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We have been discussing modeling of frequency response functions and the role played by 



damping models in doing that exercise, so we are dealing with linear damping models and we 



broadly classify the damping models as being viscous or structural and within each of these 
groups we have classical and non-classical models. The classification into viscous and 
structurally something to do with the way the energy dissipated in a cycle behave as a function 
of frequency, and the classification into classical and non-classical depends upon whether the 
un-damped normal modes uncouple the equation of motion or not. In a classical damping model
the un-damped normal modes diagonalize the damping matrix, whereas in non-classical 
damping models that won't happen. 



So we discussed the problem of finding frequency response function for viscously damped 
multi degree freedom system, so if we drive the S degree of freedom by a unit harmonic force 
we have shown in the previous lecture that the matrix of frequency response functions can be 
evaluated either directly by inverting this matrix, the so called dynamic stiffness matrix or we 
can evaluate in terms of un-damped normal modes and we get this as a summation.

Now we also discuss few issues about truncation of this series so if we omit the first M1 modes,
M1-1 modes and the last M2 + 1 to the N number of modes this will be the kind of 
representation and these two terms here and here provide the corrections for omitting the 
contributions from normal modes, which have not been included in this summation so we 
discussed this in the previous lecture. 



Now we will address few points before we move on to discussion on non-viscously damped 
systems, so let us ask the question how do we determine damping matrix given modal damping 
ratios in viscously damped systems, so let’s consider a N degree of freedom classically and 
viscously damped system the governing equation will have this form F (t) is excitation and X 
(0) and X dot (0) are the specified initial conditions. So we introduce the transformation X = 
Phi Z, where Phi is the matrix of un-damped normal modes which have been normalized so that
Phi Transpose M Phi is I, and Phi Transpose K Phi is the diagonal matrix of the eigenvalues 
which are the squares of natural frequencies. 

Now this leads to set of uncoupled equations in the new coordinate system which is a family of 
single degree freedom systems and we discussed how to evaluate the initial conditions without 
inverting the Phi matrix. Now the C bar be the diagonal matrix of the model bandwidths or 
these terms 2 ETA N, Omega N. Now the question is if I provide C bar how do I get C, you will
see later in the course that we may like to integrate these equations directly and in which case I 
need C matrix whereas the damping modal may be in terms of modal damping ratios, so the 
question we are asking is given the modal damping ratio is how do we construct a special 
damping model, this is a modal damping model I want a special damping modal, so clearly C 
bar is Phi Transpose C Phi, so if you have a full square matrix for the modal matrix you can 
directly evaluate this by inverting, so you need to invert 2 matrices, Phi Transpose and Phi so in
principle this is possible but in practical situations, first of all we don’t like to invert matrices, if
we can help avoiding that we would be happy to do so. Secondly more importantly we will not 
be evaluating Phi as a square matrix, we will not be evaluating all the modes that are possible in



a given discretized system, we may be focusing on only first few modes in which case Phi will 
be a rectangular matrix, the number of rows will be equal to degree of freedom but number of 
columns will be equal to the number of modes that you want to include in the analysis, so in 
which case using this formulary will not be feasible. 

So now how do we proceed, so what we can do is there is a simple way of overcoming this 
problem suppose if I consider the orthogonality relation I as Phi transpose M Phi, now I can 
post multiply by Phi inverse, so Phi inverse will be Phi transpose, I’m post multiplying Phi 
transpose M Phi, Phi inverse, now Phi Phi inverse is identity matrix so therefore Phi inverse is 
Phi transpose M. Similarly if I pre multiply by Phi transpose inverse I will get this which is M 
Phi, so for Phi inverse and Phi transpose inverse I can use these representations and I can get 
the damping matrix without inverting the fee matrix or its transpose, so this is a simple way of 
evaluating the damping matrix. 



Now another question is what happens if natural frequencies repeat, it is not very unusual if 
structure is symmetric in a geometric sense the eigenvalues can repeat, for example a square 
plate if you look at normal modes what is a normal mode in X Direction would also be a normal
mode in Y direction, suppose I am talking about a square plate suppose all round simply 
supported if one of the mode shapes in this direction is this the same mode shape will also be 
possible in the other direction, so therefore the same eigenvalue there will be two eigenvectors 
so how do we deal with such situations, so we will return to this later but we will now consider 
a simple example artificially constructed example where we can see that the eigenvalues repeat,
so the system has three masses and a set of springs so the data is that all springs are having 
same value K, all masses have the same value M, and all dampers have same matrix C. 

So now the mass matrix will be this, stiffness matrix will be this, and damping matrix will be 
this, so the characteristic equation will be given by the determinant of K - M omega square = 0 
which is this, if we solve this characteristic equation we see that first natural frequency is K/M, 
and the second and third natural frequency square it will be 4K/M, so the second and third 
eigenvalues repeat.



