
Indian Institute of Science Bangalore

National Programme on Technology 

Enhanced Learning

 

Copyright

All rights reserved. No part of this work may be reproduced, stored or transmitted in any form or
by any means, electronic or mechanical, including downloading, recording, photocopying or by
using any information storage and retrieval system without prior permission in writing from the

copyright owner.

Provided that the above condition of obtaining prior permission from the copyright owner for
reproduction, storage or transmission of this work in any form or by any means, shall not apply
for placing this information in the concerned Institute's library, departments, hostel or any other

place suitable for academic purposes in any electronic form purely on non-commercial basis.

Any commercial use of this content in any form is forbidden. 

Finite element method for structural dynamic

and stability analyses

Lecture -38

Review of measures of strain and stress; balance laws

CS Manohar

Professor

Department of Civil Engineering

Indian Institute of Science

Bangalore 560012

India



The previous lecture we started talking about nonlinear finite element model development. 



We started by discussing sources of  non-linearity  and we saw that  the main source of non-
linearity could be due to strain displacement relations being nonlinear. That is called geometric
non-linearity  and the  stress-strain  relations  could  be  nonlinear  that  is  material  non-linearity.
There  could  be  non-linearity  associated  with  boundary  conditions  or  energy  dissipation
mechanisms. 

So  various  schemes  of  classification  are  possible.  All  these  nonlinearities  can  coexist  in  a
problem. So in this case what is shown here is small displacements and small strains but there is
material non-linearity here, whereas, in this case there is material could be linear or non-linear
but there are large rotations but small strains. 



Here material again could be linear or non-linear. There is large rotation and large strains and this
is  a  schematic  of  a  situation  where  there  could  be  non-linearity  associated  with  boundary
conditions. So this spring will come into action only when this displacement here exceeds this
threshold in which case the stiffness of the system increases. Here the loading and unloading
path will  be tracing each other  whereas  in  material  non-linearity  the unloading path will  be
different from the loading path. 



After reviewing few details about qualitative feature of nonlinear system response and how it
differs  from  response  of  linear  systems  we  started  talking  about  elements  of  continuum
mechanics and I briefly started talking about kinematics that is study of motion and deformation
without concerning the causes of motion and deformation. So we have a configuration at time
equal  to  0.  It  is  here  and  this  could  be  the  reference  configuration  and this  is  a  Cartesian
coordinate  system in  which  the  position  of  particles  in  the  material  points  in  this  body are
described. So P, the position vector of P is the X and after deformation this point P with position
vector X gets mapped to point P with position vector lower X through this transformation. And
P-P is the displacement vector defined as U of X minus X. So in Lagrangian descriptions we
treat the coordinates of capital P that is capital X1, X2, X3 as the independent variables whereas
in  Eulerian  system  we  treat  the  current  position,  the  position  of  particle  P  in  the  current
configuration that is lower case x1, x2, x3 as the independent variables. That is Eulerian system.
So in solid mechanics problem often Lagrangian coordinate system is used. 



Now let us consider a line segment PQ in the body be at in the reference configuration and due to
this deformation, this point PQ moves to this position pq as shown here and the initial length is d
capital X, this is d lowercase x. So various position vectors of PQ in the T equal to 0 and at some
time T are shown here. 



Now the position vector in the current configuration is a function of the position in the original
configuration and I can write X1, X2, X3 in the long hand in this form and from this I deduce
dX1 is dX1 by dX1 into dX1 etcetera that is shown here. So this set of equations where I get
dX1,dX2 dX3 which are components of position vector in the deformed configuration which are
related to the components of position vector in undeformed configuration through this matrix and
this matrix is known as deformation gradient tensor. 

So we get this equation in matrix notation it is dx is equal to F dX in in the indicial notation dXi
is Fidxj or in tensile notation is f.dX. The determinant of this matrix F is known as Jacobian. 

By inverting  this  relation  I  can also here the components  of  line segments  in  the deformed
configuration are related to component of position vector in the original configuration. This can
be inverted and I can get this relation and dX is f inverse dx. We have displacement vector as U
is X minus x and from which I get to use du =dx-dX and du I can write therefore as for dX I will
write FdX so this is (F-I)dx and this matrix -I I call it as capital G and this is a displacement
gradient with respect to reference configuration. 

