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This is the last lecture in this course. So what we will do is we will quickly recall what we did in
this course and briefly discuss a couple of directions in which we can move forward. 



So when we started this course these were the topics which were proposed to be covered. The
approximate methods and finite element method, dynamics of truss and planar frames, damping
models  and analysis  of  equilibrium equations,  dynamics  of  grids  and 3D frames,  and some
computational  aspects  like  solution  or  equilibrium  equations.  Again  value  problems,  model
reduction  and  substructuring.  Then  review  of  dynamic  stiffness  matrix  and  transfer  matrix
methods. Then dynamics of plane stress/strain, plate bending shell and 3D elements. 

Then applications to earthquake engineering and vehicle structure interactions. Then application
of  finite  element  analysis  for  elastic  stability  problems.  Some  issues  about  treatment  of
nonlinearity and questions on finite element model updating, and how finite element method is
used in hybrid simulations.

So accepting the last topic we have broadly covered all these issues. 

So the course has been divided into basically eleven modules. In the first module we started with
approximate methods and finite element method. Then this was followed by analysis of planar,
trusses and frames. Then we spend time on integration of equations of motion. Then analysis of
grids and three-dimensional frames. Then time integration of equation of motion. 

In the third module we considered again normal mode representations. Here we look at a time
integration.  Then questions  on model  reduction  and substructuring  were addressed in  model
module  six.  Then  analysis  of  two  and  three  dimensional  continuum.  We spent  some  time
discussing plain stress element, plate bending elements and facet shell elements. So that covered



the model seven and eight and in module nine we covered quite a bit of ground on structural
stability analysis. Then we briefly consider two topics that is finite element model updating and
how to deal with nonlinearity in finite element models. 

So I would like to acknowledge at this stage authors of these books whose work I found quite
useful in preparing this lectures. So in many places I have – my lectures were fashioned after
some of the coverage in some of this text books. 



So we begin by considering application of Hamilton's  principle  to simple systems like mass
spring dashpot system and we derived the equation of motion by applying Hamilton's principle. 



And then generalize this to continuous systems. 

So this is actually vibrating rod and we saw that application of Hamilton's principle enables us to
derive the equilibrium equation and also a set of valid boundary conditions. 

Now  the  boundary  conditions  themselves  were  classified  as  geometric  forced  or  kinematic
conditions and then natural boundary conditions. 

We covered several examples where there was combination of continuum elements and discrete
elements used Hamilton's principle and derived the equations. 



We then moved on to theory of Euler-Bernoulli beam. Again by using the Hamiltons principle we
derived the governing equation and the relevant boundary conditions. 



And we saw that the boundary can – the field equation will be of this form in free vibration and
there  are  16  combinations  of  single  span  beams  which  emanate  from  the  application  of
Hamilton's principle. So these are various boundary conditions which are appropriate for Euler-
Bernoulli beam cases. 

Now in the analysis  of free vibration characteristics  we begin by discussing about  Raleigh's
quotient. So we formulated the Raleigh's quotient for discrete multi degree-of-freedom system
and few continuous systems and an important property of Raleigh's quotient was that it  was
bounded between square of first natural frequency and square of the N natural frequency in the
end degree freedom system. 

Whereas for continuous system there was only a bound on the lower value R was greater than
Omega 1 square. Now, Raleigh's quotient you can derive without writing the equation of motion.
So that's a quick way of finding natural frequencies and phi of X are the trial functions and the
choice of these trial functions plays important role in application of these methods and among
different choices of trial functions, the one which provides the lowest value of Raleigh's quotient
provides the best estimate to the first natural frequency. 



So in our endeavor to lower the value of Raleigh's  quotient,  we introduce that  Raleigh-Ritz
method where the trial function was represented in a series of orthogonal functions typically A
ends where the generalized coordinates and we minimize Raleigh's quotient with respect to these
A ends. So this phi of X are set of known linearly independent function which satisfy all the
boundary conditions to start with. 

Then, we found out A ends which minimize this Raleigh's quotient and that helped us to find not
only the first natural frequency but also approximations to higher natural frequencies. 



Then starting from field equations we developed the so-called method of weighted residuals. So,
for example, for the beam equation, this was a field equation and we started by approximating
the solution or 0 to L in terms of N generalized coordinates N of T to be determined, and a set of
known trial functions Phi n of X. So this phi n of X are valid over the entire domain of the beam. 

So when we substitute this into the field equation, we get an error that we call as residue and the
method of weighted residual essentially minimizes this residue in some sense. So that leads to a
set of discrete equations that is the space variable X has been discretized and we are left with
time which is still continuous. So this is a semi discretized equation of motion for the system and
this leads to the concept of mass damping and stiffness matrix and forcing vector. 

So what method of weighted residual achieves is that a partial differential equation governing the
behavior of a continuous system has been replaced by an equivalent set of ordinary differential
equation  which are initial  value problems with a  view to obtain approximate  solutions.  The
notion of this method of weighted residuals was not unique and there were several possibilities. 