Now how do we handle this in evaluation of eigenvectors and in calculating the response, so let 
us find the eigenvectors suppose if omega 1 square is K/M the first eigenvalue then to 
determine eigenvectors I go back to the original eigenvalue, statement of the eigenvalue 
problem and put omega 1, omega S, omega 1 square and I get this equation. Now in this since 
eigenvector has a free-floating constant, that means any constant multiple of an eigenvector is 
also an eigenvector, so there is a non-uniqueness to the extent of a scalar multiplier we can start 
by assuming that R1 is 1, and it implies by writing this equation that R2 and R3 would also be 
1, you can verify that so because 2 – 1 – 1 is 0, so you can see that they satisfy that, so the first 
eigenvector can be written with this normalization as 1, 1, 1. For the second eigenvalue that is 
omega 2 square by 4 KM, I write the equation for the eigenvector, we see that the equation is 
R1 + R2 + R3 = 0, so there are infinitely many solutions that are possible but what we do is we 
select deliberately only two of, only one of them so that we retain the orthogonality property, 
this eigenvalue repeats this will be the equation for the next eigenvalue also, so let us do here 
let R1 be 1, and R2 be 1, so then R3 would become – 2, so Phi 2, the second eigenvector will be
of this form.

Now let us come to the third eigenvector the governing equation is same as what it was here 
because eigenvalue is the same, so R1 + R2 + R3 = 0. Now what I do is I select now the third 
eigenvector so that it is orthogonal to both first and second eigenvector so I assume that Phi 3 
transpose is 1A and - 1 + A so then we can see that R1 + R2 + R3 is 0 so A is a free-floating 
constant, so how do we select A we can select any A as far as this equation is concerned this is 
true for any A, but what we do is we select A such that Phi 2 transpose M Phi 3 is 0, so if we



 impose that condition I get A as 0, and the third eigenvector is this, so if we now consider the 
modal matrix to be 1 1 1, 1 1-2, 1 -1 0, then we will return to this equation with a forcing on the
one of the degrees of freedom. And now if I impose this transformation and use the 
orthogonality relation for this Z1, Z2, Z3, I get these three equations, which are again couple, 
you know uncoupled and these are the generalized forces that we have to use, so we can solve 
this problem and construct back the solution using X = Phi Z, okay so that means if eigenvalue 
is repeat we can construct eigenvector so that the required orthogonality property is still 
possessed by the calculated eigenvectors. 



So a remark can be made at this stage if we consider N degree of freedom system if the nth 
natural frequency repeat R number of times, where R can be between 2 and N the eigenvectors 
associated with the repeated eigenvalues can be selected through a process of orthogonalization 
to be orthogonal to the structure mass matrix and hence also the orthogonal to the structure 
stiffness matrix, okay, so this orthogonalization procedure you have to implement if you find 
that your system has repeated eigenvalues, so this helps us to uncouple the equation. 



Now we talked about proportional damping and non-proportional damping models in the 
context of discretized system it may be useful to visit the equation for the beam vibration and 
see what is the meant by mass proportional damping and stiffness proportional damping as far 
as the beam equation is concerned, so it turns out that if you consider the beam equation we can
add, we have added now here 4 terms, this is the one, this is second, this is third, and this is 
fourth, which represents energy dissipation properties. If these energy dissipation properties are 
absent the traditional equation is Dou square / Dou X square EI, Y double prime + MY double 
prime, Y double dot = F. Now this term Nu(x) into Dou cubed Y / Dou X square Dou T is 
actually damping which depends on strain rate, and it is viscous damping. The second term is 
strain rate dependent structural damping because you see here in the denominator I have put 
omega to ensure the required energy dissipation characteristics as a function of frequency, and 
this C into Y dot is a traditional velocity dependent viscous damping, so this doesn’t depend 
upon strains, it only depends on the displacements.



Now this term is the velocity dependent structural damping, so this is how the damping 
represent terms appear if I were to write the original partial differential equation. Now if I make
now this Nu (x) to be proportional to the flexural rigidity then we get stiffness proportional 
viscous damping, if I make G(x) to be proportional to EI, I get stiffness proportional structural 
damping, similarly if C is made proportional to mass M(x) I get mass proportional viscous 
damping, and so finally if I make H(x) to be proportional to M(x) then I get velocity dependent 
structural damping. So when we discretize these equation we get MX double dot + CX dot + 
KX = F(t), but it is useful to have this insight at the original PD level, so we know what we are 
doing at the original PD level when we assume different alternative models for damping, okay.

Now let us now move on to other damping models, so we have finished discussing viscous 
classical damping systems, systems with viscous and classical damping, now we will move on 
to structural damping models and begin by discussing classical damping models, so how do we 



discuss this, so again when we are whenever we are talking about structural damping I want to 
emphasize that such models are applicable only for steady state response analysis there you 
cannot do transient analysis, no time demand analysis is applicable, so we consider N degree of 
freedom system with harmonic forcing, so this equation can be used only for the purpose of 
calculating frequency domain response, it is not a differential equation in with T as independent
variable, although it is made out to be like that so while interpreting this equation you should 
only use this only to find the frequency response function. 

