
Indian Institute of Science
Bangalore

NP-TEL
National Programme on

Technology Enhanced Learning

Copyright
1.  All  rights  reserved.  No  part  of  this  work  may  be  reproduced,  stored  or
transmitted  in  any  form or by  any  means,  electronic  or  mechanical,  including
downloading, recording,  photocopying or by using any information storage and
retrieval system without prior permission in writing from the copyright owner.

Provided that the above condition of obtaining prior permission from the copyright
owner for reproduction, storage or transmission of this work in any form or by any
means,  shall  not  apply for placing this  information in the concerned institute’s
library, departments, hostels or any other place suitable for academic purposes in
any electronic form purely on non-commercial basis.

2. Any commercial use of this content in any form is forbidden.

Course Title

Finite element method for structural dynamic 
And stability analyses 

Lecture – 05
Beam Elements. Reference system. Assembly of Matrices.

Imposition of BCS. Final equation of motion. 

By
Prof. CS Manohar

Professor
Department of Civil Engineering

Indian Institute of Science, 
Bangalore-560 012

India 

We have been talking about the development of finite element method for analyzing planar 
structures, so we will continue with the discussion. 



In the last class we outline the basic framework for finite element modeling, so if omega is the 
domain that is of interest to us we partition the domain into a set of subdomains called 
Elements, and the union of these elements approximately equals the domain of interest and 
with, this each domain is called an element, and what we do is we approximate the field 
variable that is a U(x1,x2,x3,t)  



in terms of values of the field variables at the nodes, this at a set of N nodes they are these dots 
shown here and within an element we approximate the field variable in terms of the values at 
the nodes and by using interpolation. This NIE(x tilde) are the interpolation functions.  



So the collection of these elements which approximates the domain of interest is known as the 
mesh, so this approach you know basically leads to an approximate numerical method to obtain 
solutions of problems posed as either in terms of a partial differential equation or in terms of a 
variational principle. 



Now in the last class we considered the element behavior where the element was modeled as an
actually vibrating rod element so it is a line element, these are the parameters of the element 
axial rigidity mass per unit length, length and damping and we assume that the cross section is 
symmetric, specifically we took that it is rectangular, and we identified two nodes X = 0 and X 
= L, and the value of the field variable at X = X1 was U1(t), and the value of the field variable 
at X = L was U2(t) and within this rod that the displacement field at any point X is expressed in
terms of the nodal values U1(t) and U2(t) and these two functions 1 - X/L and X/L are the 
interpolation functions. 



We showed that using Lagrange’s equation that means assuming this is a displacement field we 
can substitute this into the expression for kinetic energy and the potential energy and write the 
Lagrangian and apply the Lagrange’s equation we get the element level equation of motion as 
shown here, and this U1 double dot and U2 double dot are the acceleration vector, is the 
acceleration vector, and U1, U2 this is a displacement vector, this M which is this is the element
mass matrix, this is the element stiffness matrix, I also pointed out that we’ve use the same 
interpolation functions in computing elements of mass matrix as well as elements of stiffness 
matrix, therefore this mass matrix is called the consistent mass matrix. 



Now we will continue with this discussion and we will now consider the behavior of an element
which is modeled as an Euler-Bernoulli beam. So here we have again this is the line element 
this X and Y are the coordinate axis, and the displacement field along Y is denoted by V, V is a 
function of X and T, and we make some of the standard assumptions that are made in Euler-
Bernoulli beam theory, we are considering bending in the X-Y plane and we assume that X axis
coincides with the centroidal axis of the beam, and we also take in this study that there is no 
coupling between bending and torsion, a possibility of including this can be considered later, 
but right now we'll assume that there is no un-symmetric bending in the problem. So based on 
the standard assumption of Euler Bernoulli beam hypothesis that, for example plane sections 
which are normal to the neutral axis before bending remain plane and normal to the neutral axis
after bending, we can postulate the form of the displacement field, so this is U in terms of V and
using this we can compute the strains and that can subsequently be used in the expression for 
strain energy, and we get after a few simplifications the well-known expression for the strain 
energy due to bending. 



So IZ is the moment of inertia, area moment of inertia about the Z axis this is given here. 
Kinetic energy is mass into velocity square integral over the domain half of that and if we use 
now Rho A, integral Rho A over A that is mass per unit length we get the kinetic energy in 
terms of mass per unit length and the velocity field. 

Now based on this we can now construct the Lagrangian which is given in this expression, so 
this is a kinetic energy, this is the strain energy. 