Alternatively I can express dX in terms of dx through this relation and I get this is I minus F
inverse into dX and this matrix is known as J naught. So these are displacement gradient with
respect to current configuration. 



So this G and J naught matrices are shown here. This is with respect to displacements whereas
this is with respect to the position coordinates of the position vector. 

So G is this.  J naught is this but for small  deformation G and J naught related through this
relation. So small deformation this relations apply. 



We can consider a few examples. Suppose I have the displacement field given by lambda e1X1,
lambda e2X2, lambda e3X3 so that  x1,  x2,  x3 are respectively lambda X1, lambda X2 and
lambda X3. The displacement e1, e2, e3 will be lambda-X1, X1 and lambda- X2, lambda-1 X3.
From this I get the deformation this matrix F as this and this type of deformation is called pure
dilatation. 

Now another example I will consider x as 1+alpha e1X1+e2X2+e3X3 so that X1 is 1+alphaX1
from which I get e1 is alphaX1 and X2 and X3 are such that e2 and e3 are zero from which I get
F to be given by this.

So this deformation is called pure extension. Now I can consider X to be A into X plus C from
this it follows u is (A - I)X plus C and F is simply A. when the matrix F is independent of X, we
say that the deformation is homogeneous. 

A slightly more involved another example here x1 is X1 plus gamma X2, x2 is lambda X2, x3 is
lambda X3 so that the F matrix will be given by this and this deformation is called pure shear. 

Now here I have a displacement field where there are non-linear terms X1 into X2 and so on and
so forth. So u1 will be gamma 1 X1X2 u2 is X2 is gamma 2 X1X2 and X3 is gamma 3 X2X3
from which I get F to be this which is a function of now X1X2X3 and such deformation are
called non-homogeneous. So there are simple illustrations. 



Now this Phi of X comma T which maps the position vector X to lowercase x it has to satisfy
certain conditions. This function is continuously differentiable and this is one-to-one and that
means F matrix can be inverted so dX is FdX and J is the Jacobian determinant of F. We impose
the condition J to be greater than 0. You can see that the determinant can be expressed in terms of
displacements as shown here if all displacements are 0 then I get J equal to one. So for F to be
invertible J must not be equal to zero because it is determinant of F, therefore F inverse to exist.
Determinant of F must not be zero. 

So upon deformation J cannot become negative without crossing J equal to zero. So hence we
impose the condition that J must be greater than or equal to zero and these are such motions are
admissible motions. 

Now I can – an example of a motion which is not not admissible is shown here you can verify
that this is not admissible. 



I mentioned in the previous lecture that rotations play a crucial  role in analysis of nonlinear
systems. So let us consider the displacement field where there is a rigid body, translation, and a
rotation. 

This R matrix is a rotation matrix. So this relation is expressed in matrix form here, indicial form
here and a tensorial form as shown here. This R of T is a rotation matrix, XT of T is a rigid body
translation. Now from this equation I find dX it will be RdX plus dxt of t dxt of t is 0 because
rigid body translation implies no change in length. Therefore this is RdX. Now if you find the
length dxt square of the length dxtdx and if for dxt if I write this equation I get dX transpose R
transpose RdX. Since R transpose R is a identity matrix because R is a rotation matrix I get this.
So this length remains unchanged therefore I mean I have to verify that R transpose R is I.
Therefore the argument is the length in a rigid body rotation, and translation length does not
change. Therefore dxt transpose dX must be equal to dxtdx therefore this is true for any dX.
Consequently I get the relation that R transpose R is I or in other words R transpose R inverse
that is R is orthogonal. 



Now how does pictorially it looks like? Suppose you'd consider a triangular domain upon this
transformation RX+xT this R, effect of R is to rotate this as shown here and xT the effect of xT is
to translate. So this is how the element looks upon undergoing this deformation. 



