observation sequence. Now, the mathematical expression for this is S star is equal to arg 

max of P S given O where, it varies over S. 

(Refer Slide Time: 19:22) 

 

The Baye’s theorem is applied on this and P A given B is nothing but P A into P B given 

A into P B where, P A is prior, P B given A is likelihood. And arg max expression now 

becomes P S given O is equal to nothing but arg max P S into P O given S. 

(Refer Slide Time: 19:44) 

 



The state transition probability can be used for simplifying this expression P S, 

computing P S, P S is P S 1 to 8, this is equal to P S 1 into P S 2 given S 1, P S 3 given S 

2 S 1, P S 4 given S 3 S 2 S 1, P S 8 given S 7 to S 1. By Markov assumption where, k 

equal to 1, P S equal to P S 1 into P S 2 given S 1, P S 3 given S 2, P S 4 given S 3 upto P 

S 8 given S 7. 

(Refer Slide Time: 20:19) 

 

The observation sequence probability can be found as P O given S is equal to P O 1 

given S 1 to 8, P O 2 given O 1 and S 1 to 8, P O 3 given O 1 to O 2 given S 1 to 8, P O 8 

given O 1 to O 7 and S 1 to S 8. Now, we assume that, a ball is drawn independent of any 

other draw or any urn that is not it is own urn, so P O given S can be written as P O 1 

given S 1, P O 2 given S 2 upto P O 8 given S 8. So, P S given O can finally be written as 

P S 1 into P S 2 given S 1 upto P S 8 given S 7 multiplied by P O 1 given S 1 into P O 2 

given S 2, P O 3 given S 3, P O 8 given S 8. 



(Refer Slide Time: 21:16) 

 

Now, at this stage, we introduce the states S 0 and S 9 as initial and final states 

respectively, so S 0 is the initial state within epsilon output or input and S 9 is the final 

state. So, from S 0, the system goes to S 1 with the output of epsilon, so we have here P 

S into P O given S as P O 0 given S 0 into P S 1 given S 0, P O 1 given S 1 into P S 2 

given P S O 2 given S 2, P S 3 given S 02 and so on. And this way, we can arrange a 

terms and group them together and after a state, the next state is P S 9, so P S 9 given S 8 

is 1 therefore, we are not changing the equation at all. And P O naught given S naught 

also it is fine, because it is value is always 1 and P S naught is again 1, so P S 1 given S 

naught also can be written. 



(Refer Slide Time: 22:22) 

 

Now, after grouping up these terms and introducing these notation here, P O k given S k 

into P S k plus 1 given S k is P S k going to S k plus 1 with symbol O k. So, here what 

happens is that, the whole transition probability and observation probability, all these are 

combined and the whole observation sequence and the states sequence can be looked 

upon as a finite state machine, which states S O to S 9 and on each arg we have the 

symbols epsilon R R G G B R and G R. This is actually the observation sequence and 

our goal is to find out the best possible state sequence or the best possible urn sequence. 

(Refer Slide Time: 23:12) 

 



So, now that we know that, this finite state machine with probabilities is in place, we can 

make use of this tree diagram, which expresses the famous viterbi algorithm for the urn 

problem. Here, we show the tree only for the first two symbols, the tree gets further 

developed as more and more symbol is coming. So, our first symbol is epsilon, second 

symbol is a R, third symbol is another R, fourth symbol is G and so on, so the tree will 

gradually grow. 

Now, as you can see on the tree from the initial state, the three possibilities are U 1, U 2 

and U 3. Similarly, from U 1 you have three state, U 1 U 2 and U 3, from U 2, U 1 U 2 U 

3 and U 3 again U 1 U 2 U 3. So, if this is the way the tree is grown then let us see how 

much of calculation is required. Let us write it down on paper and see, how much of 

calculation we need. 