Now to obtain a finite element discretization we will now take that the element is made up of 
two nodes and at each node the translation and the gradient that is the slope are taken to be the 
nodal degrees of freedom, this is U1 and U2(t) are the values of, U1(t) is the field variable 
displacement at X = 0, this is Dou E / Dou X at X = 0, similarly U3(t) is V(x,t) at X = L, and 
this U4(t) is Dou V / Dou X at X = L. Now this element is a 2 noded element with two degrees 
of freedom per node and it has 4 degrees of freedom. Now the displacement field within the 
element as before we are going to now express in terms of the nodal degrees of freedom U1(t), 
U2(t), U3(t), U4(t) as shown here. Here Phi 1, Phi 2, Phi 3, Phi 4 are the interpolation functions 
which we need to now select. 



Now this UI(t) for I equal to 1, 2, 3, 4 are the generalized coordinates and this Phi(x) are the 
trial functions. Now let us impose the boundary conditions that we already know at X = 0 and X
= L at X = 0 we know that V(0,t) is U1(t),  now that would mean V(0,t) is now if I substitute in 
this expression the U1(t), T Phi 1(0) + U2(t) Phi 2(0) etcetera. Now I know that this must be 
equal to U1(t), so that can be achieved by inspecting, if I now take Phi 1(0) to be 1, and Phi 
2(0), Phi 3(0) and Phi 4(0) to be 0, I will be able to satisfy this requirement. 

Similarly if we now consider Dou V / Dou X at X = 0, I know that it is U2(t), now let us again 
use that V prime of 0,T is in terms of this, in terms of the assumed representation it is given in 
terms of, it is given by this equation, so again in order to satisfy this we can select Phi 1 
prime(0) to be 0, Phi 2 prime (0) to be 1, and this Phi 3 prime (0), Phi 4 prime (0) to be 0, so 
this will ensure that this condition is met. 



Similarly I can impose condition at X = L where V(l,t) is U3(t)  and here we will require Phi 
1(l) to be 0, Phi 2(l) to be 0, Phi 3(l) to be 1, and Phi 4 (0) to be 0. Finally Dou V / Dou X at X 
= L, this is U4(t) and to achieve this we have to take this conditions on Phis that is Phi 1 
prime(l) is 0, this is 0, this is 0, but this has to be one. So this choice if we now select Phi(x) so 
that this set of 4 conditions which represents 16 conditions in total, now if we satisfy that we 
would ensure that we have satisfied the requirements on displacements at X = 0, and X = L. 



Now we can, to now make the choice for Phi(x) we can now consider the equilibrium of the 
beam under the action of support displacements UI(t), I = 1, 2, 3, 4, so for Phi 1 for example we
have 4 boundary conditions, so now if I write this equation for Phi 1 we get Phi 1(x) to be a 
cubic polynomial, and for Phi 1 I have 4 conditions that we have derived, now if I impose that I
will get Phi 1(x) to be this 1, using the same logic that means assume a cubic polynomial with 4
constants A, B, C, D, we can derive Phi 2(x), Phi 3(x) and Phi 4(x), okay, now how do they 
look like so Phi 1(x) is this blue line, so at X = 0 it is 1, its slope is 0, and at X = L the value is 0
is slope is also 0, similarly I have Phi 2(x) the slope here is 1 and the value is 0 and here again 



the value on the slope are 0, so we define Phi 3 and Phi 4 in the same, so these are the 
interpolation functions that we use to represent the beam behavior. 



Now, I have now the approximation for the displacement field in terms of nodal values U1, U2, 
U3, U4 and these 4 interpolation functions. So now I can substitute this into the expression for 
kinetic energy and the potential energy. Suppose now if I substitute into the kinetic energy I 
have this is the expression for kinetic energy so this representation leads to this and noting that 
these Phi(x) are all polynomials you will easily see that in this case we will be able to integrate 
carry out these integrations in closed form, so the expression for kinetic energy in terms of the 
nodal degrees of freedom we obtain as shown here, so you have to carry out these integrations 
which are straightforward. 