Now if we consider two coordinate systems xj and xj prime such that a position vector in xj
system is xjej and position vector in xj prime coordinate system xjej prime where ei unit vectors
in xj system and ej prime are the unit vectors in xj prime system. Now repeated indices imply
summation here. Now clearly this dot product of eiej is Delta ej and since this is equal I get this
relation. I will dot product with ei and I get this and from this denote ej prime dot ei Rji and this
gives me the relationship between xi and xj prime and similarly I consider this equation and
again do another dot product. This time with the ei prime I get this relation. So from this analysis
we get that X is R transpose x Prime and x prime is Rx. So this is how a vector undergoes
transformation due to coordinate transformation. By using similar arguments we can show that a
tensor like stress undergoes transformation following this role. 

We introduce another quantity known as angular velocity. So we consider again the rigid body
translation and rotation as shown here and I differentiate this with respect to time I get X dot is
R.X plus X.T Twitter. Now for X I will write using this relation, it is X- xT of t into R inverse of
that and R inverse is RT and I get this relation. So from this I get this equation. I rewrite in this
form by denoting R. R transpose by capital Omega and this quantity is known as angular velocity
tensor. 

Now we can show that this angular velocity tensor is a skew symmetric matrix to show that we
consider D by DT of RR transpose since RR transpose is identity matrix this must be equal to 0
so that means r dot r transpose plus RR dot transpose must be 0 from which i get the relation
Omega must be equal to minus Omega transpose therefore Omega is skew symmetric and this
will have this form. 



A simple example I consider x equal to 2X plus 3Yt and y is 2Xt plus 3Y. So the question is
examine the admissibility of the motion sketch the configuration of the element at T equal to 0.5
second and determine the displacement velocity and acceleration fields. So the domain is OAB is
described here. This length is 1. this length is also 1. 



So deformation gradient you can easily evaluate it to be this and the Jacobian will be 6 minus 6t
square and this has to for motion to be admissible this has to be greater than 0 therefore this
motion is  admissible  only for t  less than 1 at  T equal  to 1/2 I  will  put  for T 1/2 I  get  this
displacement field and I can map the points, the three points here O, A, B, and I will plot them in
the transform coordinate and find out the displacement field and velocity field and acceleration
field. 

And this triangle is the O prime, B prime is the – this is how the triangle looks upon deformation
at T equal to half. Okay. 



Now there are other few things that I am stating without proof. Some of this we have done but
other couple of things I am not doing. Upon deformation dX becomes FdX this we have shown.
Similarly  area  element  and volume element  undergo transformation  as  shown here  da is  JF
transpose inverse to da and volume is dv is JdV. Fij we already discussed duX by duXJ and
inverse of this is this and J is the Jacobian --so is the determinant of F called the Jacobian. So
these two results I am stating without proof. You can with some effort you will be able to show
that. 



There is an important concept known as polar decomposition theorem and that leads to notion of
stretch and rotation tensors. The main idea is this the motion of a line segment can be expressed
as a pure deformation followed by a rigid body rotation or a rigid body rotation followed by a
pure deformation. That is F can be written as R into U or V into R where R is a rotation matrix
and U and V are symmetric positive definite matrices. So for pure rigid body rotations F is R and
consequently U will be I and V will be I. Now for other situations we can work out how you can
be determined is as follows. We consider F equal to RU and from this I get F transpose F is F
transpose RU and for F transpose I write U transpose R transpose and this becomes U transpose
U which is U square. So from this I get U to be square root of F transpose F. Similarly if I
consider  the  second  relation  F  equal  to  VR I  get  post-multiplying  by F  transpose  I  get  FF
transpose is VRF F transpose and again by making the substitutions we show that we square root
of FF transpose. 



So how to find R from a given F? U is first we find U and V by square root of F transpose F and
FF transpose square root of a of transpose F. F is RU therefore R is F U inverse or alternatively F
is VR, R is V inverse F. Now this quantity F transpose F is known as denoted by CR and it is
known as right Cauchy green stress tensor and CL which is FF transpose is left Cauchy green
stress  tensor.  Clearly  they  are  symmetric  and  positive-definite.  So  that  can  be  verified  by
inspection here. 