Now let R-th degree of freedom be driven by an unit harmonic excitation, now we are 
interested in steady state, suppose in the steady state the response becomes harmonic Q E raise 
to I omega T, the system is linear it is being driven harmonically and we are considering steady 
state, so in steady state the system response at a driving frequency in a harmonic manner, so if I 
now substitute this into the governing equation i get this as a dynamic stiffness matrix this into 
Q is F, so if you are interested in finding the matrix of receptances or the frequency response 
function you can invert this matrix directly for every omega, okay, so these are direct solution 
to the given problem, but we are interested in finding a solution which employs normal modes 
and I want to write this as a summation, because if I use this approach for every value of omega
that I'm interested I need to invert to this matrix which can be computationally demanding, so 



the note is that determination of Q by direct inversion of dynamic stiffness matrix for every 
omega is possible, however this would be computationally intensive and does not provide 
insights into the behavior of a frequency response, it is characterless description. 

Now let Phi be the matrix of un-damped normal modes such that it is mass normalized and Phi 
transpose K Phi is a diagonal matrix of square of the eigenvalues, now we will make the 
transformation Q as Phi Z, so the usual steps if I now find the QE raise to omega T will be this 
and this will be, if I now substitute into this equation I will get in frequency domain this 
equation and if I am pre multiply by phi transpose I get this. Now if I take Phi transpose and Phi
insight I’ll get - omega square, Phi transpose M Phi + Phi transpose K Phi + I into Phi transpose
D Phi Z is the generalized force, Phi transpose F. 



Now suppose D is classical by that what I mean, the same this Phi transpose D Phi is diagonal, 
that means un-damped normal mode diagonal as a damping matrix, if that is possible then it 
follows let us call D bar as Phi transpose D Phi, so this will be Phi transpose M Phi is I, that is 
how we are normalized, Phi transpose K Phi is a diagonal matrix of square of eigenvalues 
which is capital Lambda, and this ID bar into Z is Phi transpose F, so this matrix - omega 
square I + Lambda + ID bar is a diagonal matrix now, right, so it's inversion is a simple task so 
if I right now this in the scalar form and look at the K-th term I get this as the, you know, 
expression for ZK, so this can be, since only one of the ordinates is being driven here, this 
summation collapses to a single term is a Phi RK, so this is ZK. 

Now if I go back to Q it is Phi Z, so if I’m interested in QJ, we have to sum over all the modes I
get this expression, so this quantity is the receptance as we have seen and this is given by this 
where we are now getting this without inverting a matrix as a summation, okay. Now this is 
symmetric and not Hermitian as I have been pointing out so this is the receptance function. So 
this completes the formulation for FRF for classically damped and structurally damped systems.



Now let us move on to questions about treatment of non-proportional damping, first we can ask 
the question where do you expect to get non-proportionally damped systems, typically 
whenever we have structures made up of different subsystems with different materials we can 
expect that the resulting damping matrix will be non-proportional, for example in an industrial 
building there will be soil in the foundation and there will be RCC superstructure there could be
steel piping and equipment, metallic equipment, and there could be a metallic truss, so on and 
so forth, so the entire structure consisting of soil, superstructure, the secondary systems and the 
trusses etcetera consist of several materials, okay, several subsystems, each subsystem made up 
of a different material, so for this type of systems we can expect that the damping in the system 
would be not classical, that means un-damped normal mode will not uncouple the equation of 
motion. So there would be other complicated features associated with energy dissipation at 
joints like you know you may have welded joint, bolted joints and so on and so forth, so how 
does energy dissipate at the joints, so this also could contribute to damping being non-
proportional. 



So if we now consider a system made up of NS subsystems, the system damping matrix can be 
viewed as summation I = 1 to NS CI, where NS is number of subsystems with different 
materials, CI is a contribution to the structural damping matrix from the I-th subsystem to the C
matrix. Now if I assume that Rayleigh’s type of model is applicable for each of the subsystem, 
okay I can write C as alpha A MI + beta I KI, right, this is I-th material, then even for this case 
if I now compute Phi transpose C Phi I will get this, on the right hand side I get Phi transpose 
MI Phi + Phi transpose KI Phi, but we know that Phi transpose M Phi is diagonal, it doesn’t 
mean that Phi transpose MI Phi will be diagonal, so the resulting C matrix would still be non-
diagonal, so now this leads to a few questions one of that is what is the mathematical 
framework to uncouple the equation of motion in such cases, should we use direct integration 
or direct analysis in frequency domain by inverting the dynamic stiffness or is there a mode 
superimposition type of representation possible. 