Similarly the expression for strain energy is given by this and here I substitute for Dou square V
/ Dou X square which is UI(t) Phi I double prime (x) summed over I = 1 to 4, so this again Phi I
double prime (x) will again be polynomials and therefore carrying out this integration is a 
straightforward exercise and I will get this as a expression for the strain energy. So now my 
Lagrangian is ready T - V in terms of nodal degrees of freedom, there are 4 nodal degrees of 
freedom so this is a system with 4 degrees of freedom and 4 generalized coordinates, 



so I need to apply the Lagrange’s equation on these 4 variables, so if I do that I get the equation 
in the form MU double dot + KU = P, where MU is a 4 cross 1 vector, U is 4 cross 1, U double 
dot is 4 cross 1, so this is the vector of nodal displacement, this is a vector of nodal 
accelerations, M which is a 4/4 symmetric matrix is the element consistent mass matrix, K 
which is this 4/4 symmetric element stiffness matrix, so the M is a element consistent mass 
matrix it is symmetric, K is element stiffness matrix which is symmetric, so the element that we
are talking about therefore is a 2 noded beam element with 2 degrees of freedom per node, and 
K and M we’ll see that they are non-diagonal and we can express the expression for strain 
energy and kinetic energy can be obtained in terms of nodal displacements and nodal velocities 
as shown here, this can be verified. So we have now been able to derive the mass and stiffness 
matrix for an Euler Bernoulli beam element. 



Now again let us go back to the nomenclature, I call this mass matrix as consistent mass matrix,
there is an another way of forming mass matrix which is known as lumped mass matrix, for 
example if this is a beam element and if half of this mass is lumped here and this half is lumped
here I get a mass matrix which is as shown here, the half the mass is lumped here, this is 1, and 
half the mass is lumped here this is 1, so this obviously doesn’t take into account various cross-
coupling terms that are present in the consistent mass matrix. 



Now we will consider some simple examples so that we understand how to use these matrices, 
suppose if I have a proper cantilever, so I model this element as this beam using only one 
element therefore there is a 2 noded beam element with 2 degrees of freedom per node, now the
imposition of the boundary conditions for this problem results in this statement U1(t) is 0 
because this displacement is 0, U2(t) is 0 because the slope is 0 is a clamped end and similarly 
U3(t) which is the displacement here which is 0, P4(t) which is the bending moment here which
is 0, so now if I write the element level equation of motion I get now for the acceleration vector 
the first 3 terms would be 0 and similarly for the displacement vector the first 3 terms will be 0 
this U4 is the unknown associated with displacement which are 0 at the boundary, there will be 
a stress reaction, for example there will be shear force and bending moment here and there will 
be shear force here, and they are, this R1, R2, R3, so this equation therefore is a set of 4 
equations, 3 for the reactions, and 1 for the unknown displacement. 



So now we solve for the equation for the unknown displacement I get this, so you have to use 
the equation corresponding to the last row of this equation, so you get this single equation. Now
this is a single degree freedom system in this approximation the beam is approximated as a 
single degree of freedom system and the generalized coordinate is U4(t), once I know U4(t) I 
will be able to write the expression for the beam displacement, how do we do that? 



That is all Phi 4(x) is a polynomial, cubic polynomial that we have already derived, so this is a 
displacement field for all values of X and this U4(t) itself is governed by this differential 
equation, so from this you can deduce the natural frequency of the system is a single degree 
freedom system, square root K/M is the natural frequency if we do that we get this as answer 
20.49 square root EI/Ml to the power of 4. Now an exact solution to the natural frequency of 
this beam is available and if we reproduce here and by comparing these two we see that in this 
approximation the first natural frequency computation has an error of about 33%. 

Now a similar exercise we can do for a simply supported beam, again this beam I approximate 
using only one element, so here you see that U1 is 0, because it is simply supported end, U3 is 0
and P2(t), what is P2(t)? The bending moment here which is 0 and P4(t) which is the bending 
moment that is 0, so what are the unknowns in this problem? U2 and U4 and the reactions shear
force at X = 0 and X = L, which is P3 and P1. So now if you write the element level equation of
motion, we get this is equilibrium equation for the element, now for the beam now because we 



use one element approximation, so this is U1 and U3 as 0, U2 and U4 are nonzero, so whereas 
R1 and R3 are the unknown reactions which we have to compute, so again this is set of 4 
equations, 2 for the unknown displacements U2 and U4, and 2 for the unknown reactions R1 
and R3, now if you extract from this the equation for U2 and U4 I get a 2 degree of freedom 
approximation to the simply supported beam structure. The remaining 2 equations govern you 
know they are the equations for the unknown reaction, so though if you want to find the 
reactions you have to first solve the equation for the displacements and substitute here. 



Now let’s now look at this 2 degree of freedom system, and if we are interested in finding 
natural frequencies we have to solve the eigenvalue problem, this is the statement of the 
eigenvalue problem that means we assume that the two generalized coordinates oscillate 
harmonically at the same frequency omega and for that to happen this condition must be 
satisfied, and if we now introduce a parameter lambda, that means I will divide by EI by L cube
and call this parameter as lambda, the eigenvalues now expressed in terms of lambda turn out to
be 2 / 7 and 6 from which I will compute the first and the second natural frequency, it is a 2 
degree freedom system therefore I will get an approximation to first 2 natural frequencies. So 
these turn out to be 10.95 into this factor and 50.20 into this factor. 