Now how do you find a square root of a symmetric positive definite matrix? Quickly we can
recall.  Let A be a n by n symmetric positive definite matrix.  Let us consider the eigenvalue
problem a phi equal to lambda phi. Let Phi be the matrix of eigenvectors such that it is Phi
transpose Phi is capital lambda and Phi transpose Phi is I. So this lambda is a diagonal matrix of
eigenvalues obtained by solving this problem. And we know that these lambdas are non-positive
and Phi is real valued. So from this I can write A as Phi lambda phi transpose. Now let B be
square root of A. That's what I wish to find out. So and I consider B equal to Phi D Phi transpose.
I do not know what is D. So from this I get B square is Phi D transpose Phi D Phi transpose into
Phi  D  Phi  transpose  but  Phi  transpose  Phi  is  I  that  is  how we  have  normalized.  This  will
therefore will  be Phi D square Phi transpose. This is  equal to A because B square is  A and
consequently by comparing these two relations I get lambda to be D square it will be equal to
lambda capital lambda and therefore D square root lambda. So B is therefore obtained as Phi
square root lambda phi transpose. 

So this gives interpretation of what is the square root of A matrix. 



Now we will now talk about measures of strain. Now there are two requirements that we need to
satisfy. First is the strains must vanish when body undergoes rigid body motion. Secondly the
strains  coincide with the infinitesimal  strains in the limit  of strains becoming small.  So any
measure of strain that we develop should conform to this and we can ask – begin by asking the
question why do we need new measures of strain, why not be content with linear measures of
strain.  That  is  infinitesimal  strain.  Now the  problem with  infinitesimal  strains  is  that  linear
measure of strain does not lead to zero strains for structures undergoing rigid body rotations.
How do we see that? 



We can consider a small example. You consider a two-dimensional example of an element which
is rotated by angle theta. It is a rigid body rotation. So the deformation is given by X is equal to
x1x2 is cos theta minus sine theta sine theta cos theta x1x2. So for this deformation for no any
value of theta we expect that there won't be any – the strains would be zero. Now we can find the
displacement  field  u1  is  X –  and this  and  u2 is  this  and from which  I  compute  the  strain
infinitesimal strain component du1 by du x1 is cos theta minus one, epsilon YY is du2 by du2X
which is cos theta minus 1 and shear strain is 0. Now you look at epsilon XX and epsilon YY
they are not 0 but of course as theta goes to 0 this goes to 0 that is okay but for large theta epsilon
XX and  epsilon  YY do  not  vanish.  This  is  why  we  need  to  redefine  strain  when  you  are
considering large problems with large displacements. Now to examine this in a slightly greater
detail we can consider cos theta minus 1 this can be shown to be equal to minus theta square by 2
plus order of theta to the power of 4 and approximately we can take it as theta square by 2. So
based on this we will be able to judge when to abandon linear strain measures. So when theta is
large we need to abandon. 



So just  to  quickly  see  that  suppose  the  strain  being  measured  is  about  point  naught  1  and
acceptable accuracy is about 1% of that. So this is accuracy. Now the term that we are ignoring
in linear strain approximation is of the order theta square by 2. We assume theta to be small so
that theta square by 2 can be ignored. So for approximation to be acceptable theta has to be less
than this which is about point naught one radians. So if you want if you are dealing with strains
of about point naught one and you want to characterize with 1% accuracy the rotation should not
cross this. Similarly if the strain being measured is about ten to the power of minus four and
acceptable accuracy is ten to the power of minus 6 that is again 1% percent error. The linear
measure of strain is acceptable if theta is less than point naught naught radian. Now obviously if
theta exceeds this the major infinitesimal strain measures are not acceptable. 

Now it is important to note that if the structure is on the verge of losing stability small strains can
cause large rotations. So we cannot use linear measures of strain in buckling analysis that is why
we, if you recall, we use nonlinear strain displacement relations when we did buckling analysis. 