Then are there any simplification possible so that the damping remains classical and yet at the 
same time we take into account the fact that the structure is made up of subsystems with 
different materials, okay, so these two questions we will now consider and try to find answers to
these questions, so I will start by first considering viscous damping and we will focus on 



non-classical damping, so the topic now is analysis of systems with non-classical viscous 



damping, so we can start with a preliminary ideas on single degree freedom system, suppose I 
have an un-damped single degree freedom system I know that if you consider free vibration the 
equation MX double dot + KX = 0, and if you assume solution to be of this form this is 
admissible provided S satisfy this equation, where S is plus minus square root K/M, so it is plus
minus I omega, so the solution itself will be of this form this harmonic at frequency omega with
the square root K/M, this is well known.

Now if we assume that system is damping, system has damping and it is under damped then we 
again consider this equation and consider these roots to be complex conjugates this is what 
happens when damping is less than critical, so in this case the solution will be of this form, 
okay X naught and X naught dot are the initial conditions this is the decaying, the term 
contributes the decay of the solution and as you can see ETA is sitting here. Now this again I 
can write it in this form X naught bar exponential E raise to - ETA omega T cos omega T - theta
naught bar. So if you now compare this solution for un-damped system and this solution for the 
damped system, we can see that, we can see that there are couple of things that change, the 
frequency is now a damped natural frequency it is affected by damping, but a change is 
marginal, but the amplitude is now modulated by an exponentially decaying function. 



So for un-damped systems the characteristic roots are pure imaginary, motion is periodic and 
motion is sinusoidal at system natural frequency. For a damped system characteristic roots are 
complex with nonzero real parts and these roots are complex conjugates, motion is a periodic, 
and motion is exponentially decaying sinusoidal at damped natural frequency, okay, this is for 
single degree freedom system. 



Now we can ask the question what happens to multi degree freedom systems in presence of 
damping, do we get a similar features in our response. So let’s begin that discussion, we will 
consider N degree of freedom system let Q be the vector of displacements so the equation of 
motion will be MQ double dot + CQ dot + KQ is F(t) with prescribed initial conditions. 

Now for reasons that would become clear soon we augment this equation with an identity, that 
is MQ dot - MQ dot = 0, and this is a given governing equation, so we write now these two 
equations together in a matrix form as shown here, so you can see here 0 into Q double dot + 
MQ dot - MQ dot into 0Q is 0, that is your first equation, the second equation is a governing 
equation, so we are not altered the mathematical nature of the problem, we have rewritten the 
governing equation in a slightly different way. 

Now I will call now this vector Q dot Q as the state of the system at time T and denote it by Y, 
so I call Y as Q dot Q, and this 0F(t) I call it as forcing vector. Now I will introduce two 
notation, this matrix I will call as A, and this matrix as B. Now with these notations we can 
make few observations we can see that this A and B matrices are symmetric, okay, A transpose 
is A, B transpose is B, but they are not positive definite, okay, there are negative terms here and 
so on and so forth. 



Now the governing equation therefore can be now be written as AY dot + BY = F(t), so the 
original set of governing equation in the configuration space was a set of N coupled second 
order differential equations. In the state space the equations are now, there are 2N equations and
they are all first order equation, so I have now 2N coupled first order equation, A and B are now
the new structural matrices they don’t have the interpretation of being mass and stiffness and 
damping and so on and so forth, nor there is any energy is associated with A and B matrices, so 
they have some abstract meaning, and A and B are non-diagonal they are symmetric. Now the 
question we can ask is can we uncouple the set of first order differential equation, now this 
representation as I mentioned is called state space representation and this Y which is Q dot Q is 
called the system state at time T. 

Now as before what we want to do is we want to introduce a transformation Y = TZ, now T is a 
2N/2N matrix, Z is a 2N cross 1 new coordinate system, and our objective is to find T so that 
upon making this transformation in the Z coordinate system the equations become uncoupled, 
how to find this capital T? For that we will again start with the free vibration problem AY dot + 



BY = 0, and now what we will do is we will seek the solution in the form RE raise to alpha T, 
okay alpha is complex, is not pure imaginary as we used to do for un-damped system, it is now 
a complex number with nonzero real part and nonzero imaginary part. Now if I substitute into 
this the eigenvalue problem that I will get will be BR = - alpha AR, okay E raise to alpha T 
cannot be 0 for all T therefore the term inside the bracket should be 0 that leads to this 
eigenvalue problem. So this is a generalized eigenvalue problem, it’s an algebraic eigenvalue 
problem and the characteristic equation is given by determinant of B + alpha A must be equal to
0. Now this will lead to a 2N order polynomial, and it will have 2N roots which will be 
complex valued.

Now we cannot rank order them because complex number cannot be ordered so we simply list 
them as 2N eigenvalues associated with each of these eigenvalues there will be a complex-
valued eigenvector, now we can make one observation if you now consider BR = - alpha AR 
and take conjugation on both sides I will get B star, R star = - alpha star, A star, R star, but A 
and B are real valued, so B star is same as B, A star is same as A, so that would mean it will be 
BR star =  - alpha star AR star, so what does it mean, if alpha, R is an Eigen pair, its conjugate 
is also an Eigen pair, that means eigenvalues and Eigen pairs appear as complex conjugate 
pairs, okay. And the order of this equation is always E1, because I start with the N degree of 
freedom system and the state space model has two end degrees of freedom, so this will be 
always true. 