Now again this problem is well known to have the exact solution, and the exact solution is for 
the first natural frequency instead of 10.95 I have a factor 9.87, instead of 50.20 I have a factor 
39.48, that would mean in this model the errors in the first 2, calculation of first 2 natural 
frequencies is about 11% and 27%. How do we improve upon these approximations? We have 
to introduce more nodes, and increase the size of the problem, so we will see such issues later. 
Now so far what we have done is we have studied an actually vibrating bar and a flexural 
vibrating being a single span, a single element behavior has been studied. 



Now if you consider a planar structure like this carrying P(t) if you carefully you know see each
member of this structure, not only deforms actually but also it flexes simultaneously that means
the  bending and axial vibrations coexist in each of these elements or in other words this if you 
compute strain energy or kinetic energy in the, each of these elements there will be contribution
from actual deformation as well as contribution from flexion. So how do we treat this problem, 
so we will now address that issue, this leads us to the discussion of what is known as 2D beam 



element, so.2D beam element with you know is shown here again we assume that there are two 
nodes, now the nodal degrees of freedom for actually vibrating rod it was only the axial 
deformation, now for only bending it was the translation U2 and the rotation U3. Now since 
both axial deformation and bending coexist at every node I should now consider U1, U2 and U3
one axial translation, and one transverse displacement, and one rotation, so I have U1, U2, U3 
at one node, and similarly U4, U5, U6 at the other node, so therefore this beam element has 2, it
is 2 noded element with 3 degrees of freedom per node, it is a 6 degree of freedom element. 
What are the parameters of this model? The flexural rigidity EI axial rigidity AI, M is mass per 
unit length, L is length, and C is the damping parameter, we again assume that flexure is 
according to Euler Bernoulli beam theory, so the field variables in this case are U(x,t) which is 
axial deformation, and V(x,t) which is the transverse displacement, so these two are the field 
variables, these are the nodal values of this field variable, for example U1 and U4 are the values
of U(x,t) at X = 0, and at X = L, similarly U2, U3, U5, U6 are nodal values associated with 
V(x,t) and Dou V / Dou X at X = 0, and at X = L. 



Now we need to know again interpolate the value of these field variables V and U in terms of 
the nodal values, how do we do that? We will see that, now the expression for kinetic energy 
and potential energy if you now consider the strain energy has now contribution from axial 
deformation and contribution from flexure, so we have to add them, similarly the kinetic energy
has contribution from axial deformation and transverse deformation, so these are the 
expressions for the strain energy and the kinetic energy. Now the axial displacement field is 
again represented like this U1 and U4 are the nodal degrees of freedom, and Phi 1 and this 
should be Phi 4 are the interpolation functions, and Phi 2, Phi 3, Phi 5, Phi 6 are the 
interpolation functions associated with bending, so Phi 1 is 1 - X / L and Phi 4(x) is X / L these 
are the linear interpolation functions associated with axial deformation, and these are the cubic 
polynomials associated with bending. 



So now I can form the Lagrangian which is V – T, now this will be function of 6 generalized 
coordinates U1, U2 up to U6, so this is 6 degree of freedom model, so I can right now the 
Euler-Lagrange’s equation and for the 6 variables I = 1 to 6, and if I do that again I get a matrix 
form of equation of motion for the element, and this M for this case turns out to be this 6 by 6 
matrix. And similarly the stiffness matrix is in terms of this 6 by 6 matrix, it is again symmetric 
and you can see that the contribution from axial deformation is contained here and if you 
partition and remove these rows and columns what remains is the consistent mass matrix for 
flexure, similarly here if you look at this this 2 by 2 matrix it is the stiffness matrix 



corresponding to the axial deformation, this R is the radius of gyration, this is square root I/A 
and that is how we have written this and the remaining part suppose if you delete these rows 
and these columns, these rows and these columns we get the 4 by 4 matrix which is a stiffness 
matrix of the Euler-Bernoulli beam that we have derived. 



Now so if we now return to this example one complicating issue namely that in each of these 
elements we have coexistence of bending and axial deformation we are able to take care of, so 
now if you want to discretize this beam and study this you can use for each of the element that 
you choose a representation of this kind. Now there is another problem here, there are few more
problems that we need to address one by one, the next problem I would like to consider is now 
if you look at these members associated with each of these members I can think of a local 
coordinate system and for the entire structure I can have a global coordinate system, for 
example this could be the global coordinate system, whereas for this element the local 
coordinate system will be this. 