And we talked about least square method, collocation method, and Galerkin method, sub domain
collocation, Petrov–Galerkin and so on and so forth. 

The basic idea here is the weighting function changes for these different methods. And we also
applied this to a few problems and saw how it works. 



So basically  there was a residue and a weight function and by equating,  selecting N weight
functions and equating this to 0 we got N number of equations and this is a resulting equation.
This is broadly the class of methods known as method of weighted residues. 

We  also  considered  certain  other  additional  methods  and  we  introduced  the  strong  form,
weighted residual form and weak form of governing equations while discussing this. 

Now  the  problem  with  method  of  weighted  residuals  as  discussed  here  is  that  these  trial
functions were globally valid. 

So if we have a more complicated domain to construct phi of X, which are globally valid will be
difficult and also the generalized coordinates N of T that arises here do not have a direct physical
meaning. Now this led to the discussion on finite element method, what we did was the domain
of interest was partitioned as shown here and the field variable at these points known as nodes
were taken as generalized coordinates and these sub domains which are known as elements, the
field  variable  within  an  element  was  interpolated  in  terms  of  these  nodal  values  using
polynomials. 

So each of these elements  have,  for example,  have simple for unknown sign a interpolation
function. So there is nothing really super relative about the performance of a single element. But
the entire finite element procedure is such that when all this is assembled it delivers a very super
relative performance in terms of analysis  of very complex problems involving complexity in
geometry, constitutive loss and so on and so forth. 



Now the word finite element, the phrase finite element method we try to explain the word finite
here originates  because the field  variable  is  approximated  in  terms of  the value of the field
variables as a set of nodes, finite number of nodes, that is where the word finite arises. The
element, of course, is that we are the domain of interest is approximated by Omega tilde and this
is taken as union of a set of non intersecting subdomains and each one is an element and within
an element the field variable is approximated in terms of interpolation function and nodal values.

So this renders credence to the name element. The method is of course it indicates that finite
element method is an approximate numerical method to obtain solutions to partial differential
equations or variational problems. So this Omega I R elements X, tilde are nodes and capital N is
a number of nodes in the system – in the approximated model. 



Now using that what we did was for each of these elements we derived the equation of motion
that led to the notion of element level, mass damping and stiffness matrix and a forcing vector
and this is formulated in the local coordinate system. Then the element level equation of motion
is transformed to global coordinate systems. 

We developed how displacement, velocity and acceleration and force force vectors are all vectors
and  they  obey  certain  rules  of  transformation  and  based  on  that  we  can  construct  the
transformation needed to for the mass stiffness and damping matrices in the global coordinate
system. 

Then  to  construct  the  structure  matrix  for  the  entire  structure  these  matrices  need  to  be
assembled. So basically energies in different subdomains add and that forms the basis of forming
the global equation of motion and at this stage we have not yet partitioned the equation into
unknown  displacements  and  unknown  reactions  and  we  are  not  yet  impose  the  boundary
conditions. So upon imposing the boundary conditions and partitioning the vector U accordingly
we got the final equation of motion for the system for the unknown displacements as MU double
dot plus U dot plus K = F of T where U of 0 U naught and u dot 0 is u naught dot which are
initial displacement and velocities. 



We considered various complicating issues. We started by studying planar frames and modeled
elements as Euler-Bernoulli beams. We considered questions about how to deal with the hinge
and a roller on an inclined support, etcetera. that is how to set up suitable constraint equations in
terms of degrees of freedom to correctly capture the presence of a hinge or inclined roller and so
on and so forth. 



One important observation we made was that while the displacement field across the element is
continuous but when it comes to evaluation of stresses, for example; in the case of an actual
vibrating  bar,  there  will  be  discontinuities.  So  the  finite  element  method  thus  introduces
discontinuities  across  element  boundaries  in  certain  quantities  which  are  not  –  there  is  no
discontinuity in an exact solution. 

So this is one of the limitations of finite element method. 



Next we started looking at some issues about dynamics. So we derived the input output relation
in time and frequency domains.  We introduced the notion of impulse response function  and
complex  frequency  response  function.  These  quantities  become  matrices  for  multi  degree
freedom systems and these are the definitions for the impulse response function and the complex
frequency response function. 



Now in formulating – in trying to solve the governing equations of motion we started by looking
for certain coordinates in which the degrees of freedom become uncoupled. And we found that
there are transformations from a given coordinate system to certain natural coordinate systems in
which the degrees of freedom become uncoupled. The consequence of that is a coupled set of
ordinary differential equations are solved as a set of uncoupled either second order differential
equation  or  first  order  differential  equation  depending on how we represent  the equation  of
motion. 