Now let us denote the eigenvalues as alpha 1, alpha 2, alpha N then their conjugates alpha 1 
star, alpha 2 star, alpha N star, similarly for the  eigenvectors I will write it as R1, R2, RN and 
then their conjugates R1 star, R2 star, RN star, now let us try to understand the nature of an 
eigenvector, so to do that lets recall that Y is made up of Q dot and Q, suppose now the system 
is vibrating in its normal mode the solution for displacement alone can be written as Phi into E 
raise to alpha T, now Q dot will be there for alpha Phi exponential alpha T, so if I now write the 
state vector in the eigenvector, when the system is vibrating its normal mode, it will be of the 
form alpha phi, phi into E raise to alpha T, because Q dot is this, and Q is this, so I can write in 
this form, so that would mean each of the eigenvector will be of this form eigenvalue multiplied
by phi and phi, okay, so the K-th eigenvector is of the form alpha K into phi K and phi K.

Now what I do is I define a modal matrix capital Sai, where I will now assemble these vectors 
R1, R2, RN and their conjugates in this order. So I have this Sai, now for each of these R1, R2 I
will write it as alpha 1 Phi 1 for R1, so alpha 2 Phi 2 for R2, and their conjugates will appear in 
the next set of terms here, so now if I introduce N/N matrix phi with phi 1, phi 2, phi n as 



columns and capital Lambda as a diagonal matrix of the N eigenvalues, then you see that the 
modal matrix in this problem has this structure, it will be of the form phi lambda phi, phi star, 
lambda star, phi star, so it is important to recognize that this structure is present in the modal 
matrix. 



Now we can now talk about orthogonality relations, so let us consider R-th and S-th Eigen 
pairs, so the eigenvalue problem for R-th eigenvalue will be BRR is - alpha R, ARR, similarly 
for S I get this equation, so lets name these equations as 1 and 2, I will pre multiply 1 by RS 
transpose, and 2 by RR transpose, so I get these equations, so first one is RS transpose BRR is 
minus alpha R, RS transpose ARR. The next equation is RR transpose BRS - alpha SR, RR 
transpose ARS, now we will transpose both sides of 4, I will get RS transpose B transpose RS, 
and - alpha S RS transpose A transpose RR. 

Now the benefit of writing the original equation in the specific form that we chose, now pays 
dividends here we know that A and B are symmetric, so A transpose is A, B transpose is B, so 



if you go back when we wrote this additional equation the way we converted this N second 
order equations to 2, and first order equation there are other ways of doing it, I will come to that
later, this way of doing ensures that these coefficient matrices are symmetric, okay, so that is 
helpful you know to consider orthogonality relation, so now since the A and B are symmetric 
this equation can be written in this form, so this is equation 5.

Now if you subtract 3 and 5, I get alpha S - alpha R is RS transpose ARR = 0, so I can demand 
that RS transpose ARR is 0 whenever R is not equal to S, if alpha R = alpha S I can still insist 
that RS and RR can be chosen so that this relation holds this is what I showed in the case of a 
repeated eigenvalue. Now once this is 0 for R not equal to S you can go back to any of these 
equations, for example here and if right hand side is 0 for S not equal to R, left hand side will 
also be this, so automatically I get this, so in the matrix form we can rewrite this, but before that
we can normalized eigenvalues so what we can do is we can select the normalization constant 
so that RS transpose ARS is 1, for S = 1, 2, 2n, so in that case what happens it will be RS 
transpose ARR will be the chronica delta, and RS transpose BRR will be - alpha R into 
chronica delta. 



So now in terms of the modal matrix that we showed while before the orthogonality relation 
with this normalization in place will be Sai transpose A Sai is I, and Sai transpose B Sai is this 
diagonal matrix. The first block has lambda and the next block is, its conjugate and the off 
diagonal terms are zeros. Now I can write the R-th eigenvalue in this form - ETA R omega R 
plus this, if we indeed do that we can see that the K-th coordinate in R-th mode will have this 
type of representation, so this is quite similar to the free vibration format of the free vibration 
solution for a single degree freedom system that we saw, so there is a connection that I want 
you to notice. 



Now let’s look at force response analysis, so I have now AY dot + BY is F(t) with these initial 
conditions and this is a forcing vector, so I make this substitution, Y is Sai Z, and I put it back 
in the original equation I get this equation. Now if I pre multiplied by Sai transpose I get this, 
now Sai transpose F let us first look at it, Sai transpose is this and F is this, so this will be then 
since there is a 0 here the structure of the generalized forcing vector will be this. Now Sai 
transpose SI is I and Sai transpose B Sai is this matrix and this is Z and this is a forcing vector. 
So I will get now for each of the Z uncoupled equation but we can write Z as 2 vectors U and V,
if I write like this you can see that these 2 equations can be written this 2N equations can be 
written in terms of a set of 2, set of 2N uncoupled equations as shown here, one for U and one 
for V. 



