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In this lecture and for the remaining part of this course we will discuss some issues related to 
development of Nonlinear Finite Element Models. So we will begin in today's lecture a brief 
introduction of the, what are the main issues and we will start reviewing principles of 
continuum mechanics as much as is needed for purpose of illustrating the model development. 



So first we can ask our self the question what are nonlinear system, so a simple answer would 
be to begin by defining what is linear system, and a negation of that definition would tell us 
what is nonlinear system, so if you have a system with input X1 producing output Y1, and X2(t)
producing output Y2(t), if we were to apply X1 and X2 together the response would be some of 
Y1 and Y2, and this is known as Additivity property. Similarly if we apply an input which is a 
scalar multiple A of X1(t) the response will be A of Y1 (t), so if these two properties are 
satisfied we say that the system is linear. 

A non-linear system is a system that is not linear, so one of these conditions would not be 
satisfied so this is a non-specific description, it doesn’t tell you what exactly is the nature of 
non-linearity, it simply tells that linear property is not obeyed. Now some simple examples, 
suppose if you consider a system whose input is X and output is Y, and they are related through 
this equation Y = MX + C, it’s a scalar equation, so if X1 is the input let Y1 be the output, now 
if I multiply the input by a factor A we see that this is not equal to the principle of superposition
is not valid here, suppose Y1 is response to AX1, and if you consider the response AY which is 
not equal to Y1, so the system is not linear since it does not obey the scaling property, so lesson 
from this is that 0 input produces 0 output in a linear system, so this is not satisfied in this case.



Now to fix the idea we can consider a simple single degree linear vibrating system with input 
X(t) and output Y(t), so let us assume that system starts from rest, suppose Y1 is a response to 
X1, and Y2 is response to X2, if we now add these 2 equations we will see that the output gets 
added up X1 + X2, so by inspection we see that Y1 + Y2 is a solution of this equation therefore 
principle of first condition is satisfied. Similarly if I multiply this equation input by A, we can 
again by inspection we see that AY1 is a solution, so the system is linear. 
Now if you now include at cubic nonlinear term alpha Y cube, let under X1 let Y1 be the 
response, and under X2 to let Y2 to be the response, let us assume for the purpose of illustration
that we have 0 initial conditions. Now again as before if I add the inputs I mean add these two 
equations I see that I get this equation, whereas if I now apply an excitation X2 + X3, that is X1
+ X2 if the response is denoted Y3 we see that Y3 is not equal to Y1 + Y2 therefore system is 
non-linear. 



Now as an exercise we can examine the two examples that is a single degree linear system and 
single degree nonlinear system by including the effect of nonzero initial conditions, so you can 
see what happens. Another system X(t) is the input and Y(t) is output, so if I now supply an 
input which is a scalar multiple of X(t) say AX(t) we see that Y1(t) will be AY(t) that means 
scaling property is satisfied, but additivity property is not satisfied, therefore the system is still 
nonlinear, it is not linear, although one of the property is satisfied. 



Now we can start discussing about what’s the implication of system being nonlinear on 
response analysis, so response to all the relevant loads need to be analyzed simultaneously, so 
you cannot analyze response to individual loads and superpose the response, because principle 
of superposition is not valid. Now I will illustrate with some simple cases but I will just 
enunciate some of the properties, in undamped free vibration frequency of oscillations depend 
on initial conditions which is again an unusual feature if you are thinking this property for 
linear systems. Then harmonic inputs at frequency omega can produce harmonic response 
responses at frequencies not equal to omega, it can produce non harmonic responses and it can 
also produce aperiodic responses, so we can think of primary sub harmonic and super harmonic 
resonances, whereas in a linear single degree freedom system there is one natural frequency and
one resonant frequency, whereas for a single degree freedom nonlinear system under a single 
frequency excitation there can be several resonances. 
Then reciprocity relations which are one of the major features of linear system are not valid for 
non-linear system, so this property helps us to verify in a laboratory, for example if a system is 
behaving linearly or not, then so large responses can occur at frequencies other than the driving 