So we started another element in our solution strategy, modeling strategy was introduction of
damping. For linear systems, the damping models were either viscous or structural and so-called
classical or non-classical. So the classical damping models are those, in which the undamped
normal  modes  uncouple  the  equation  of  motion.  Whereas  that  is  not  true  for  non-classical
damping. So we addressed question of how to uncouple equation of motion for each one of these
for damping models. And we introduced in doing so several quantities like receptance, mobility,
accelerants, dynamic stiffness, mechanical impedance, apparent mass, and so on and so forth. 



So the FRF of calculations that is the representation of system response in frequency domain we
developed several methods, for example, in viscously damped system one could directly invert
the dynamic stiffness matrix and get that and similar strategy can also be adopted for structurally



damped  systems  but  each  one  of  this  calculation  can  be  carried  out  in  terms  of  mode
superposition method by using mode superposition method, and that requires the determination
of the appropriate natural frequencies and mode shapes. 

So this we did for all the four cases of damping that is structural, viscous, proportional and non-
proportional damping models. 



In certain class of problems in linear structural dynamics where [Indiscernible] [0:15:53] focused
only on steady-state behavior under harmonic loads or loads which permit for a representation
one can use what method known as dynamic stiffness matrix. Here we assume that in a beam for
example; shown here this is an Euler-Bernoulli beam if the nodal displacement and forces are all
harmonic at the same frequency as shown here what conditions these amplitudes Delta K, and
PK should satisfy so that the governing equation is satisfied. So that leads us to the definition of
the dynamic stiffness matrix that we derived for Euler-Bernoulli beam. 



And we also considered alternative representation in terms of transfer matrices briefly and to do
that  we  introduced  for  example  in  actually  vibrating  rod  a  state  vector  comprising  of
displacement and axial force and how it is related at this node the amplitude and displacement of
–  amplitude  of  force  and  displacement  how  they  are  related  to  amplitude  have  force  and
displacement at the other node. So this is so called transfer matrix. 

So this can also be derived for actually vibrating bar as well as beam and other more general
problems. 



Then we moved on to analysis of certain built up structures, a planar frame like this, a grid
structure like this or in more general situations a three-dimensional frame. So to analyze a grid
element which is displayed here bending in these beams cause torsion in the other beams. So we
need to include effect of twisting and that we spend some time and develop the stiffness matrix
associated with torsional degrees of freedom. 



And we developed the relevant structural matrices that included the flexure and twisting. 



This we generalize to three-dimensional beam element and here we considered U beam element
typically  has  two nodes  and six  degrees  of  freedom per  node.  The  degrees  of  freedom are
translation in X direction that is the axial deformation, and rotations about Z axis and about Y
axis at the two nodes. So and of course translations here. So this we developed and the way we
approach the problem was we assume that cross sections have symmetric properties. 

And we set up the expression for axial deformation, twisting, bending about Z and bending about
Y where for twisting we use the theory of torsion of prismatic members which we developed in
some detail as we went along. 

The kinetic energy itself comprised of axial deformation, twisting, bending about Z and bending
about Y. In later discussions, we also introduced strain energy due to shear deformation and
kinetic energy due to rotary inertia. That led to the treatment of deep beams. Now for all these
class of systems that is fairly broad class of system. 



The final equation of motion always had this form. We for the purpose of discussing numerical
methods for solving these equations, we introduced the nonlinear terms, with an anticipation that
this we will be dealing with later in the course. 

So we developed several methods for numerical integration of these equations. These equations
at this stage are semi discretized that means time is still continuous. The special variables have
been discretized. So the basic idea was to replace the time variation in time again by discretizing
time. So we considered solution of this equation at a set of discrete time instant T naught, T1, T2,
Tn with some steps as  delta  T N,  TN plus  1 minus TN. The basic  idea  was to  replace the
derivatives appearing in these equations by suitable finite difference approximations and convert
these  equations  into  appropriate  algebraic  equations  and  treat  their  solution  using  algebraic
methods. 



So  we  discussed  several  methods  forward  Euler,  backward  Euler,  central  difference  and
numerous family of methods and the so-called HST alpha method and the generalization and
HST alpha with operator splitting. We discussed questions about explicitness of this algorithms
and what is implicit and explicit algorithms so on and so forth. 



We also discussed for linear time invariant systems, the question of spectral radius and how it
influences choice of step size that would mean how to select step size so that the solution should
be stable. 

In discussing this, we identified certain desirable features for numerical integration schemes that
is -- that we needed to use in dealing with large scale problems. The algorithm should have at
least second-order accuracy. They should be unconditionally stable when applied to linear time
invariant systems. Then there should be controllable algorithmic damping in higher modes which
would require us to investigate the spectral radius as frequency becomes large and frequency
becomes small. There should be no overshoot that is excessive oscillations during first few steps
should not be there and the solution should be self-starting and no more than one set of implicit
equations to be solved at each step. 

So we illustrated some of these requirements with specific methods. 