Now let’s consider the case when R-th degree of freedom is the driven harmonically by E raise 
to I omega T, okay, now the equation for U and V will be of this form, so F of, now if you right 
now for F(t) the summation, this summation if you expand since only one coordinate has a 
nonzero value this summation collapses to a single term, so in the ST tends to infinity UK(t) 
will be given by this, and similarly ST tends to infinity VK will be given by this, okay, now if I 



put back into the original coordinate system Y will be Sai Z, so Q dot Q is this, so Q will be Phi
U + Phi star V, so if I now right QJ in this form we can see that ST tends to infinity I get the 
expression for the frequency response function in terms of the normal modes and the 
eigenvalues and their conjugates, so this is the transfer function in terms of the model 
description, in the model domain, again we can see that this function is this is a receptance 
which is symmetric but it is not Hermitian.



Now let us consider the other case where R-th degree of freedom system is driven impulsively, 
this is a viscously damped system therefore I can talk about response in time domain also, so I 
will get now the response I mean I get the equation for U and V in this form, so the equation for
UK will be this, and equation for VK will be this, now you can see here that U and V will form 
a conjugate complex, conjugate pair, so VK(t) will be this and UK(t) is this therefore VK is 
nothing but UK conjugate, so now if I use those relations we can go back to Y coordinate 



system, Y is Sai Z, and for Sai I’m writing this and if I use the fact that U and V are conjugate 
pairs, now the impulse response function will be in terms of this, okay, again this is impulse 
response function is obtained in terms of the eigenvectors and eigenvalues, and it is real valued 
here, okay, although the eigenvalues and eigenvectors are complex valued. We can quickly go 



through a numerical illustration so let’s consider 3 degree freedom system, configured as shown
here and these are the numerical values and if I write the equation of motion for this system I 
get for the un-damped free vibration this is the equation, so we can quickly do the calculations 



because the simple problem we will consider two alternative models, one is proportional 
damping matrix with damping ratio specified for the 3 modes to be 0.01, 0.03 and 0.025, this is 
one model, and associated with this, this will be the C matrix which we can compute following 
the procedure that I outlined. 

And the second model is a non-proportional damping matrix model where off diagonal, you see
this almost similar to this except that the off diagonal terms are 0 and the diagonal terms are 
nearly you know of the same order as this, this 100, 175, 200. Now for the un-damped system 



this is a mass, this is stiffness, after we insert the numerical values, we can show that the un-
damped normal modes this is the model matrix, and this is the matrix of eigenvalues. You can 
see that Phi transpose M Phi is the identity matrix, Phi transpose K Phi is the lambda matrix 
which is same as this, squares of the eigenvalues or the eigenvalues themselves squares of the 
natural frequencies.

Now if I now consider C, that is the first case where C is proportional we can see that Phi 
transpose C Phi is a diagonal matrix, okay, so the system has these 3 damping ratios and these 3
natural frequencies and these are the complex you know roots of the characteristic equation 
which we get as this, for this problem. 



Now what I will do now is even for this case where  damping is proportional we can see now if 
I approach the formulation through A and B matrices so what happens will I get the same 
answer or will I get something different, we should expect to get the same answer. Suppose for 
the MCK damping matrices, MCK matrices that we have chosen this will be the A matrix, this 
will be the B matrix, you can see that now this is 6 by 6, these two are 6 by 6 matrices.



Now there are too many numbers here but you need to follow a few details, this Sai is the 6 by 
6 complex value eigenvector matrix, so you can see that they appear as conjugate pairs, this is 
not ordered in the way that I showed, this is output of eigenvalue solver, so I am just reporting 
the way we got the results. Now you can see here this is one eigenvector, its conjugate appears 
here, this is the next eigenvector its conjugate is here, okay, and this is this so what I mean to 
say is this is not in this form, okay, it doesn’t matter. 

Now you can quickly see that Sai transpose SI is a diagonal matrix, Sai  transpose B Sai is also 
a diagonal matrix, you must notice that Sai transpose A Sai is diagonal but it is not an identity 
matrix it has not been normalized to be a diagonal matrix, and sorry an identity matrix. 
Similarly Sai transpose B Sai is diagonal, but diagonal entries are not equal to the eigenvalues, 
okay so that you should notice.



Now the matrix of eigenvalues are shown here, and this has a square matrix and as a column it 
is shown here, so that you can see here that they are appearing as complex conjugates. Now if 
you now compare this with what the results that we got earlier, we see that we are getting the 
same results, for example the first pair of roots here is same as these roots, the next pair is this 
which is this, third pair is this, this is this, so what does it mean? That means the system is 
classically damped, so it doesn’t really matter which approach you take you will get the same 
roots.