Now equipped with this we can introduce the first strain measure that is Green-Lagrange strain
measure.  we have seen this  earlier  but  in  a slightly different  notation.  dX is  F into dX and
therefore  length  of  an  element  dX  square  is  dX  transpose  dX.  This  is  in  the  deformed
configuration and in the original configuration it is this. So the change in square of the length say
ds square minus dS square and this I can write in this form now. For dX if I use the relation FdX,
I can rewrite this as DX transpose F transpose FdX minus dX transpose dX. So I will write this
quantity  in  this  form  dX  transpose  F  transpose  F  minus  I  into  dX.  This  quantity  in  the
parentheses I call it as 2 into tensor E defined as half of F transpose F minus I. This quantity is
known as Green-Lagrange strain measure. 



Now we can relate this to displacement, gradients of the displacement. So we have U is x minus
X that is du by duX is dux by duX minus I and we have G is equal to F minus I and for F if I
write now I plus G, I will be able to get that and upon slight simplification I get E as this. Now
one of the required that we stipulated is under rigid body motions the strain measure should go to
zero. So we can verify whether that is true here. So I again consider rigid body motions as R into
X plus X T of T . So this is translation. This is rotation. R is a rotation matrix. So F is R of T in
this case and if I substitute that into this I get F transpose is R transpose. Here it is R transpose R
minus I and R transpose R is I, therefore, this is 0. So unlike the infinitesimal strain measures
this is 0 for any rotation any rigid body translation and rotation. 



Now  how  about  the  other  requirement  that  when  strains  are  small  we  should  recover  the
infinitesimal strain components. So to be able to do that we expand this and write in terms of all
the terms we write in longhand and quantities that are shown in the red are the nonlinear terms
and the quantities in black are the infinitesimal strengths. So for small strains you can clearly see
that quadratic terms can be ignored. So we recover back the – all the terms in the red vanish and
we  recover  the  infinitesimal  strain  components.  So  this  is  –  so  therefore  this  definition  is
acceptable by the two [Indiscernible] [0:25:46] that we stipulated. 



Now we can also show that the magnification of a line segment that is in the - if there is a line
segment PQ with direction cosines N alpha upon deformation if I define a quantity known as
magnification factor as ds by dS whole square minus 1 that you can see that this is nothing but ds
minus dS whole square divided by dS square and this is defined as a magnification factor of a
line element. We can show that in terms of the Green-Lagrange strain tensor this magnification
factor is given by this. So clearly here if the line segment is such that it aligns along with X1 axis
this  is a repeated index imply summation.  So the line segment  that  is  lying along X axis is
magnified by the quantity E11 and a line segment which is aligned with X2 axis is magnified by
E22 and the line segment along this is magnified by E33. Now similarly if you take two line
segments which bear an angle theta before deformation and deform to this configuration, we can
show that a measure of shearing strain this again we have discussed in the previous one of the
previous lectures, is given by this and the strain E appears here. So here again if theta is PI by 2
and a line segment is aligned with X-axis and Y-axis here there are 2 direction cosines N alpha is
direction cosines of PA and M alpha direction cosines of PB. So if PA aligns along one of these
axis  and PB aligns  follow along  one  of  this  axis  then  for  example  epsilon  e12 will  be  the
shearing strain as per this definition between these two line segments. So the Green-Lagrange
strain has this interpretation. 



There's  another  strain measure  known as Almansi-Hamel or  Eulerian  strain.  Here instead of
eliminating capital dX we eliminate – here in this case if you see here we obtained the difference
in square of the length in terms of dX in the original configuration. A similar equation can be
derived by using dX in the current configuration.  So that definition takes us to the Almansi-
Hamel Eulerian strain and this is defined with notation small e and here ds square minus dS
square is written in terms of lowercase dX and we get in this form and this quantity I minus F
inverse transpose F inverse is defined as e. This is the Almansi-Hamel strain measure. 



Here again if you take a rigid body rotation we can show that we can first derive the strain
components in terms of displacement and we get in terms of J naught matrix is expressed in
terms of J naught matrix as shown here. This can be verified. 



If  you consider  now rigid body motions  X as RX plus XT of T again we can show that  E
becomes 0 and by expanding the terms we can again show that it can be verified that for small
strain the strain  measures  agree,  measures  agree with results  from infinitesimal  strains.  Two
definitions of strain measure. 