frequency, this again refers to the sub harmonic and super harmonic resonances that I 
mentioned. 
Then steady state responses depend on initial conditions, whereas in a linear systems under 
harmonic excitations steady state when they exist they are independent of initial conditions, 
whereas this is not true here, then there can be multiplicity of steady-state solutions for 
nonlinear system, if you simply consider an algebra quadratic equation AX square + BX + C = 
0 even for such simple algebraic equation we already know there are two solutions, so if it is a 
differential equation with a non-linear terms one can still expect that there will be multiplicity 
of solutions that indeed happens, then system can process multiple equilibrium states and 



display a wide range of bifurcations, this we have discussed when we talked about stability 
problems. 
Then concept of normal modes, natural frequencies, and natural coordinates are no longer 
applicable for nonlinear systems, so you cannot uncouple the equations of motion through a 
transformation. Then band limited excitation can produce responses with frequency content 
outside the bandwidth of excitation, so this is again is a very important aspect of non-linear 
system behavior both in response analysis as well as in experimental work, so in fact a 
narrowband, for example a single frequency harmonic excitation can produce a very broad band
response and that type of behavior is known as chaos, we will not be touching upon that I am 
just mentioning for sake of completeness. 

Now some simple analytical solutions to illustrate some of the features, this is not an exhaustive
coverage but just to motivate you to special features that you should expect when you are 
dealing with nonlinear problems. Suppose we consider an undamped single degree freedom 
system with cubic nonlinear terms and it starts with an initial condition A, X(0) is A and the 
initial velocity is 0, mu is a parameter, if mu is 0 system is linear so we can see that solution is 
the A cos omega NT, but omega N is this frequency. 
Now if mu is not 0 one can expect that the frequency of oscillation and the nature of oscillation 
would change, it need not be at omega N, it will be influenced by mu, so what I will do is I will 
represent the solution in a series X naught(t) + mu X1 + mu square X2 + so on and so forth, 
then omega square which is the frequency of oscillation I will again expand in a similar series, 
now the unknowns here are X naught and omega n are known, X1, X2, alpha 1, alpha 2 they are
not known, what we do is we substitute this assumed solution into this form, into the given 
equation and then collect terms you know on both sides which are powers of mu, so if you 
collect terms on mu to the power of 0 I get this equation, mu to the power of 1 I get this 
equation, now we can examine this solution to these equations, so if we consider the first 



equation it is X naught double dot + omega square X naught = 0 from which we get X naught(t)
is A cos omega T. 

Now X1, the equation for X1 has X naught(t) on the right hand side or here, it is present here, 
so if we now take that into account and solve the next level of equation which is again linear, all
these equation for X naught, X1, etcetera will be linear, but solution at the previous type drives 
the solution at the next step, so if we solve this problem we get X1(t) to be given by something 
like this. 
Now if, that means I have expanded cos cube omega T I'm writing the right hand side, now if 
we examine this equation if this omega, and this omega are the same, so as time becomes large 
the solutions will become unbounded, because we are in a resonant kind of situation, but system
is undamped it is conservative therefore this type of solutions are not possible so we demand 
that this multiplicating term alpha 1 - 3/4th A square must be 0 for simulating the expected 
qualitative behavior of the system so we get alpha 1 to be 3/4th of A square, so from based on 
this I can construct this solution and using the initial conditions I will be able to write this 



solution for X1(t), so if we restrict our analysis to only the first two terms I get X(t) as A cos 
omega T + mu A cube/32 omega square this cos 3 omega T - cos omega T, omega curiously is 
given by this, this omega depends on A, what is A? A is the initial condition, so this is what I 
was telling the frequency of free vibration can depend on initial conditions, and the response 
here is periodic but it is not harmonic, okay, so period depends on initial condition, if mu is 
greater than 0, omega will be greater than omega naught we call that hardening behavior, and 
mu less than 0 we call softening here. Now we can of course include higher order terms and do 
this, the objective of this discussion is not to illustrate the solution method but to highlight the 
qualitative feature of the response. 