Now how do we see the nature of eigenvalue? If you look at now the eigenvectors for the un-
damped case we can see that for this eigenvalue all the 3 degrees of freedom are in perfectly in 
phase, whereas here this is negative, this is positive, therefore the phase difference is 180 
degrees and similarly this is again phase difference is 180 degrees, so in un-damped free 
vibration all points vibrate harmonically either perfectly in phase or perfectly out of phase, 
there is no other phase difference is possible okay, the phase differences will come, occur 
because of damping but in classically damped system the question that we should ask is what 
happens to the phase difference, so if we ask that question if you look at this Sai matrix the 
question about phase difference is not, it cannot be easily answered, so what we do is we 
normalize this eigenvector so that I fix the third entry here to be 1, so you recall that the modal 



matrix is of this form so the lower half of this is on displacements and the upper half is on 
velocities, so I make the first displacement to be 1, that is a normalization you know I have the 
freedom to do that because there is an arbitrary scaling factor. 

Now consequently the eigenvectors will have this appearance, now if I look at angle associated 
with this, if I find the angle of that I get this, so now you focus on the lower half of it I see that 
the I, the phase angles are either perfect out of phase or perfect in phase, so the way the 
eigenvalues are organized you can see that the third eigenvalue here is the first eigenvalue in 
the un-damped system so you can see that all points are in perfectly in phase, for this 
eigenvalue this is perfectly out of phase with the other 2 degrees of freedom, right, so this is 
because we are using classical damped, classically damped systems, now let us go to the non-
proportional damping matrix, so the un-damped normal mode is this, now if I simply find phi



 
transpose C phi, this won't be a diagonal matrix, that is why I call this is non-classical. First you
should convince that we are dealing with a non-classical damping and so this is how we could 
quickly verify that. 



Now let us form the A and B matrices, this is again 6 by 6 matrices here and perform the 
eigenvalue analysis, this is a Sai matrix as thrown out by the eigenvalue solver without any 
adjustment of the normalization you’ll see Sai transpose ASI is again diagonal, Sai transpose B



Sai is diagonal, so then again Sai transpose ASI is not an identity matrix, and Sai transpose B 
Sai although it is diagonal, the diagonal entries are not eigenvalues, good. Now this is the



 eigenvalues written as a square matrix, diagonal matrix, I can write it as a column vector and I 
get these as eigenvalues, okay. 

Now this are damped system, so now un-damped natural frequencies are shown here, see you 
can see now there is a slight change in this number 10.691, it is 10.7074 etcetera, okay, now 



again I normalize the first degree of freedom I will arbitrarily make it as 1, okay and find the 
angles now, the moment you find angles you see something interesting happening, the phase 
differences are now nearly 0, but slightly changing, this is -0.18 degree to 1.75 degrees, 
whereas here it is not perfectly out of phase instead of being 180 degrees it is 178 degrees, 
okay, so this is how the damping influences the normal modes, that means the all points on the 
structure will now be executing a decaying harmonic oscillation, but different points will not be
in perfectly in phase or perfectly out of phase in non-classically damped system, in classically 
damped systems again in free vibration all points will be executing decaying exponentially 
decaying harmonic motions, but the motions will be either perfectly in phase or perfectly out of 
phase, but here there is a phase difference you know other than perfect in phase or perfect out 
of phase there is a slight modification to this. 

This is how the damping manifest itself in the eigenvectors, so if you are doing an experiment 
and if you measure normal modes you will always measure damped normal modes, because 
there is no magic switch to remove damping in an experimental work, in a computational work 
you can put C = 0 and find out the eigenvalues very easily but that counterpart of that in 
experimental work is not possible, so you will have to deal with damped normal modes if you 
are doing an experiment, so whenever you measure normal mode there are methods for that you
will see that there will be a slight phase differences in a lightly non-proportional damped 
system this phase angles will be clearly close to 0 or 180 degrees.



Now I have now discussed non-classical viscous damping system, now I will extend this 
formulation to structural damping with non-classical damping, so we consider the N degree of 
freedom system, this is the structural damping term which is the complex part of the stiffness 



and again I drive the R-th degree of freedom harmonically this is the only case that we can 
consider there is no transient analysis possible here, now we need to now find a transformation 
Q = TZ so that T transpose MT, and T transpose K + IDT are diagonal, okay. Now this has the 
form of MQ double dot + KQ = 0, un-damped free vibration but K is complex valued, so the 
normal mode should be orthogonal I mean the transformation matrix should be orthogonal to 
the complex valued stiffness matrix, so that is the novel feature here, so what we do? We 
towards achieving this we consider the eigenvalue problem K + ID Sai is - S square M Sai, 
okay I cannot call it as a free vibration problem here, it is a simply a mathematical statement of 
an eigenvalue problem because you cannot talk of free vibration for this problem, so the 
characteristic equation is given by this and we have N complex-valued roots and associated 
eigenvectors. 