We also talk about what is  known as the rate  of deformation.  We call  capital  L as velocity
gradient  where  Lij  is  defined as  duvi  by duxj.  So that  means dvi  is  Lij  dxj.  This  L matrix
furthermore we write it as sum of a symmetric matrix and an anti-symmetric matrix and this
symmetric component of that is known as rate of deformation tensor and W is given by this.
Now if you consider the rate of change of the line segment ds square rate of change of square of
the length of infinitesimal  line element if you consider this  you can begin by noting that ds
squared dX1 square plus dX2 squared plus dX3 square and by writing this in this form we will
be able to see that it is 2dxt dx transpose dx by dt. 



And we can rearrange these terms and use this identity and we can actually show that the F
matrix and d matrix are related through this. So this F dot matrix. So this is some discussion on
rate of deformation. 



The relationship between D and derivative of the Green-Lagrange tensor can also be derived. I
have indicated the steps here and we can show that E dot is F transpose DF. So I leave it as an
exercise for you to verify this. 

Now how about measures of stress? We have talked about measures of strains. While defining
stress there are two alternative perspectives. In the first perspective we think of an internal force
and an area over which this force acts. In Cauchy stress tensor with which we are all familiar, the
force is a deform -- force is  reckoned with respect to deform configuration and area is  also
reckoned with respect to deform configuration. Now this Cauchy stress tensor is difficult to use
because beforehand we will not know the properties of the deformed configuration. So that is
what makes us to think of alternative measures of stress. So in first The first Piola-Kirchhoff
stress tensor  the force is  measured with respect  to  a  deformed configuration  but  the area is
transformed back to the undeformed configuration. So it is force internal force reckoned with
respect to deformed configuration and expressed with respect to area, the distress is expressed
with respect to area in the undeformed configuration. In the second Piola-Kirchhoff stress tensor
the force is also transformed back to the undeformed configuration.  Area is also transformed
back to the undeformed configuration.  So this  is  one way of looking at  stress but the other
alternative is to look at stress and strain measures as conjugate pairs which combine together to
produce an expression for internal work done. So in terms of virtual work concept we have seen
that a strain energy stored in a body is expressed as product of integral of a product of stress and
strain. So we can think of stress as something that is a conjugate of a strain measure so that along
with the associated with strain measure it leads to a proper definition of internal work done due
to deformation. 



Now let's quickly recall the Cauchy stress. Definition of Cauchy stress. So we have an object in
the initial configuration body B I call it as B naught and this is a coordinate system and this is
acted  upon by body forces  that  is  forces  which  are  proportional  to  the  volume and surface
tractions  which are forces which are proportional  to the area,  and upon application of these
forces the body deforms and the process of deformation is opposed by an internal set of forces
set  up  in  the  body.  And  that  internal  set  of  forces  is  what  creates  stress  in  the  body. To
characterize that what we do is we consider the body in the current configuration that is after the
application of these body forces and surface tractions the body has deformed and internal force
system has been developed. 

So what I do is I consider an imaginary region C and I cut this out from this configuration. So
this  picture  represents  the  current  configuration  with  inner  part  of  C  removed  and  this
configuration, this figure represents the current configuration with outer part removed. So what I
do is at a point P I consider an area element say Delta a and that element has a in this figure it has
an outer unit normal n and the internal force acting on this Delta a produces a vector and that is
Delta f. It need not coincide with the N nor it should be need to be parallel to the surface area.
This force system when imagined for this part there is a hole here and n is a unit outward normal
and Delta f is the force acting on the elementary area Delta a at P. Now the fact that such internal
force system exists is the Cauchy-Euler hypothesis. 



So what it says is material occupying the interior of C exerts a force field on the material exterior
to C. Similarly material exterior to C exerts a force field on material interior to C. these two force
fields are equal and opposite. The interaction is free of any moment. There are no couples. Okay.
It's only, the Delta f is only a force. There is no moment there. Okay. This is an assumption that
we make and under these conditions we define stress at P I call it as t tilde n there is N is a unit
outward normal tilde is a denotes that is a vector. This is limit of Delta a going to zero Delta f by
Delta a. Delta a is defined in the current configuration and t tilde n is a vector. Normal stresses
components of t tilde n along n and shear stress components of t tilde n perpendicular to n. t tilde
n clearly depends on n.  That  means passing through this  point P I  can select  so many area
segments that means this the way I have cut this is not the only way. I can cut it in many ways.
So the direction of unit outward normal can vary. So passing through point P I can draw an
infinity of planes with unit outward normal n and we need to if you want to define state of stress
at point P I need should be able to specify what is t tilde n for any choice of the orientation of n.
So complete specification of state of stresses at P requires all these t tilde n to be specified for
any choice of n. 