Next  we considered questions two questions on dealing with large scale  problems.  The first
question was on model  reduction.  That  means suppose if  I have a large scale finite  element
model such as this how can we reduce it a model with lesser degrees of freedom. This arises
originally this type of questions were asked in the context of when computational resources were
limited but presently those questions are probably not that relevant. But what is still relevant is
when we deal with situations where we are comparing their  performance of a computational
model with an experimental model and we are trying to reconcile the two models, then we need
to reduce the, for example, typically the size of computational model to match the degree of



freedoms that are measured in an experimental work. So the experimental degrees of freedom
typically tend to be small than the computational model. 

So  either  we  can  reduce  the  size  of  the  computational  model  or  expand  the  size  of  an
experimental model. So that requires certain computational procedures and we discussed three
methods;  steady  condensation,  dynamic  condensation  and  system  equivalent  reduction  and
expansion process. We saw that this SEREP method is the most versatile. It preserves a set of
normal modes in the reduced model whereas in a static condensation there is no such promise,
not even one mode need to be correctly captured whereas in dynamic condensation it is possible
to capture at least one mode correctly. 

Next we consider situation where again a structure made up of different components and the
question was suppose these different components, for example, as in a satellite structure if are
being designed and developed by different teams how do we produce a finite element model for
the combined system? 

So here we discuss two class of methods that is spatial coupling method and modal coupling.
That in discussing the modal coupling method we discuss the component mode synthesis which
is one of the well-known coupling techniques with that is used in practice. 



After  the  foray  into  certain  computational  aspect  we  return  to  the  question  of  element
development  and we moved on to  two dimensional  elements.  We considered the  membrane
action  due  to  in  plane  loads  and  bending  action  due  to  transverse  load.  So  we  began  by
discussing membrane action. 



We developed linear triangular plane stress element. 

And we generalized it to linear quadrilateral element and that led to the notion of isoparametric
formulation  which basically  was necessitated  by requirement  to  integrate  these integrals  that
appear in the formulation of element stiffness and mass matrices. So the idea is the geometry of
this structure is mapped to a master element like this and we interpolate the coordinates in this X
and Y in terms of sine theta  using the same trial  functions  as is  used to represent the field
variables, displacement field variables. 

So this transformation was essentially made to facilitate evaluation of the integral leading to the
determination of stiffness, mass and forcing stiffness and mass matrices and the forcing vectors. 



We move on to the discussion of solid elements. We consider tetrahedral element, rectangular
hexahedron element, pentahedron, isoparametric hexahedron elements and we developed some
of these formulations. 



And  we  discussed  we  think  8  noded  element  with  three  degrees  of  freedom  per  node  in
isoparametric formulation how this can be done. 

Next we considered problems where there was a axis symmetry in the geometry that means
geometry was 3D axis symmetric solid. It is not -- the object is not necessarily prismatic and it is
not necessarily thin or thick as in the case of plane stress plane strain models. There were certain
restriction  that  were  placed  on  surfaced  traction  and  body  forces  and  that  under  certain
assumptions on these variations this type of problems can also be reduced to two-dimensional
problems and we formulated one such element. 



Next we considered plate bending problems and we developed several plate bending element. We
saw the question of how certain element formulations lead to non-conforming, nonconformity
and how to overcome that. We discussed several of those strategies. 



Then we also discussed how to deal with plates that are stiffened by beam elements.  So we
developed elements for dealing with this type of situations. 

So at the end of these lectures we were ready with stiffness and mass matrices and damping
matrices and forcing vector for a wide class of problems and next we moved on to questions
about stability analysis. The question of stability was addressed with respect to either a steady
state of rest or periodic motion or random motion. We can address in this form. We considered
state of rest and periodic motion. We didn't consider random motion in these lectures. So the
question we asked was what is the influence of an externally imposed disturbance on these states
of rest and periodic motion. If as a consequence of this disturbance if the response dies there
disturbance dies off then we say that the state is stable. 

Then if the original state is not restored the two possibilities is motion grows without limit and
the state is unstable or if motion neither grows nor decays then we reach a stage where we will
not be able to resolve using the first order approximation whether the state is stable or unstable. 



This  type  of  questions  we begin  by addressing  in  context  of  beam columns  and for  beams
carrying axial loads, we notice that there is a dramatic change in the nature of the solution. For
example, if we consider this problem where there is a single span beam carrying a transverse
load Q of X and axial load P while writing the expression for bending moment at this cross-
section, we were able to write the bending moment due to Q of X but when it came to a question
of writing the expression for bending moment due to P, we use the deform configuration of the
beam. 

So this was our first test of issue of nonlinearities where to find bending moment M of X we use
undeformed geometry whereas to find the contribution from axial  load we use the deformed
geometry. So that played a crucial role and we saw that the presence of an axial load plays a
crucial - produces dramatic effect and some basic notions like principle of superposition become
– they become the first casualty in treatment of axial loads. 