(Refer Slide Time: 24:16) 

 

So, from S 0 we have U 0 U 1 U 2 epsilon symbol, from U 0 again U 1 U 2, from U 1 

you have U 1 U 2 U 3, from U 2 again U 1 U 2 U 3, from U 3 U 1 U 2 U 3. From here, 

again three children U 1 U 2 and U 3 and so on until at the last child we have again, U 1 

U 2 U 3 and here, the symbol was R, another symbol is R here. So, if we grow the tree 

this way, suppose the observation sequence length is now 9 in our case, this is epsilon 

plus R R G R so on, 9. So, after epsilon, we have R level, after R we have second level 

and after third, we have the third level. So, at each level, we multiply the number of node 

in the previous level by 3, so first level, at the 0 th level we have only one node S 0. At 



the first level, we have 3, so 3 to the power 0, 3 to the power 1, here we have 3 to the 

power 2, here we have 3 to the power 3. So, after the final symbol, we will have 3 to the 

power 9 nodes at the leaf, so we can say that, complexity without any restriction is equal 

to the number of states to the power length of the observation sequence. So, number of 

states to the power length of observation sequence, so states to the power observation 

sequence length. So, this is a enormous complexity, exponential in the length of input in 

absence of the Markov assumption and viterbi. 

(Refer Slide Time: 26:44) 

 

However, we see on the slide that, this will not be the case, this is the main point of the 

viterbi algorithm. Because of the Markov assumption, any state will depend only on the 

previous state. So now, we start with S 0 go to U 1 then go to U 1, so this sequence is U 

1 U 1 and the probability here is 0.03 into 0.5, which is 0.015. The probability at this leaf 

is 0.5 into 0.08, which is 0.04, at this leaf the probability is 0.5 into 0.15, which is 0.075. 

Here, the sequence is U 2 U 1 and the probability is 0.6 into 0.3, which is 0.018 and so 

on. So, we compute the probabilities of the sequences by multiplying the probabilities, 

which are obtained here. Now, these probabilities where do they come from, these 

probabilities actually are given by our transition table. 



(Refer Slide Time: 28:09) 

 

This probability you want to U 1 to U 1 R, we have already seen it in one of the previous 

slides, which is this slide you see. So, U 1 to U 1 on R is 0.03 similarly, U 1 to U 2 on 

green is 0.24, so we have recorded all these in the viterbi tree. 

(Refer Slide Time: 28:27) 

 

So, R is a symbol here and everything has to be with respect to R, so U 1 to U 2 on R is 

0.08. So, these things are recorded here, now why is it we can multiply these 

probabilities, how can we multiply these probabilities, so let us look at the mathematics 

for this. 



(Refer Slide Time: 28:57) 

 

So, if I take apart of the tree S 0 and we have U 1 again U 1 and this is on epsilon 0.5 and 

on R, 0.03. This probability of U1 U 1, which is a probability recorded here 0.15, we are 

saying is nothing but 0.5 into 0.03 which is 0.015. So, the question is why, why cannot 

we multiply these probabilities, the reason is that what is the quantity measured here, the 

quantity which is measured here is p U 1 U 1, p U 1 U 1 sequence on R, on epsilon R. Or 

in other words, this particular probability is nothing but probability of U 1 U 1, the state 

sequence U 1 U 1 given epsilon R. 

So, this is nothing but the probability of U 1 U 1, it should be S 0 U 1 U 1 this is nothing 

but probability of epsilon given S 0 into probability of U 1 given S 0, probability of S 0 

into probability of R given U 1 into probability of U 1 given U 1. By applying Markov 

assumption, base theorem, etcetera and that is why, this probability comes out to be the 

product of the probabilities on this R. So, we are correct in multiplying these 

probabilities values. 



(Refer Slide Time: 30:50) 

 

So, proceeding further, as we look at the slides, now we do the most important step in the 

viterbi algorithm. We notice, which are the sequences which ended U 1, here is a 

sequence which ends in U 1, this is S 0 U 1 U 1 and this is S 0 U 2 U 1 and S 0 U 3 U 1. 

Now, we take all these three sequences and find out, which probability is the highest, 

amongst all this sequences which ends in U 1. So, this probability is 0.015, this is 0.018, 

this is 0.036. 

So, all those sequences which end in U 1, amongst them this is the winner sequence, so 

the sequence U 3 U 1 has the highest probability amongst all those sequences, which 

ended in U 1. So, what u will do is that, we will cancel out these particular node and this 

particular node, because later also when we introduce their children, the child of U 1 here 

will be U 1 U 2 U 3, here again it will be U 1 U 2 U 3 and again here will be U 1 U 2 U 

3. 