Now how do we now take care of the fact that the local coordinate system for this element does 
not agree with the global coordinate system, at the end of the day we should be able to describe 
the behavior of the structure in a common coordinate system. 



So now let us address that issue so that takes us to the question of transformation from local to 
global coordinate system, so this is you know we have to invoke the standard results from 
transformations of coordinates as applied to vectors, so suppose you have a coordinate system 
X and Y call this as global coordinate system and a local coordinate system lowercase x and y 
and this orientation let’s say gamma, then a point here viewed from this capital X, Y coordinate 
system will have coordinates capital X and Y, if you view from the local, this local coordinate 
system it has coordinates X and Y. Now we can ask the question how this capital X and Y, and 
lowercase x and y are related, so a simple consideration of the, you know geometry here leads 
us to the relation lower x is x cos gamma plus + y sin gamma, and y is - x sin gamma + y cos 
gamma, so in the matrix form I can write this as XY in local coordinate system is related to XY 
in global coordinate system through this transformation matrix, and now if we use notation M 
and N for cos gamma and sin gamma I get this coordinate transformation matrix, suppose if I 
call it as C, the C is MN - N and M, as is well known this C matrix is orthogonal that means C 
transpose is C inverse. 



Now we will basically put to use this result to achieve what we want, so now let us consider a 
beam element which is like this initially we will view the element in the local coordinate 
system, so U1, U2, U3, U4, U5, U6 are the degrees of freedom with respect to the local 
coordinate system. In the global coordinate system they are U1 bar, U2 bar, U3 bar, U4 bar, U5 
bar, U6 bar, so now if you take the location of this node the coordinates, in local coordinate 
system is U1, U2, in global coordinate system it is U1 bar, U2 bar, so now you go back and use 
this result for this I get now I am going from local to the global so this matrix is replaced by 
transpose, so this is the position coordinate of this node, this is how the transformation works. 
Similarly if you come to this node the position coordinate is U4, U5 and it goes to U4, U5 bar 
through this relation. 



Now the rotation about Z axis remains the same because Z axis has not undergone any 
transformation, so U3 bar remains as U3, U6 bar remains as U6, therefore this transformation 
matrix is an identity matrix. Now we can collect all these results and put in a single form, the 6 
degrees of freedom namely U1, U2, U3, U4, U5, U6 in local coordinate system is related to the 
corresponding values in global coordinate system through this transformation matrix, so this is 
6 cross 1, this is also 6 cross 1, so for this transformation matrix is 6 cross 6, so we can write 
this in a compact form, I write this as U bar as T node transpose U, T node t transpose itself is 
written in this form, we notice that this matrix this is L, this is L, that repeats and this 0 is the 3 
by 3 zero matrix this, so this is L, so i can write for U as T node U bar, this is local, this is 
global. 



Now what we need to do is use this transformation in our expression for the kinetic energy and 
potential energy, so in local coordinate system the kinetic energy is given by this, the coordinate
transformation doesn’t change the energy, energy is a scalar but the representation for mass 
matrix changes so that is what we are looking at. So I know that U is T node U therefore I can 
write U dot transpose as U bar dot transpose T node transpose MT node this, so this quantity 
which is T node transpose MT, I call it as M bar, so this is a mass matrix in the global 
coordinate system for the element that is given by T node transpose empty. And a kinetic energy
now I have in terms of the velocity is expressed in the global coordinate system, similar 
exercise we can now repeat on expression for strain energy so I have this as half U transpose 
KU, for U transpose now I will write, for U I will write at T nod U bar and U transpose will be 
this, and again I introduce K bar which is T node transpose KT node, so this is the element 
stiffness matrix in the global coordinate system, and this is the expression for strain energy in 
the global coordinate system. So I have now therefore K bar and M bar which are the element 
structural matrices, element stiffness matrix in the transform coordinate system, M bar is 
element mass matrix in a transform coordinate system. So we have taken care of this 
complication that the global and local coordinate systems could differ for different elements.