So we recalled some results on beam columns and for example, this single span beam carrying a
load Q and axial load P we derived the expression for mid span displacement and rotations at the
supports and maximum bending moment when load was applied symmetrically and we showed
that these responses typically had a structure where Delta naught, theta naught and M naught
were responses with P equal to 0, when the axial loads were absent whatever was the response
they got magnified or modified by certain functions known as stability functions. 

So we introduced Chiphi of U, epsilon U, XI of U and this graph shows typical plots of the
stability functions and the most interesting aspect of these functions is that at certain values of
load parameter, axial load parameter, these modifications become unbounded thereby indicating
that at these values of axial loads the structure would not be stable. 



So we considered -- we interpreted presence of a transverse load or our inability to apply axial
loads in a truly perfect manner or presence of an initial imperfection as manifestations of certain
imperfections  in  the  system.  That  means  these  three  problems  we  showed that  they  are  all
mathematically equivalent and we interpreted them as manifestations of departures from an ideal
situation. 

Now how about the study of an ideal situation itself? 



That led to the notion of an eigenvalue problem to determine the value of axial load P at which
the  a  neighboring  equilibrium position  becomes possible.  So this  led to  the notion  of  Euler
buckling loads and we developed that theory. 



Then we briefly consider a question of stability of dynamical systems because we also asked the
question on equilibrium of systems in motion. So we consider differential equations of this form
and  we  define  the  notion  of  equilibrium  points  where  X  dot  and  Y dot  are  zero  and  we
investigated the influence of small perturbations on these equilibrium positions and we found
that the nature of the equilibrium points also known as fixed point depend on Eigenvalues values
of this gradient matrix when it is evaluated around these fixed points. 

Next we initiated two axioms for analyzing stability of more general class of problems and these
axioms led to the energy methods for stability analysis. The first axiom stated that stationary
value  of  the  total  potential  energy  with  respect  to  generalized  coordinates  is  necessary  and
sufficient condition for the equilibrium of the system. So the first axiom provided the condition
for equilibrium. The second axiom helped us to establish whether that equilibrium position is
stable  or  not.  A complete  relative  minimum  of  the  total  potential  energy  with  respect  to
generalized coordinate is necessary and sufficient for the stability of an equilibrium state of the
system. 



Now based on this we analyzed the several problems. We considered special specifically two
problems one is buckling of Euler-Bernoulli beam and we derived this load deflection diagram of
P versus this transverse displacement Delta and we traced the the load deflection paths lose their
stability at certain points and the bifurcate. That is one aspect of it. In the structure such as this
which  are  --  shell  structures  can  be  thought  of  as  something  being  similar  to  this  type  of
structure. Suppose there are two rigid links supported as shown here and there is a load P and we
start loading this structure that is at theta equal to zero, I mean P equal to zero we have initially
some displacement and as we go on increasing this, the loading path – the load and displacement
increased simultaneously and they reach a critical value here at which the structure loses stability
and moves to a faraway equilibrium position. 

So this type of behavior is known as limit load buckling that means when the structure loses
stability  the  equilibrium position  is  far  away from the  position  at  which  it  lost  its  stability.
Whereas,  here  when  P  approaches  P  critical,  a  neighboring  equilibrium  position  becomes
possible. 



Now to formulate the problems of stability using finite element method we developed what is
known as geometric stiffness matrix for different elements and a general theory for that required
us to introduce the nonlinear relationship between displacements and strains. So a pre-stress that
exists does work on the subsequent deformations and that helps us to formulate the geometric
stiffness matrix and we showed that the an eigenvalue analysis of the elastic stiffness matrix and
the geometric stiffness matrix that mean KX equal to K Sigma, lambda K Sigma X, helped us to
determine the loads at which the structure would lose stability. 



Now another  important  question  we addressed was the interaction  between nonlinearity  and
imperfections. So to illustrate that we considered three archetypal problems. Here in these three
problems AB is a rigid bar which is identical in all  these three cases but supported in three
different ways. Here it is supported through a spring here. Here it is supported through a spring
here, whereas, here it is supported through an inclined spring. 

Conceptually we did a thought experiment in which we designed this values of K we selected
K1, K2, K3 so that all these three systems had the same value of critical load. But we plotted the
load deflection diagram for each one of this and for this case we found that the load deflection
path rises along a stable path and it continues to evolve along a stable path without encountering
a unstable path. 

Now  we  also  introduced  in  each  of  these  cases  slight  imperfections  and  investigated  the
influence of these imperfections. In the second case, the system with a slight imperfection the
load rises, load deflection path rises on a stable path and it encounters an unstable path and the
structure  loses  stability. So here  the  influence  of  imperfection  is  to  lower  the  load  carrying
capacity of the structure and this kept -- this in the final case similar behavior is observed and
again stable path culminates in a unstable - it encounters an unstable trajectory. 

So in an experimental work what happens is although these three systems are designed to have
the same critical value, it is observed that the critical load evaluated for the third system will be
less than what is evaluated for the second system and this will be less than what is evaluated for
this  system.  So these two systems are known as  imperfection  sensitive  structures  where the



critical load carrying capacity depends on imperfection and plates and shells display this type of
behavior. 