Now a similar system under harmonic excitation it is damped nonlinear system and a harmonic 
excitation, if mu is 0 we know that response is harmonic for large times, and that is the 
harmonic steady state, now we want to examine what should be the solution, so if mu is 0 I 
have X naught(t) is A cos omega T, now I will assume that for some A and omega, for some A 
this could be the solution so I will substitute this assume solution into the equation of motion, 
this is only solution in the steady state, so I will to collect terms containing sine cosine terms, 
do a what is known as harmonic balance and I get a pair of equations which are given by this.
Now this resulting equation is the frequency response function of the system, so this is forcing 
function F amplitude, omega N is a natural frequency, omega is the driving frequency, A is the 
amplitude of response. In linear systems this, on the right hand side we will not get these A 
cube term, okay, so now if I plot this frequency response function we start getting curves like, 



in a linear system we know that the typically this curve will look like this, now in a non-linear 

system things change in certain bandwidth of excitation frequencies there are 3 possible routes 
and which one is actually realized in a solution depends on initial conditions, and all 3 solutions
need not be stable, okay, so now the question is we have to examine stability of these multiple 
steady-state solutions and only those solutions which are stable will be realized. Now if you 
were to do a thought experiment where you are increasing the driving frequency and you are 



starting with initial conditions which are on this branch, so as you progress along this line when
you come here the response suddenly drops, this is steady state response, this you won't see in 
the time history of response, it is two different time histories, but with initial conditions in the 
neighborhood of this response, so it drops and it will follow this path, so this branch will not be 
realized in such a calculation. 
But on the other hand if you start with this side of the solution and you progress this way 
keeping initial conditions in the neighborhood of the steady-state solutions here, then you will 
see that you will move along this path and there will be an upward jump and it will be like this, 
so if you ignore now presence of non-linearity you may think that this is the resonant amplitude
frequency whereas it will be this and that can lead to un-conservative estimate of the response. 

Now how do you see, in regions where there are multiple solutions or even elsewhere how do 
you know that the solutions are realizable, so what we can do we did this stability analysis 
earlier, what we will do is we will perturb the assume solution by a small perturbation, 
substitute back into this, and we get now a time varying system where the assumed periodic 
solution appears as a coefficient, so for a given value of A from this graph, for a given pair of 
values of omega and A you come here and do a Floquet’s analysis and find out whether the 
perturbations grows in time or not, so that establishes whether the assume solution is stable or 
not. 



So if there are multiple steady-state solutions possible then which one will be realized is a 
question that we have to answer, and in fact it turns out that in regions where there are multiple 
steady-state solutions the responses will be dependent on initial conditions, so this again is a 
newer feature.
Now there is another way of looking at this problem I will quickly run through this, we again 
consider a similar system, system with cubic nonlinearity and I will seek the solution in the 
neighborhood of capital Omega being in the neighborhood of omega naught, so what we do is I 
perturb omega naught by a small parameter known as detuning, okay, this is called as detuning, 
epsilon is a small parameter. Now I will arrange the amplitude of excitations and damping in 
this manner, and this method is known as method of multiple scales the discussion on this is not
focused on how to implement the method but what the method tells us if you do it, so I will skip
the details of this implementation of the solution, but what I will show is in this method I get 
solution in the form A(t) cos omega naught T + beta(t), where A and B are slowly varying 
functions of time which are governed by these 2 differential equation A and beta, okay. 



Now I can rewrite this equation in this form and if a steady state exists you can see that A and 
beta should become constant, so in which case A prime and B prime must be equal to 0, so the 
condition for steady state is that these are 0, these are nothing but fixed points of these 2 
differential equations, so corresponding to each fixed point of the equation for amplitude and 
phase there is one steady state possible, and this again turns out to be multiple valued, and how 
do we study stability here, what we do is we study the stability at the fixed point that also we 
have discussed earlier, so in these 2 approaches, in the first approach we are using Floquet’s 
theory and the system that we are studying is a system with time-varying coefficients, whereas 
here in the next approach we get the steady state as fixed points of certain simplified set of 
differential equations, and we investigate the stability of the solution by studying the stability of
the fixed points. 