Now stress analysis is determination of stress analysis consists of to determine state of stress at
all points in B. So this looks like a tall order at any one point I need some infinity of vectors and
there are infinite points in B. So how do we proceed? 



So here what we do is we select a cardinal coordinate system and erect three planes which are
mutually perpendicular passing through P and define the stress vector on these three planes and
knowing that we will be able to specify stress on any plane that is inclined to this Cardinal plane.
So according to Cauchy stress formula this sigma is the stress tensor. This is t tilde n is the stress
vector with the unit outward normal n and this is given by this. 

So this sigma is a second order tensor and this is symmetric because there are no interacting
moments and if you change coordinate system sigma prime is given by C sigma C transpose
where C is the transformation matrix and this I am quickly recalling. I expect that you have – this
is  not the first  time you are hearing about all  this. So this  leads to the concept  of principal
stresses and principal axis then stress invariants and we will be able to find out maximum normal
and shear stresses and the planes for which they act and when writing stress in finite element
formulations as you have seen stress can be written either as a three by three matrix which is
symmetric or as a column vector by using what is known as white convention. So we select
elements in this order. These diagonals this and this and I have sigma 1-1, 2-2, 3-3 then 2-3, 1-3
and 1-2. So this is how we arrange the column vector. 



Now Cauchy stress is the most natural measure of stress because it finds how – it considers the
body  in  the  deformed  configuration  when  the  internal  force  system has  been  set  up  and  it
describes the state of force per unit area in some sense. That area is also recorded with respect to
deformed configuration. But that itself leads to a certain difficulties that is it  is defined with
respect to deform geometry which would not be no during the solution process. So in Lagrangian
description equations are written with respect to the known reference configuration. So this –
there is a contradiction between these two and consequently treats the requirement that we need
alternative definitions of stress measures. 



So this leads to a couple of definitions for stress. The first is known as first Piola-Kirchoff stress.
So here what we do is this is – the description is quite similar to what I talked about. Now this
stress is defined what we do is this is the unit outward normal here and this is the force vector
and I consider this area Delta a I map it back to in the -- what it would be in the undeformed
configuration. So I will consider this Delta f and this area in the undeformed configuration and
set up a definition for stress. How do I do that? 



So we have seen that the rule for transformation of areas is dA JF inverse transpose dA and we
have df is t tilde n da t tilde n itself is sigma n. These results are known. Now what I do is we
introduce capital T tilde n I call it a stress vector acting on element dA. That is this in this. Okay.
It is introduced in such a way that it produces the force df that force is this df. So I have df as T
tilde n da and this must be equal to capital T tilde n dA. So this and consistent with this definition
T tilde n is sigma n I introduce another matrix P such that T tilde n is P into N where capital N is
the vector of unit outward normal. So this quantity capital P is known as first Piola-Kirchoff
stress  tensor.  This  is  a  current  force  per  unit  undeformed  area.  So  we  need  not  know  the
deformed configuration to work with the first Piola-Kirchoff stress. There is a problem here and
you can relate the the first Piola-Kirchoff stress to the Cauchy stress through this relation using
the relation between you know da and capital  dA as shown here.  If you observe this matrix
carefully we see that P is not symmetric and it has 9 independent components and when working
with constitutive laws with symmetric strain matrices this becomes inconvenient. So this is not
going to be convenient for our modeling purposes. 