We considered subsequently another class of problems where the action loads were time varying.
We consider two situations where there is a tall stack under biaxial earthquake ground motion
and also a bridge structure which is traversed by a vehicle. So we formulated equation for these
two systems and showed that the coefficients in the governing partial differential equations are
time dependent. So such systems are known as parametrically excited systems. 



We also considered another class of problems wherein the loads were not time-dependent but the
direction of the load in one case for example; if the load P is direction does not change during
process of deformation, a static analysis would tell us how this structure behaves. But if the load
were to be such that it remains tangential to the deformed axis, a static analysis reveals that this
structure is always stable but a dynamic analysis shows that there is a finite value for P beyond
which the structure becomes unstable which is consistent with what we anticipate. 

So  these  two  cases  parametrically  excited  system  and  the  so  called  follower  force  models
indicated situations under which a dynamic analysis needs to be done to infer stability of the
system. 

Now in  the  in  this  context  we  consider  three  problems.  First  one  was  how to  characterize
resonances in systems governed by equations of this form where the mass damping and stiffness
matrices are time-dependent. And especially when these time variations are periodic. Next how
to  arrive  at  finite  element  models  for  partial  differential  equations  with  time-varying
coefficients? Subsequently are there – we also consider the question if there are any situations in
statically loaded systems wherein one needs to use dynamic analysis to infer stability conditions.
So while answering the first question we developed the theory of flow case coefficients and we
developed a procedure on how to evaluate the flow K matrix and we showed that eigenvalues of
the flow case matrix enable us to answer these questions. 



So to answer the second type of deal with second type of problems we considered beam carrying
a single – moving single degree freedom system and we formulated the governing equation and
developed a finite element model based on weak formulation. 



And  showed  that  the  element  mass  matrix,  damping  matrix  and  stiffness  matrices  are
unsymmetric and time-dependent for this class of problems. The interaction between the vehicle
and the structure induces this unusual features. 

So this type of problems need to be handled only in time. They do not have natural coordinates.
The concept of natural frequency mode shapes are no longer valid. 

We briefly then considered questions on the role of finite  element  modeling in dealing with
existing  structures.  So  before  a  structure  comes  into  existence  we  have  only  mathematical
models  to deal  with that  type of problems. That  is  typically  what we do when we design a
structure which is yet to come into existence.  Moment the structure comes into existence of
course the mathematical  modeling technique still  remain valid  but also additionally  we have
experimental tools becoming available to us and thus we can measure the performance of the
structure under either diagnostic loads or operational loads. So the prediction in these situations
from an experimental model and a mathematical model often do not agree and the question is
how do we update the mathematical model to reconcile these two predictions. So this leads to the
topic of finite element model updating and we briefly reviewed the issues related to this question
and developed specifically one approach that was based on so called inverse sensitivity analysis. 



So we derived the updating equations in terms of changes to be made to system parameters based
on observed changes in certain system responses and these we showed is connected through a
matrix known as sensitivity matrix. 

So we carry – we considered several issues here how to formulate this S matrix, and how to –
this the resulting equations will be often a set of or determined equations that require special
techniques to solve them. We discussed pseudo-inverse method, singular value decomposition
and Tikhonov regularization approaches for dealing with this class of problems. 



In the final part of our course we started talking about how to deal with nonlinearity. So the
sources  of  nonlinearity  we  identified  were  either  related  to  nonlinear  strain  displacement
relations in which case we said the nonlinearity  is geometric nonlinearity  or the relationship
between stress and strain could be nonlinear. Then we call this a nonlinear constitutive. I mean
here  we  had  nonlinear  constitute  laws  and  this  type  of  nonlinearity  was  called  material
nonlinearity. Then nonlinearity associated with boundary conditions as in contact problems or
free plays and so on and so forth induces a different kind of nonlinearity. The energy dissipation
mechanisms also bring in newer forms of nonlinearity. It could be friction. It could be impacting
free place etc. 



Now  while  formulating  this  we  can  conceptualize  different  frameworks  for  example  the
displacement and rotation of a structure could be small but the stress-strain relationship could be
nonlinear. So this is small deformation but materially nonlinear. Geometrically linear; materially
nonlinear. Here the material could be linear or nonlinear but there are large rotations and small
strains. So one of the questions that needs to be carefully addressed in dealing with nonlinear
problems is treatment of rotations. 



So in a more general class of problems, of course, material could be linear or nonlinear. There
are large rotations and large strains. These are the most general class of problems which are most
difficult to deal with. 

A simple illustration of a nonlinear problem with nonlinear boundary condition is shown here.
Suppose this support there is a free player, this gap and as the structure deforms if this gap is
negotiated then this spring stiffness will come into action and the stress strain typical stress strain
plot will have this kind of feature. There the loading and unloading path will trace each other.
This  is  a  geometric  nonlinearity  whereas,  if  you  are  dealing  with  material  nonlinearity  the
loading and unloading parts will be different. Upon removal of the load there will be a permanent
set. 