Now this gives you a kind of a brief overview of what are the qualitative feature that you could 
expect in a typical nonlinear system, this is just a tip of a iceberg, there are many more 
complicating issues, but given that you have an understanding of linear system behavior, this is 
a list of items that you should start thinking about. 
Now why nonlinear analysis is important? There are many reasons, although many engineering 
systems are designed to behave linearly, one might think that nonlinearity is not that important 
in engineering design, but that is not factually correct, for example in earthquake engineering 
we design the structures to display controlled in elastic response, there are certain preferred 
modes of failures and certain failure modes that are not preferred that means we design the 
structure to fail in a particular mode, for example we want to have strong columns and weak 
beams that means if a multi-story building is going to fail under an earthquake, the failure 
should begin with failure of beams, that is slabs and things like that, and not for example the 
ground floor column, if a ground floor column fails no matter how strong the structure is the 
whole structural collapse. 
Then similarly for industrial structures like piping systems and things like that we use certain 
supporting devices known as snubbers, and nonlinear energy dissipation devices and things like
that, these again you know impart nonlinearity to the system, for example heat exchanger or 
pipe in a nuclear reactor conveys fluid at hot temperature, so in the normal course of its 
operation it should be able to withstand the thermal loads because of the conveyance of hot 
fluids, but in the event of an earthquake there will be additional support motions, to cope up 
with thermal loads the structure needs to be flexible but that very flexibility brings the natural 
frequency of the system into the range of earthquake excitation frequencies, so supports likes 
snubbers in the event of an earthquake they lock the structure and reduce the spans of the piping
and increase the natural frequency so that it attracts lesser seismic loads. 



Similarly in wind engineering the interaction between structures and the flow past vibrating 
structures induces highly nonlinear forcing functions that I will just briefly mention in the next 
one of the next slides. Materials like concrete and soil which are important in civil engineering 
application display nonlinear behavior even at low strengths, so the response need not be very 
large before nonlinearity switched on, they also display differing behavior in tension and 
compression, then response depends upon entire time history duration over which the load is 
applied and ambient effects such as temperature. 
Next if a structure is cracked and it starts vibrating, the closing and opening of cracks induces 
certain type of nonlinearities that we have to think of, and as engineers we are always interested
in steady of failures because we want to design structures to prevent failures, so to understand 
failure we have to enter non-linear regimes of responses, a linear system in principle can never 
fail you know it can withstand infinite stresses, there could be problems of loss of stability this 
we have discussed like buckling and snap through and so on and so forth. In many application, 
modern application prototype testing using nonlinear FE models have become popular, for 
example crash analysis in automotive design, simulation of drop tests in electronic industry 
etcetera, instead of performing costly experimental studies cheaper finite element simulations 
are being used. 

The sources of non-linearity in structural mechanics problems can originate from nonlinear 
strain displacement relations, this type of nonlinearity is called geometric nonlinearity, or the 
relation, the constitutive relations typically relating stress and strain it could be temperature as 
well could be nonlinear, then non-linearity associated with boundary conditions as in contact 
related problems and so on and so forth, and similarly nonlinear energy dissipation 
mechanisms, these are some sources of nonlinearity. So a structure can behave in different



 ways, for example the material of the structure could be nonlinear but there could be small 
displacements, so the typical force response diagram may look like this, so the deformations are
not large but the material of the structure has already entered a nonlinear regime so it is 
nonlinearity in constitutive relations. In the other type of behavior material may be linear or 
nonlinear but large rotations will occur and there are small deformations, so there are small 
strains but large rotations. 



Now of course one can have large rotations as well as large strains, so these are the most 
difficult problems to deal with, there could be special conditions like for example the same 
structure is supported through a gap and a loaded spring like this, so till the time this gap is 
negotiate, the spring won't come into action and moment that happens there will be a by linear 
nonlinearity, and this type of boundary conditions create what are known as nonlinear boundary
condition. 



If you write the equation of motion for a simple case again say MX double dot + CX + a 
nonlinear term, the function G is a function of instantaneous value of displacement and velocity,
this is inelastic, this is non-linearly elastic system, that means upon unloading this force would 
go to 0, and there won't be any residual displacement, the loading and unloading path will be 
tracing each other. On the other hand there could be forces of nonlinear forces which are 
dependent on entire history of the response up to the current time, so this typically originates 
from material nonlinearity, and this originates from geometric nonlinearity, so a typical force 
displacement you know graph for a system exhibiting so called hereditary nonlinear behavior or
hysteretic nonlinear behavior is shown here, so this is something like a force and a 
displacement, and for a given value of displacement you can see that there are multiple forces 
possible, which one will be realized depends on how you have reached that point, that means it 
depends on the history of the response up to that time, so this type of systems are more difficult 
to analyze as you could expect then this model, if this are difficult to model as well as to more 
difficult to analyze. 