Now we will now move to the next complication that we need to deal with, now I will list what 
are the complication we need to deal with at this stage, we need to now take care of the issue 
that this structure is made up of different element which are oriented in a different direction, so 
if I now partition this into elements I will probably take this as one element this is at least as 
one element, this as one element, this is one element, we could have more elements within this 
it is a different issue, so the question is how to analyze a structure which is built up of different 
you know elements that is the first question. The next question we have to deal with is how to 
deal with external forces which I have not yet tackled, and how to impose the boundary 
condition systematically, and if  there are any support motions as in case of earthquake 
engineering problems, how do they enter our formulation. And finally I had not talked about 
damping, how do we handle damping in this system, so we have to answer all these questions 
so I am taking up one by one. So now the next question I wish to answer is how to analyze built
up structures or in other words if I now assume that this is one element, this is another element, 
this is one element, and so on and so forth, for each of these elements I can derive a 6 by 6 mass
and stiffness matrix, but how do I now get the mass and stiffness matrix for the built-up 
structure? By assembling these element level structural matrices, so how do we do that? 



To illustrate that we can consider a simple problem, suppose there is one beam which has been 
divided into 2 elements, say S =1 and S = 2. 

Now let this be Euler Bernoulli beam there is no axial deformation in this illustration, so how 
many degrees of freedom this structure has? It has 6 degrees of freedom, this is 1, 2, 3, 4, 5, 6. 
Now each element has 4 degrees of freedom, so now if I take this element separately I will 
number these degrees of freedom as 1, 2, 3, 4, if I take the second element separately this 
numbering as per our scheme will be again 1, 2, 3, 4, but we should somehow impose the now 
the condition that what is 1 here must be 3 here, what is 2 here must be 4 here, that would 
ensure compatibility of displacements. How do we do that? So the basic idea is the 
displacement at shared nodes must match, so let P be the number of elements which was 2 in 
the illustration that I showed just now, let N be the total degrees of freedom which was 6 in the 
illustration. 



Now I will denote the degrees of freedom as UJ bar J running from 1 to N, now the nodal 
displacement vector is a N cross 1 in global coordinate system for this structure, now this is UJ 
bar J = 1 to N, but for each of the elements as I have shown here, I have this lowercase u bar of 
s which are the nodal displacement vector in global coordinate system for the S-th element, S = 
1, for example I had 1, 2, 3, 4 and S = 2 again I have 1, 2, 3, 4. Now we would like to write the 
nodal degrees of freedom at the element level in terms of the nodal degrees of freedom at the 
structure level, so what we do is we introduce a transformation U bar of S is written as AS into 
U bar, now U bar of S is some NS cross 1, in this case NS is for 4, each beam element has 4 
degrees of freedom it is 4 cross 1, whereas this U bar is  6 cross 1, therefore this A matrix 
should be NS cross N, so number of rows in A matrix will be equal to the number of degrees of 
freedom at the element level and number of columns in A matrix will be equal to the total 
degrees of freedom at the structure level. 



So now for this simple example that we used for this example if you know consider U1, U2, 
U3, U4, for the first element what is 1, 2, 3, 4 is same as 1, 2, 3, 4, for the global structure, by 
that I mean this 1, 2, 3, 4 and this 1, 2, 3, 4 and this 1, 2, 3, 4 are the same there is no difference 
so the A matrix in this case will have an identity matrix here and then 0s. For the second 



element if you go back what is 1 is actually 3 for the global structure, and what is 2 is 4, and 
similarly what are 3 and 4 are respectively 5 and 6, so the A matrix now will become as shown



 here, so U1 bar is the third element U3 bar, U2 bar is the fourth element which is U4 bar and so
on and so forth, so with this representation now we have the expression for kinetic energy and 
strain energy in terms of the local node numbering scheme. Now we will go to the built-up 
structure, now the kinetic energy for example in the built-up structure consists of contribution 
to the total kinetic energy from each of the elements, so if there are P elements this is some of S 
= 1 to P, TS(t). Now TS(t) itself is given in terms of the local degrees of freedom the element 
level degrees of freedom as shown here this is what we have derived now, these are in the 
global coordinate system. 



Now I will introduce the transformation U bar is AS capital U bar, so if I substitute this I get 
this expression, now this summation is over the elements and you can see that the quantities 
inside the braces here and here are independent of S so they can be pulled out, and the 
summation you will be only on these terms, this summed up quantity which is written as this is 
the structure mass matrix in the global coordinate system, okay, so this receives contributions 
from each of the element, that is the element level mass matrices combined together according 
to this rule to get, to lead to the global level mass matrix, similarly the strain energy is again, 



the total strain energy is sum of contribution from strain energy within each elements, and this 
is again following the same logic it is given in terms of the element level degrees of freedom, 
and in terms of global degrees of freedom through this transformation like this, and again we 
can pull out this quantities in the brace outside the summation and I get this, and this 
summation is actually the assembling procedure leading to the global structure stiffness matrix, 
so this is summed over S = 1 to P this, so we have now therefore the expressions ready for 
global mass matrix and global stiffness matrix. 