So in dynamical systems we saw that the governing equation will be of the form mx double dot
plus cx dot plus kx and a nonlinear function of instantaneous values of displacement and velocity
and this is the geometric nonlinearity or elastically nonlinear system behavior, whereas, this one
the second term the force of resistance depends on entire time history of the response up to the
current time instant. So this is hereditary or memory dependent nonlinearity typically arising due
to material nonlinearity. So this is a more general class of problems. 



In formulating the finite element formulations for nonlinear problems we found that we needed
to introduce certain newer measures for strains and stresses. 



For example, if you use infinite decimal strains for a body under rigid body rotations the strains
would not be zero, whereas, we know that under rigid body rotation the strain should be zero. So
a newer measures of strains are needed which satisfy two requirements namely that rigid body
motions imply zero strains and for small strains the infinitesimal strains definitions are restored. 

Now similar issues about stresses definition of stress measure also were considered. The Cauchy
stress tensor which deals with deformed configuration, the force field and area in a deformed
configuration was difficult to use in an analysis simply because we would not know the deform
geometry when we developed this solution.  So we developed a two alternative definition for
stresses that is Piola-Kirchhoff, first Piola-Kirchhoff and second Piola-Kirchhoff stress tensors.
So  to  develop  the  different  measures  of  stress,  we  interpreted  stress  as  a  measure  which
conjugates with a measure of strength to produce internal energy or as a quantity which produces
a traction vector in conjunction with a normal vector defined with respect to a surface element. 



Principle of virtual displacements was used to formulate the problems and the problem was if use
Cauchy stress tensor and Eulerian strain tensor which are defined – both are defined with respect
to deform geometry we can set up the expression for the virtual work. But the problem is as I
already said the deform geometry would not be known. So the volume over which we need to
evaluate these integrals would not be known in advance. 

So what we do is therefore introduce suitable strain and stress measures that helps us to evaluate
these integrals over known configurations. So that is how we develop nonlinear. In nonlinear
problems we recognize that if a structure is carrying a particular load P we cannot apply the load
entire load in stroke. So we divide the load 0 to P into small increments and we trace the solution
as the load is incremented by small amounts. During an increment of a load we can linearize
certain system behavior and that helped us to formulate the complete finite element procedure to
deal with these problems. So kinematically we considered three types of approaches; the so-
called Total Lagrangian approach in which the base and reference configurations coincide and
this  problem is  solved with respect  to  the configuration  in  the reference  with respect  to the
reference configuration. Whereas, in Updated Lagrangian approach the reference configuration
was  updated  as  the  loads  were  incremented  and  the  increment  between  the  reference
configuration and current configurations were taken to be small. But the reference configuration
itself was updated at every step. This we didn't discuss although I briefly mentioned co-rotational
formulation  where  we  first  form the  co-rotated  configuration  that  is  the  base  configuration
undergoes ritz body motions. This is exaggerated. This won't be so large, need not be so large.
Actually CG scan would coincide here. 



The  base  configuration  is  used  as  a  reference  to  measure  rotations  whereas,  co-rotated
configuration is used as reference to measure current stress of stress and strains. 

Now we develop the Total Lagrangian approach and Updated Lagrangian approach based on
which we formulated the virtual work – these are the virtual work principles and we formulated
the structural matrices. 



So this is a kind of a gist of what we try to achieve during the course and towards the end of the
last lecture I also briefly mentioned topics that could be followed up as a based on material
covered in this course. What was not covered in any I mean we didn't pay any attention was
questions about material only. So we should study, you should study the subject of plasticity and
pay more attention to formulation of constitutive laws to be able to do this. 

Similarly in the questions over stability analysis we again didn't consider material  nonlinear.
Now there are other topics about which I have briefly talked about. One is hybrid testing among
other Bayesian filtering etc. I would like to spend few minutes explaining what is hybrid testing
and what are the issues about uncertainty modeling and finite element method. 



Now how – what is the role that finite element models play in structural testing? Now there are
different  tests  –  [Indiscernible] [0:49:07] testing strategies available  in vibration engineering.
One  is  what  is  pseudo-dynamic  tests  that  typically  helps  us  to  handle  questions  about
complicated  in  elastic  behavior  under  dynamic  loads  using  basically  static  methods  of
experimental investigations. Then there is another one known as real-time sub-structure testing.
It  deals  with  treatment  of  interacting  primary  and  secondary  systems  in  an  vibrating
environment. 



So these techniques are being developed in the field of earthquake engineering. So traditionally
in earthquake engineering we have either a shake table on which we mount the structure to be
tested or we have a reaction wall based system where there are several hydraulic actuators which
apply dynamic loads on models like this. The shake table testing, the load time history that is
earthquake  load  time  history  is  applied  in  real  time.  The  length  of  duration  of  the  applied
acceleration is  equal to the length of the observed earthquake signal.  The problem with this
approach is limitations on payload capacity of shake tables. 