Now, you see everywhere will be multiplying the probability of U 1 given U 1 or 

probability of U 2 given U 1 or probability of U 3 given U 1. So, the same quantity we 

multiply to these subsequent probabilities and these sequences will never be able to 

overcome the values obtained under the sub tree here. So, everything that is the subtree 

of U 1 here and U 1 here will always be less than the strings produced under U 1 here. 

Therefore, there is no point advancing these notes, because they will never be the winner 

sequences. 



Therefore, we will only survive the node here, similarly out of all those sequences which 

end in U 2 will survive only this node, others have no chance of winning later. And for U 

3, this will be the surviving node, because this U 3 and this U 3 here, their probabilities 

values are less. So, out of these n nodes, only three will survive and we only develop 

those three, so that three nodes here this one, this and this one. So, again they will be 

advanced and they will produce 9 nodes, again we will pick up those sequences, which 

end in a particular state U 1 U 2 or U 3 and only survive them. So, at every stage, we 

keep only three nodes for further development and therefore, at the end of the 

observation sequence, we will have only three nodes at the leaf level. Prior to that, we 

had three nodes again, prior to that again three, so the total number of nodes in these tree 

will be 3 into 8. 

(Refer Slide Time: 34:12) 

 

So, what we find here is that, we have a tremendous amount of complexity saving, 

because of viterbi complexity comes down from S to the power O to S into O. 



(Refer Slide Time: 34:36) 

 

So, from exponential to linear and the reason, why this happens the reason for 

complexity degradation, reason for complexity reduction is viterbi, which is based on 

dynamic programming. And the key element is the Markov assumption, because of 

markov assumption what happens is that, a state depends only on the previous state and 

in S sequence, we find that only those sequences which end in a particular state, amongst 

them only one of them needs to be retained. 

So, this is a very important idea in artificial intelligence, statistical natural language 

processing. Viterbi algorithm is an old algorithm, independently discovered in the 

1960’s, 1970’s in many different branches of electrical engineering and even economics 

and what we find is that, this also has application in statistical natural language 

processing. 



(Refer Slide Time: 35:46) 

 

Now, we will see that, this viterbi algorithm can be implemented quite elegantly by 

making use of some important data structures. 

(Refer Slide Time: 36:01) 

 

So, the same theory works when we have a Markov process of order greater than 1 say, 

the order is 2, the observation sequence remains the same, epsilon R R R G G B R G R, 

which we call O 0, O 1, O 2 upto O 8 and the state sequence is S 0, S1, S 2, S 3 upto S 8. 

If final state S 9 is introduced to signify termination and again we can do these 

application of base theorem and grouping of terms. So, P S into P O given S is P O 



naught given S naught into P S 1 given S naught into P O 1 given Ss 1 into P S 2 given S 

1 S naught, P O 2 given S 2 into P S 3 given S 2 S 1 into P O 3 given S 3 into P S 4 given 

S 3 S 2. So, see how, the conditioning part now involves two states, instead of only one 

state and O naught is nothing but the epsilon transition. P O naught given S naught will 

be 1, P S 9 given S 8 and S 7 will be equal to 1, P S naught given P S 1 given S naught is 

the initial probability, so this is the Markov process of order greater than 1. 

(Refer Slide Time: 37:27) 

 

And the adjustments which are meant to the basic theory are the following, the transition 

probability table will have tuples on rows and states on columns. Now, since every states 

depends on previous two states, our transition table will not have U 1 U 2 U 3 on the row 

and columns U 1 U 2 U 3, on instead it will have U 1 U 2 U 3 on the column signifying 

the next 8, but the rows would be tuples U 1 U 2 U 1 U 2 U 2 U 3 U 3 U 1 and so on. 

So, the transition probability table will have tuples on rows and states on columns, so if it 

is a Markov process of order k, the tuples will be k tuples on the rows. Output probability 

table however, will remain the same, because the output probability depends upon only 

on the state of itself. In the viterbi tree, the Markov process will take effect from the third 

input symbol, after epsilon R R before that, we will not be able to eliminate any of the 

nodes. 

After these three symbols epsilon and R R, there will be 27 leaves, out of which only 9 

will remain, sequences ending in same tuples will be compared. Why only 9 out of 27 



leaves will survive, because sequences ending in the same tuples will be compared. 

Instead of U 1 U 2 and U 3, we will have to compare sequences which end in U 1 U 1, 

all those sequences which end in U 1 U 1, so there will be three such sequences. 