Now we can write notionally the equation of motion that is a global equation of motion the 
right-hand side we will call it as a force vector which we are not yet you know described what it
should be. 



So now let us come to that description but before that we can you know illustrate what exactly 
we have done by considering this simple example of a axially vibrating bar which has been 
discretized into a set of 4 elements 1, 2, 3, 4 and the finite element discretization implies the use
of these global shape functions, this is not how we actually compute though but what we do is 
we carry out calculation at the element level and then sum up, so what we need to do here is we 
need to find for example kinetic energy in terms of the displacement field as shown here,



 and this we can add over the elements so I can find kinetic energy contribution from this 
element, this will have you know contribution from only these two trial functions, all other trial 
functions are 0 here similarly for this element there are two instances, for this element there are 
2 instances, and this is 2 instances, what we are actually doing is we are computing these 4 
situations separately, so that is what we are doing, so this is what I meant when I said total 
kinetic energy is sum of contribution from each of the elements, so then we can construct a 
Lagrangian which is again sum, and if we actually then carry out the, if you implement the 
Euler-Lagrange’s equation on this representation we will get basically what we got here, so we 
are able to achieve these calculations through this simple you know in the language of matrix 
algebra through these arguments. 



Now we will come to the question on forces, so how do we determine the nodal force? Suppose
there is a beam element which is carrying a transverse load like this, so in your finite element 
approximation we have approximated the field variable V(x,t) in terms of U1, U2, U3, U4 and 
the 4  interpolation functions. Now we would like to replace this distributed load in terms of 
these equivalent nodal forces, so we have therefore V(x,t) as I = 1 to 4, UI(t) Phi I(x), this is 
how we represent the field variable, and we would like to now replace this F(x,t) through these 
equivalent nodal forces, so how I can replace therefore this situation by a combination of these 
two situations, that is the question, so what we do is we use the principle of virtual work, we 
define Delta V(x,t) as a virtual displacement, we can write this in terms of virtual displacements
at the nodes and the interpolation function, because this is a representation that we are talking 
about. 



Now the work done by the nodal forces on the virtual displacements must be equal to the work 
done by these forces on these virtual displacement, so if you now write for Delta U(x,t) this we 
can take the terms to the other side and we get this expression. Now since the Delta UI(t) are all
arbitrary the only way this can be 0 for all T is that the term inside the brace must be 
independently equal to 0 and that leads us to the definition of the equivalent nodal forces. For 
example if the beam is carrying a UDL, but as a function of time I can derive the equivalent 



nodal forces as P1, P2, P3, P4 as shown, similarly if we have a impulsive force acting at X = A I
can substitute and we can get the expression for equivalent nodal forces. 



Now we are getting now equivalent nodal forces in the local coordinate system of the beam, 
how do you get in global coordinate system? It's simply the transformation, because force is a 
vector just like a displacement the same rule of transformation as was used for displacements 
also work here and this is what I get. And how do we assemble? 



Suppose a force vector for a built-up structure, how do we assemble that, again we follow the 
same logic as we use for assembling structural matrices and the global force vector in terms of 
element level force vector is again through a summation using these A matrices this is as 
shown. So first we get, first we formulate the force in the local coordinate system and bring it to
the global coordinate system and then use these A matrices and sum or S = 1 to P to get the 
equivalent nodal forces in the global coordinate system for the built-up structure.

So now at this stage what we have obtained is the global structure equation of motion, the 
quantity that you are seeing in red here is a damping force so I am now arbitrarily introducing 
this assuming that the damping mechanism is viscous and we are going to select this damping 
matrix in a way that facilitates the use of normal modes which are obtained by un-damped free 
vibration analysis, therefore the C matrix can be introduced at a later stage, so I have arbitrarily 
introduced this matrix, we will return to this issue in some greater detail later. 



So now the next issue that we have to consider is the boundary condition, so if you go back to 
this now we have tackled a few issues we have considered the fact that these elements carry 
both actual and bending energies so we have tackled that, and the structure itself is made up of 
different elements which are oriented in different directions so that we have tackled, we have a 
first transform all the entities in a global coordinate system and we have devised a way to 
assemble them. And similarly we have now tackled the issue of how to handle an external force 
and convert it into equivalent nodal forces in global coordinate system for the structures, at the 
structure level, so now the question that remains is how to deal with boundary conditions so 
now, so what we do is to deal with that we partition the displacement vector into a component 
let us call it as UG(t) and another one let me call it UI bar, this UG(t), the G we can take it as 
representing the ground, the ground displacements can be specified okay, it can be specified to 
be 0 or it can be specified to be a given time history, often we take that to be 0, in situation 
where the dynamic actions come through support motion as in case of earthquake induced 
vibrations UG(t) will be specified time histories, so in any case they are known, the remaining 
nodal degrees of freedom are the structure degrees of freedom that we need to determine, these 
are the unknown nodal displacements. 