Now there are nonlinear effects in I mentioned about wind engineering problems so if you 
imagine that there is a chimney which is subjected to say flow, this is planar view, the chimney 
is something like this, and the flow is taking place like this, the flow past this chimney will 
create a pressure field on the object, and if you integrate the pressure field over the surface area 
you get a force which can be resolved in line and across the flow directions, and we can show 
that for certain flow velocities and certain geometries there will be vertices that will be shed, 
and because of that there will be dynamic excitations predominantly harmonic on this 
chimneys, and these are known as across wind oscillations, so if the chimney is flexible the 
nature of these excitations become fairly complicated, so flow past a flexible object can create 
severe interaction, fluid structure interaction and for that type of systems there will be a special 
type of non-linearity as shown here I discuss this when we discuss limit cycle oscillations in 
one of the earlier lectures, you can see here that for small X dot, the term inside the parentheses 
will be less than 1, and the net effect of this term will be negative, it is like a negatively damped
system and small oscillations tend to grow. 
For large amplitude oscillations the term here becomes negative and induces a positive sign on 
this, and large amplitudes tend to decay, so in free vibration the system displays what is another 
limit cycle behavior, so that is a periodic solution, it is an isolated periodic solution, and when 
such systems are driven by external excitations there can be complex interactions between the 
periodic solutions which are highly nonlinear periodic solutions in free vibration and the 
components due to external excitation, and there are very many complex behavior something 
known as entrainment and things like that these are again characterizes nonlinear resonances, 
and if you want to understand peak response in such systems you have to understand the basic 
entrainment phenomena. 



Now so with this brief background we will come to the objectives of the discussion on 
nonlinear systems, so the idea here is the subject is very vast, it cannot be covered in few 
lectures that I am planning to you know dedicate to this topic, the idea here is to provide a brief 
review of background concepts and present a flavor of treatment of nonlinear structural 
mechanics problems using finite element method, the focus is on geometrically nonlinear 
problems, we will not be talking about material non-linearity by and large we will be focusing 
on geometrically nonlinear problems. 



We can begin with whatever background we have without asking too many newer questions, for
example if you are talking about a planar Euler-Bernoulli beam, if we assume that there are 
large transverse displacement but small strains and there are moderate rotations, then the 
changes in geometry due to deformation need not be accounted for while defining stress, so the 
point here is if a structure undergoes large amplitude oscillations, the geometry of the structure 
also would change, so that needs to be taken into account while defining stress, so that modifies
many of the basic formulations that we'll use for analyzing this system, but suppose we don’t 
get into that under these conditions probably one can overlook those complications, then we 
will be able to proceed with whatever background we have, for example if we assume the 
invoke the Euler-Bernoulli hypothesis that upon deformation the line segments MN remains 
straight and normal to the neutral axis, and its length does not change, we get the displacement 
field, this we have discussed a few times where U1, U2, U3 are displacement along X, Y, Z 
respectively, and U naught(x) and W naught(x) are the displacement of the point on neutral 
axis. 
The strain displacement relations and that we will be using are nonlinear, we are not using the 
infinitesimal definition of the strain we are including the nonlinear terms as well, this I have 
discussed, the definitions I have discussed in one of the previous lectures, so the nonlinear 



strain displacement relations are again displayed here the quantities that appear in the red are 
the nonlinear terms, so for this assume displacement field I get epsilon1 1, I will retain the first 
term dou U1/dou X1 but this quadratic term we are not including, because we assume strains 
are small but dou U3/dou X1 is a rotation that is included, so I get this term for epsilon 1 1, that
mean dou U1/dou X1 whole square is ignored, but dou U3/dou X1 is retained, now only this 
strain will be nonzero, all other strains will be 0. And stress again I assume isotropic elastic 



material, so stress is related to strain through this relation, I will be able to write the expression 
for strain energy and the kinetic energy, using the assumed you know form of displacement and 
the consequence strains, and I get strain energy in this form, and if I now use the assume 
displacement form I get this, you see now there are quadratic terms in displacement in the 
expression for strain energy, so the terms appearing in red are the newer terms. 