So that leads us to introduction of an another stress measure known as second Piola-Kirchoff
stress. Now here what we do is we introduce a pseudo force vector fashioned after the relation
dX is F inverse dx. I define DP cap as F inverse df. See I have here this df and I define with
respect to the undeformed configuration another force vector, see a line segment which is again a
vector gets transformed through this relation. So using – this is a vector and force is also a vector
using the same transformation I define a force vector DP cap as F inverse df. So this DP cap is F
inverse df and using our relations or definition of df I can write this as F inverse for df I will
write t tilde n da and again for t tilde n if I write sigma nda I can rearrange the terms and I get a
quantity know SndA where S is given by jf F inverse sigma F inverse transpose. This quantity is
known as second Piola-Kirchoff stress tensor. And as you can see S will be symmetric here.
Sigma is symmetric and there is a F inverse and F inverse transpose coming here. So if you find
S  transpose  of  S  it  will  be  same  as  S.  So  this  is  the  second  Piola-Kirchoff  stress.  So  the
relationship  between  second  Piola-Kirchoff  stress  Cauchy  stress  and  the  first  Piola-Kirchoff
stress is through these three relations. Okay. 



Now to proceed further we need to set up the physical laws which are expressed as what are
known as balanced laws that is principle of conservation of mass, principle of conservation of
linear momentum, principle of conservation of angular momentum, and principle of conservation
of  energy.  So  these  form  the  backbone  of  our  mathematical  formulation  of  problems  of
continuum mechanics and these basically relate the field variables like displacement, velocity,
acceleration, stresses and strains, and to the body geometry applied surface, tractions and body
forces, boundary conditions, etc. and they lead to the governing equations to be solved. 



Now we need  to  elaborate  on  that  but  before  that  we can  make  some observations.  When
introducing the notion of stress I talked about conjugate pairs of stress and strain. We can show
that the second Piola-Kirchoff stress tensor and the Green-Lagrange strain tensor form conjugate
pairs so that we can compute the strain energy stored due to deformation using this relation. This
is S, double dot, E dot dv, where v is the volume. So W is the internal work done per unit time
per unit volume in the reference configuration. So we start with this expression such as this and
use either principle of virtual work or variational approaches and we will be able to express S
and E in terms of the displacement  fields  and those displacement  fields  will  be interpolated
within an element and we derive the governing structural matrices and vectors. So that we need
to do. 



To begin  our  discussion  what  we  will  do  is  we  will  focus  on  linear  relationship  between
conjugate stress and strain measures. So for example we will take that the PK-2 that is Piola-
Kirchoff second stress tensor and the Green-Lagrange strain tensor are linearly related. It's a like
Hooke's law between stress and strain but the stress is now not the Cauchy stress and strain is not
the Green-Lagrange, this Green-Lagrange but stress is second Piola-Kirchoff. So this is what we
will start doing and if there is material non-linearity of course this will be more involved. 



Now in our development  of finite  element  formulations  there are three alternative kinematic
descriptions  that  are  possible.  So  they  are  known  as  total  Lagrangian  approach,  updated
Lagrangian approach, and co-rotational formulation. 

So I will just explain what these are then we will consider the more details in the following
lectures. In the total Lagrangian approach the base and reference configurations coincide and it is
taken  to  remain  fixed  and  the  current  configuration  is  this.  So  we  describe  the  reference
configuration  to  be  the  undeformed  or  the  initial  configuration.  This  is  total  Lagrangian
approach. 



In updated Lagrangian  approach the reference configuration  is  updated at  each increment  of
loading while solving the equilibrium equations. So this is a current configuration and this is the
reference  configuration.  This  is  the  undeformed  configuration.  So  this  reference  state  gets
updated at every time as the load is incremented. 



In co-rotational formulation we start with the base configuration and it is used as a reference to
measure rotations and co-rotated configuration is used as a reference to measure current stress
and strength. So it will – this this – all these figures are very exaggerated. Here the co-rotated
configuration undergoes rigid motion.  For example,  the CG of these two configurations  will
coincide. So it is a rigid body motion and then from this rotated configuration we characterize a
current configuration. 

So what we will do is in the following lectures we will elaborate on this and try to develop finite
element formulations with whatever time that is left probably we will deal with total Lagrangian
formulation for simple line elements like bars and beams and I will also outline how to proceed
for two-dimensional and other problems. So that we will take up in the following lectures. So at
this stage we will close this lecture
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