Similarly, all the sequences which end in U 1 U 2 and the one with the highest 

probability will be retrained. 

Then, such tuple is U 1 U 3, will look at all the sequences which end in U 1 U 3 and only 

the sequence with the highest probability will be retrained. And this is the way it will go, 

finally there will be 9 nodes out of 27, which will survive and these nine will be again 

advanced giving rise to another 27 nodes, again we will look at these ending tuples and 

retain nine nodes out of this. So, when we do it this way, the complexity you can see will 

be the S square into length of the input symbol. So, the complexity will increase as per 

the Markov process order which is k and k will be the exponent of the states. 

(Refer Slide Time: 40:02) 

 

Now, to illustrate the implementation of this veterbi algorithm, we take much simpler 

probabillistic finite state machine. We have two states S 1 and S 2 here and the two 

symbols are a 1 and a 2, the state S 2 goes to S 1 on symbol a 1 and the probability of 

that happening is 0.01. So, probability of S 1 to S 1 on symbol a 1 is 0.1, probability of S 

1 to S 1 on symbol a 2 is 0.2, probability of S 1 to S 2 on symbol a 2 is 0.4, probability of 

S 1 to S 2 on symbol a 1 is 0.3. 



Let us remember that, these probability values are actually combination probabilities, is a 

product of observation probability given a state into transition probability of a state given 

the previous state. So, here is the question is, what is the most likely state sequence given 

output sequence, the output sequence which is seen is epsilon a 1 a 2, a 1 a 2, once again 

epsilon a 1 a 2 and then again another a 1 a 2. 

(Refer Slide Time: 41:09) 

 

The tree did not fit in the last slide, so two slides have been taken. 

(Refer Slide Time: 41:17) 

 



And the observation sequences is epsilon a 1 a 2 a 1 a 2 or in other words, just a 1 a 2 a 1 

a 2. So, the start state is epsilon and these state goes to S 1, S 2 is not the initial state, so 

therefore, their transition probability is 0. So, we have 1.0 here, this happens in epsilon 

then from epsilon on symbol a 1, we will go to state S 1 or S 2. The probability of S 1 to 

S 1 on the symbol a 1 is nothing but 0.1 and that from S 1 to S 2 on symbol a 1 is 0.3. 

After that, we have advanced S 1 and S 2 and the probability of the subsequence is S 1 S 

1 is noted here, which is 0.1, here the probability of the subsequence S 1 S 1, S 1 S 2 is 

0.3. Now, when we advance the nodes, here S 1 goes to S 1, S 1 goes to S 2 and the 

symbol here is a 2 and here out of these four nodes, which are the ones we retain. So, 

you can see this S 1 S 1, this sequence S 1 S 1 S 1 ends in S 1, this sequence S1 S 2 S 1 

ends in S 1, this is S 1 S 1 S 3 S 2 which ends in S 2, this ends in S 2. So, amongst those 

sequences ending in S 1 we retrain these, because this probability 0.09 is more than the 

other segments probability 0.02. Similarly, here we retrain S 2 here, these two nodes are 

discarded, they will not be expanded. 

(Refer Slide Time: 43:03) 

 

Advancing the tree, we have S 1 S 2, probabilities are 0.09 and 0.06, we see another a 1, 

S 2 is advanced this way with S 1 and S 2. S 1 is advanced, S 1 and S2 the sequence 

probability are 0.009, 0.027, 0.012, 0.018. So, amongst them we retain again this node 

and this node, because this sequence probability is ending in S 1, is less than the 

sequence probability ending in S 1 here. Similarly, the sequence probability S 2 here is 



more than the probability sequence probability S 2 here. So, we have these two nodes 

surviving, the final symbol is a 2 and when we advance these again, we get S 1 S 2 S 1 S 

2 here and this becomes the winner node. When we follow it backward then we get the 

sequence of states S 1 the final state, the previous final state is S 2, previous state is S 1. 

(Refer Slide Time: 44:12) 

 

The state previous to that is S 1 and then another S 1, so S1 S 1 S 2, S 1 S 1 S 2 and then 

again another S 1, this is the best possible state sequence. 

(Refer Slide Time: 44:31) 

 



So, this whole thing can be simulated by tabular representation, which is equivalent to 

the tree. And these table representation is the data structure, which is useful for 

implementing the viterbi algorithm, this we will see in the next class. 