Now if we assume the beam to possess symmetric cross-section, the terms appearing in red are 
not the, I mean it does not convert a nonlinear terms but the terms which will go to 0 if you 
assume beam section to be symmetric, so if that happens these 2 terms will go to 0, and I am 
left with U which is this, and the second set of terms are the new terms due to presence of 
nonlinearity. Kinetic energy is given by this I can write the Lagrangian, and again I will take a 2

noded element with 3 degrees of freedom per node, and we will again interpolate the axial 
displacement using linear interpolation functions and transverse displacement using Hermite 
polynomials I get the set of equations, and if I run through the Lagrange’s equation I will get



 the required equations of motion, so if you examine the Lagrangian the first few terms were 
already encountered when you do the linear analysis, so they lead to typical mass and stiffness 
matrices that we have already derived, and the newer terms will originate from these 2 
nonlinear term, so I suppose if you will focus on one of this, suppose the first term 1/8, AE, 
Dou W/Dou X 4 DX and substitute for the assumed displacement form I get this, and when we 
run the Lagrangian on this, we will get cubic terms here, and this I IJMK is a new integral that 
has to be determined, so here we won't get matrices, we will get vectors. 



So similarly the other term involving the other nonlinear term which is this, if we do that again 
we get newer nonlinear terms which could be quadratic or cubic, so I again name some of the 

integrals that appear here through notation KIRSK etcetera, so the final form of equation of 



motion at the element level will be ME UE double dot + KE UE + vector of quadratic and cubic
terms in U(t), okay and the multipliers that appear here are properties of the structural system, 
okay so this is the equation, so in free vibration this will be 0. 
Now energies in different elements can be added, so Lagrangian can be constructed for the 
built-up structure using the approach that we have used, there is no change in that aspect of our 
work, so assembly of element level matrices and vector can be done as before to obtain global 
equations of motion, then derivation of external forces and imposition of boundary conditions 
again follows the earlier developed procedure there is nothing new there, the resulting equation 
of motion for the structure after imposing boundary conditions and after computing the external
forces will be of this form in this case, so this G(u) is the nonlinear term that is arising in this 
model, and this will as we have seen it will have cubic and quadratic terms in U. 
Now we’ve already discussed how to solve this equation, see for example during earlier lecture,
lecture number 16 we have developed a you know operator splitting methods and other 
methods to tackle these equations so that can be used, I am not going to discuss the solution 
procedures at this juncture again. 



Similar analysis can be done for Timoshenko beam, this I leave as an exercise so this is the 
assume displacement field and this will be the strain, and there will be one more strain which is 
epsilon 1 3, and you will have to use this expression and construct the Lagrangian, now you 
have to include kinetic energy due to translation and the rotation, the rotor inertial effect also 
has to be included here, so once you do that following a similar procedure you will be able to 
derive the equation for Timoshenko beam.



Now this is alright, but how about a more general theory? Now in a more general theory we 
need to allow for measures of strain and stresses to be defined consistent with the deformations,
and also we need to allow for material nonlinearity, this will not be doing but this we will 
discuss now, as a structure undergoes large deformation the cross sectional properties might 
change, so when we define stress, we will have questions on some kind of a force divided by an
area, which area are you talking about, is it the structure in his un-deformed configuration or in 
the deformed configuration, if you say it the area is to be computed based on deform 
configuration when you are defining stress you would not know, what the deform configuration 
is, right, so and then similarly when you define strains, you have to think about large rotations, I
will show either during this lecture or the next lecture that if you use in the infinitesimal 
definition for strains, a structure undergoing rigid rotation the strains won't be 0, so that is not 
acceptable, so say you can’t stick with infinitesimal strain definition that also needs to be 
modified, so some of these issues need to be addressed and to do all this systematically we need

to get into the subject of continuum mechanics, and develop all the language and the notations 
in a systematic way before we even we can address as a simple class of problems, this subject is
very vast as I already said, we are not going to discuss many aspects of this, we will not be 
discussed, I have given a list of references which cover this subject in good detail and I will be 
using some of these references during the lecture. 