Now you should notice now that these eigenvalues will not appear as complex conjugates 
they’re N complex numbers similarly eigenvectors are N complex eigenvectors, and N need not
be an even number, okay so this all the eigenvectors I assemble in Sai matrix and we will 
normalize that so that Sai transpose M Sai is Sai, and Sai transpose K + ID Sai is a diagonal 



matrix, okay, you can prove the orthogonality using the arguments which I have now used 
several times, you consider R and S pair and you know to go through the few steps of 
calculation you can show that these orthogonality relations are true here. 

Now you come to the force vibration problem, you make the substitution Q = Sai Z, substitute 
back I get this, pre multiplied by Sai transpose I get this. Now Sai transpose M Sai is I, and Sai 
transpose K + ID Sai is another diagonal matrix, that is a diagonal matrix of complex value 
eigenvalues as shown here, so the equation for ZK will be of this form, so I can find amplitude 
in steady state to be this, so go back to the Q coordinate system I get this and this is my 
expression for the problem, this SK is now a complex-valued number, SK square, so again we 



can consider a simple example we will have the same M and K and this is an un-damped 
normal mode matrix, and this is un-damped natural frequency is phi transpose M phi is 
diagonal, phi transpose K phi is this, so for this data now we will introduce a proportional 
structural damping model and a non-proportional structural damping model.



So let us start with case of proportional damping matrix, so I will take D to be 0.03 times K, so 
K star will be K + ID, and Phi star D phi will be this, okay, this is a mere transposition, it is not 
a conjugation + transposition, it is mere transposition that is also important to note. Now see 
un-damped normal modal matrix uncouples the equation of motion in this case, Sai is this, you 
can see phi transpose D phi, where phi is un-damped modal matrix it uncouples the damping 
matrix, so i can take Sai to be this, Sai transpose M Sai is this, sai transpose K + ID Sai is also 
this, that means even if I find complex valued Sai, the uncoupling takes place. So now we will 



scale the first eigenvector element of the eigenvector to be 1 again, again you see if I find the 
angle of Sai the phase differences are either 180 degrees or 0, so the points are still perfectly in 
phase or perfectly out of phase, because this is proportionally damped system. 

So now if I find eigenvalues for the damped system, the eigenvalues will be of this form, okay 
now un-damped system if you recall the eigenvalues obtained are this, so if you compare these 
two for a kind of notations we have used the real part of eigenvalues will be the natural 
frequencies here, okay, these 3 terms appear as a 3 natural frequencies and these are the terms 
associated with damping, so this is a classical structural damping. Now let’s consider a non-
proportional damping, 



so again I consider D to be this and K star is K + ID, quickly we can verify phi transfer D phi is 
not diagonal, so it is not a classically damped system, so now I can do a complex eigenvalue 
analysis and I get this as Sai matrix, so we can verify Sai transpose M Sai is this, Sai transpose 
K Sai is this, these are diagonal but Sai transpose M Sai is not identity this is not, this is again 
diagonal but diagonal entries are not the eigenvalues. 



So I will scale now the eigenvector so that the first element is 1, I get this as a scale Sai matrix 
and if I now compute the angle of this you see now I get phase difference of about 2 degrees 
and less than 1 degree here and 0.6 degrees and 1.8 degrees and about 4 degrees and here, so 
this is a manifestation of the role played by damping on eigenvectors. 



Now you can look at now the eigenvalues for the damped system I get this, you can see here the
real parts are again close to the un-damped square of the natural frequencies, but they are 
slightly different because of influence of damping, okay, so now if we can quickly summarize 



now what we have done is we have evaluated frequency response functions for both viscous 
and structurally damped systems by direct calculation for viscously damped system the FRF 
matrix is given by this, for structurally damped system the FRF matrix is given by this, but if 
you want a calculation based on modal superposition then you have to find the appropriate 
modal coordinates for that, so if we talk about viscously damped system with classical damping
we have shown that it is given in terms of these un-damped eigenvectors and natural 
frequencies like this, for similarly for structurally damped system is classical damping again 
with the un-damped normal modes we get these solutions. 



For viscously damped system with non-classical damping we go to that A and B matrices and 
we get now the frequency response function in terms of complex valued eigenvectors and 
complex valued eigenvalues this is how, for structurally damped system with non-classical 
damping the one that we did lost again this is summation in terms of complex valued Eigen 
pairs, so this is direct calculation, this all these are through mode superposition, so this is what 
basically I intended to demonstrate.



Now I also posed this question, we posed basically two questions when we are talking about 
non-proportional damped system, the first one was what is the mathematical framework to 
uncouple the equation of motion, this we have answered now. The other question that is 
remaining is are there any simplification possible so that a damping remains classical and at the 
same time we take into account the fact that structure is made up of subsystems with different 
materials so this takes us into damping model known as material damping model, we will 
consider that in the next lecture. So we will conclude this lecture at this point.
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