The best shake table that is currently available may not be -- you may not be able to test say a
building  which  is  taller  than  say  five-story  building  or  steady  interaction  between  soil  and
structure or fluid and structure and issues like that. So there is a need to geometrically scale the
test structures to be able to use shake tables. On the other hand, in effective force testing, this
limitation is overcome to some extent but still the dimensions of the structure to be tested is
governed by the dimension of the reaction wall system. Now in hybrid simulations what we do is
we divide the test structure into an experimental part and then numerical part and we try to avoid
scaling either of time or of geometry to the extent that is possible. 



So  in  a  typical  pseudo  dynamic  testing  suppose  this  is  the  test  structure  and  these  arrows
represents actuators and this  is  schematically  the actual hardware is  shown here.  This is  our
hydraulic actuator which is under computer control. Now we start by modeling this system as mx
double dot plus cx dot plus r of x is equal to the applied ground motion. We treat that r of x
which captures the inelastic behavior of the system as unknown. On the other hand, we assume
that  the  inertial  properties  and  damping  properties  of  the  system  can  be  modeled
computationally. So part  of the structure namely inertia and damping properties are modeled
computationally and part of the structural model which captures stiffness properties is measured
experimental. The way the experiment proceeds is we start integrating this equation possibly in a
linearized model for the stiffness and integrate  from say 0 to Delta T. That tells  us how the
building has displaced x of t with a vector of different nodal displacements and we apply those
actual displacements on the structure. These actuators are under displacement control. And as a
consequence  of  applying  those  displacements,  there  will  be  reactions  that  are  set  up  in  the
actuators which we measure using load cell and that helps us to determine the stiffness. That
value of stiffness is put into the equation of motion and the load is incremented from Delta T to 2
Delta T and at every time the actuator displacement is determined by solving this equation and
the stiffness is determined by actual measurement. 

Now these displacements were applied statically. So that is why this is called pseudo-dynamic
testing.  So in this  approach the time is slowed down. A 30 second earthquake event can be
expanded for two hours or three hour depending on the test duration that you are willing to –
time that you are willing to expend on the testing. Now the question here from the perspective of
this course is we have to integrate this equation of motion. We saw that even when stiffness was



completely specified the question on how these errors grow was not very easy to answer. There
were several questions on how to select the schemes of integration and so on and so forth. 

Now in this pseudo-dynamic testing what happens is the errors due to using finite step size and
adopting  certain  integration  schemes is  compounded by errors  due to  experimental  errors in
making measurements. So when we say that we have to apply a displacement of say 2mm we
may not be able to apply exactly that displacement. There will be an error and when we measure
the force transferred there will be again an error due to errors in measuring through the load
cells. So all those errors also propagate. So the major challenge in this approach is, of course,
how  to  combine  finite  element  models,  part  of  finite  element  model  with  an  experimental
protocol  and also  how to  deal  with  newer  sources  of  errors  in  establishing  this  integration
schemes. 

The another testing procedure is a real-time substructuring that can conceptually be explained
like  this.  Suppose  we have  a  two-story  frame.  We assume  that  part  of  this  structure  –  the
behavior of part of the structure is understood well and a computational model is adequate for
that.  The remaining part  has to be experimentally  tested.  Suppose we make a finite  element
model or a simple dynamic model this will be a two degree of freedom system say. Now in this
analysis this part of the structure is treated as a numerical model and this part of the structure is
treated as an experimental model. N is numerical E is experiment. So this resides on a finite
element  platform in our test  protocol  and this  is  the hardware.  Only part  of the structure is
mounted on a reaction wall or a shake table. Now we again start integrating the numerical model



and while  doing this  we need to  know what  is  the  reaction transferred  by the experimental
component. So there will be an iteration. So we start integrating. We move from say zero to Delta
T and find out what is the displacement. We apply this displacement maybe a shake table in real
time now. It is not pseudo time. I mean it is not static and we measure the reaction transferred to
the supports on our shake table or reaction wall and that is transferred to the numerical model. 

So the integration of equation of motion and dynamic testing of the experimental component take
place hand in hand in real time. So a 30-second event is analyzed in 30 seconds that means the
speed  of  integration  and  speed  of  testing  must  coincide.  So  this  again  leads  to  several
complicating questions and there are questions of time delays, noisy measurements and issues
like that which we need to implement while taking care of. 

So these hybrid testing methods are modern developments in earthquake engineering and there
actually the finite element modeling need to shake hands with experimental tools and there are
lots  of  newer  challenges  that  one  has  to  face.  So  this  is  a  brief  introduction  about  hybrid
simulations. As you can take off from what we discussed in this course and probably be able to
address some of these issues. 

So at this point we will close the discussion on this this lecture as well as this course.
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