Now to start with let us consider that the nodal displacements are given to be 0, so the 
partitioning of the displacement vector will be 0 and U bar (i), so if there are Q components in 
UG(t) this will be Q cross 1, and this will be N - Q cross 1, now the partitioning of this 
displacement vector also induces a partitioning on the structural matrices and the forcing vector,
so I will partition the mass matrix, stiffness matrix, damping matrix, and the force vector in this 
form, the size of M00, K00, C00 will be Q cross Q and M2, K2, C2 will be N - Q cross N – Q, 



so the global of equation of motion, the global equation of motion in the partition form can be 
written this way. 

Now you see here these displacement components are specified to be 0 and they will be 
associated with unknown reactions, and associated with unknown displacements which is UI 
bar there will be equivalent nodal forces which are externally applied, not all of them need to be
nonzero it depends on the specific problem on hand, so there are now capital N number of 
equations and capital N number of unknowns, what are the capital N number of unknowns? Q 
reactions, and N - Q unknown nodal displacements, so we can write now the equation 
corresponding to the first row here, so M00 this is 0, M0I UI double dot C0I UI bar dot + K0I 
UI bar is F node(t), so this set of equations represent the equations for unknown reactions, so 
they can be determined only after you find this UI bar, how do I find UI bar? I write the 
equation from the second row, so that is this, that is MI0 into 0 + M2 into UI bar double dot and
so on and so forth the other terms on the right-hand side I have the equivalent nodal forces. So 
these are the equations for unknown displacements, so the number of equations is capital N, Q 
reactions N - Q unknown displacements. 

Now what we do is we avoid all this clutter of subscripts and bars and things like that, we write 
this equation, this set of equation which are the equations for unknown nodal displacements and
velocities and accelerations simply as MU double dot + U dot + KU = F which specified initial 
conditions, so these are the governing equilibrium equations for the structure which we need to 
solve, so this has taken into account the effect of boundary conditions and all the assembling as 
we described, so these are the unknowns that we have to solve by solving this set of coupled 
second order ordinary differential equations. 



So now let us quickly summarize what we have been doing, we want to analyze the structure 
like this carrying a dynamic load like this, this structure is made up of different elements S = 1, 
I can have this is S = 2, 3, 4, 5, 6, so what we do for each element we first write the element 
level equation of motion we know the element level mass matrix, stiffness matrix, and we can 



notionally introduce the damping matrix and we can get the force vector also for S-th element, 
then we go to the global coordinate system, okay, see the local coordinate system and global 
coordinate system for this element it is same, suppose if I take the global coordinate system to 
be this, for this element 4 this local and global coordinate system coincide, not for the other 
elements, so you have to make a transformation, so you then get the equation of motion for 
elements S = 1 to P in the global coordinate system through these transformation that means for
each of the element you have to find out T1, T2, T3, TP, they are the coordinate transformation 
matrix. 

Next for each of the element we have to now define them A matrix which connects the naming 
of degrees of freedom at the element level to the naming of degrees of freedom at the structure 
level, so that leads us to the global equation of motion after assembly of structural matrices and 
before imposing boundary conditions, this is the equation. So this is a set of capital N number 
of equations, Q of them for reactions and N - Q for unknown displacements. 

Then we now get the equation for unknown reactions we partition the displacement vector into 
Q and N - Q elements and one set of equations is equations for unknown reactions, the other set
of equations is for unknown displacement, so this is the equation shown in red here is the 
governing equation of motion which we need to solve to obtain the, solution to the problem on 
hand what really happens is at the end, this is a set of ordinary differential equations T is still a 
continuous variable here, so these equations are known as semi discretized equations, so we 
have to further develop numerical methods to discretize this time and we will get a discrete map
from which we will determine all the nodal displacements, velocities and accelerations, 



subsequently we have to now go back to the element level descriptions through the appropriate 
interpolation functions and the subsequent questions will be on how to find out displacement at 
points which don’t coincide with the nodes, how do you find, these are displacements, how do 
you find strains and stresses, and how do you, you know compute quantities like principle 
stresses, principle strains, stress metric, etcetera, etcetera, those questions need to be still 
addressed.
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