Now the subject of nonlinear analysis of structures is mathematically lot more refined than a 
linear analysis, there are many issues associated with notations and as I already said definition 
of stress, strain, and the balance loss, all of them we need to revisit so there are issues about 
notations, there are four sets of notations that one has to use, one has to understand, to 



understand literature on the subject the indicial notations I will quickly review this, a set of 
variables X1, X2, XN is simply denoted as XI, that means the indicial, here in the name refers 
to the index to the variables that we assign, the range of values taken by the index I needs to be 
specified, typically I runs from 1, 2, 3, if they are in a Cartesian space but it need not be so. 
Now repeated indices implies summation, for example if I have a term like alpha = I = 1 to N or
AI XI, this is simply written as alpha AI XI and I, I have to specify what range it has to be used,
I is 1 to N, see this I is a dumb index, instead of writing AI XI as well I can write AS XS, so 
that I or S is not very important, it is a dummy index. Similarly a term like this is written as 1/2 
KIJ UI UJ, you can see that I and J are repeated, therefore a summation on I and J are implied 
from I = 1 to N, this Kronecker delta is a symbol that is used delta IJ is 1, If I = J otherwise it is 
0, so using that for example the length of an infinitesimal element DS square which is given by 
DX1 square + DX2 square + DX square is written as delta IJ, DXI, DXJ, the symbol known as 
permutation symbol epsilon IJK it is defined as shown here, so you can keep this figure in 
mind, if you run from 1, 2, 3, or 2, 3, 1, or 3, 1, 2 epsilon IJK is 1. On the other hand you run in 
the other way 1, 3, 2, 3, 2, 1 or 2, 1, 3 it is – 1, for all other combinations it is 0. 

Now if A is a 3 by 3 matrix the determinant of A can be written using the permutation symbol in
this way, there is a small exercise, there is an identity epsilon delta identity you can show that 
epsilon IJK and kronecker delta related through this identity. Now there is a symbol for 
differentiation, suppose if you consider a function which is F(x1, x2, up to Xn) and if DF is wha
I am looking at, it is given by this, this is written compactly as DF = dou F/dou XI into DXI, the
index I repeats and it has to be summed over 1 to N, and this comma symbol that is a 
differentiation symbol, if I again have this function F1, F2, F3, to be functions of X1, X2, X3, if
I write F(i,j) it is dou FI/dou XJ, similarly sigma IJ,K is delta sigma IJ/dou XK, this comma K 
means you have to differentiate with respect to the K-th variable, so this is like a mathematical 
shorthand for writing the long expressions, physics will get buried inside these notations, so it is



not very convenient if you are understanding the subject for the first time, but it is very useful 
in compactly expressing the results. 

The algebraic notations suppose I have a vector with components X1, X2, X3 and Y1, Y2, Y3, 
X dot Y is X1 Y1 + X2 Y2 + X3 Y3, and X x Y is given by this, and this is written as ZI is 
epsilon IJK XJ YK, then grad that is this delta inverted delta is this operation E1 dou/dou X1 + 
E2 dou/dou X2 + this it, this is written IE dou/XI, now this is a scalar function if you take a 
grad of a scalar function it is given by dou F/dou XI, that I-th component is this. Now if you 
apply the grad operation on a vector-valued function F we can define what is known as 
divergence which is Del dot F which is given by this, this is a dot symbol, the curl is delta x F 
and that is given by this. 



Now if you apply a grad function on a vector-valued function is this is written delta, F and this 
is given by this, and F itself is a vector therefore I had to write this, so you can see that grad of a

 vector valued function will have these gradients presented in their representation, in matrix 



notations we arrange the components of vector in a column like this and even stress is arranged 
as a column like this, right, so stress is a tensor represented 3 by 3 matrix but in the so-called 
white notations, we write it as 6 x 1 vector, similarly strain, so the strain energy is written as 1/2
sigma transpose epsilon, so we represent the terms like this, for example R square is written as 
X transpose X and so on and so forth, so when doing this we don’t write explicitly the 
connective symbol, for example when I say X transpose X, I am not putting in between any dot 
or a multiplication or any other symbol. 
In tensor notations indices are not shown, this is applicable to Cartesian and other coordinate 
systems XI YI that means it is summation of is X1 Y1 + X2 Y2 + X3 Y3 is simply written X 
dot Y, AIJ, BIJ is written as A double dot B, this is a new symbol that we will use, colon denotes
contraction of pair of repeated indices whereas a dot denotes, a single dot denotes contraction of
inner indices whereas this double dot denotes contraction of pair of repeated indices, so this 
relation sigma IJ, CIJ, KL epsilon KL is a tensor notation is written as C double dot epsilon, so I
have given some examples of writing different expressions in alternative 



notations, this you can examine, so if we have something like phi transpose K phi, in tensor 
notation it is written as phi dot K dot phi, in indicial it is phi I, KIJ, phi J, similarly you have 1/2
epsilon transpose C epsilon this is written as 1/2 epsilon double dot C double dot epsilon, 
whereas this epsilon I CIJ epsilon J, so on and so forth this, and equilibrium equations for 
elasticity is in the long hand in full notation form it is given by this, in matrix form it is given 
by this, in indicial is given by this. Actually the full notation is a notation of last result where 
everything is spelt out without cutting on any, you know, you write all the terms and this clearly
becomes cumbersome if you have to deal with this type of equations to of. 



Now I will start now a quick review of continuum mechanics, there is what is known as 
Continuum Hypothesis, so according to this hypothesis material is infinitely divisible, and each 
infinitesimal element retains all the properties of the material, so that Newtonian mechanics is 
directly applicable, that means calculus works that means concept of elementary, strip, and 
things like that work, and we can derive the governing physical laws can be expressed as partial
differential equations or as ordinary differential equations or through variational arguments. 
Now obviously we know matter is not infinitely divisible it breaks down to elementary particles
if we do that, but that we are ignoring in this hypothesis, so consequently we need to focus our 
attention to characteristic dimensions which is about greater than about 10 to the power of - 6 
centimeter, so if you are dealing with dimensions less than this then continuum hypothesis 
needs to be, I mean you have to look at other possible effects that are present in the physics of 
the problem, just to give in this context diameter of a water molecule is about 10 to the power 
of - 8 centimeter, so if you are dealing with fluid mechanics problem in which the medium is 
water, the fluid is water, then you cannot think of sizes less than 10 to the power of - 6 
characteristic length less than this. The continuum mechanics theory is valid for both solids and 
fluids, it doesn’t distinguish between the two and due to the assumption of existence of 
continuum notions of density, temperature, pressure at a point makes sense. The primary aim is 
to model macroscopic behavior of solids and fluids, so just to emphasize again it ignores the 
atomic structure of the matter and also matter consists of discrete particle which are perpetually 
in motion, even this motion is not included in our analysis. 



Then questions on treatment of molecular, grain, or crystal structure are not addressed in 
continuum mechanics, there are different themes in continuum mechanics we talk about 
kinematics where we talk about motion and deformation, kinetics where we talk about concept 
of stress, and there are different balance laws which basically enunciates certain physical laws, I
will come to some of them which are common to both fluids and solids. 
In the context of nonlinear structural mechanics problem what is crucial to gain a reasonable 
understanding of the subject is to understand how rotations are dealt with, rotations are very 
crucial in problems of nonlinear analysis, and what is the need for defining alternatively, what 
is the need for alternative definitions for stresses and strains, and then how to treat material 
nonlinear behavior. 



So we will start some simple questions about kinematics, kinematics study of motion and 
deformation without concerning with causes of motion and deformation, we don’t talk about 
forces which create the motion and deformation, we simply focus on geometry, so here we talk 
about a reference configuration say let’s assume body B at time 0, this omega naught is a 
domain, gamma naught is the boundary, and we consider a Cartesian coordinate system, so 
capital X1, X2, X3 is for body at time T = 0.
Now during the process of deformation every point here with position vector OP which is X 
gets mapped to another point P whose position vector is X, this X is related to capital X through
this relation, so this is a mapping of the deformation. 



The reference frame, the origin is at 0 and there is orthonormal basis E1, E2, E3, this is a 
coordinate system, the body B occupies different regions omega naught, omega 1, etcetera, 
omega at times T = 0, 1, 2, T1, T2, T3 and T, the regions omega naught, omega 1 etcetera 
omega occupied the body at different time instants are known as configurations of the body at 
the respective time instants. At time T = 0, we say that omega naught is the initial state of the 
body or the initial configuration, it could also be taken as reference configuration with respect 
to which motion is described. There are other names like it is taken to be un-deformed 
configuration, it is an idealization nobody is truly un-deformed because the gravity and things 
like that always act on them, so what you see as a reference configuration is already deformed 
due to someone or the other effects. 
Now gamma naught is a boundary of the initial configuration, at time T this is a current state of 
the body, the current deformed configuration, gamma is the boundary of the current 



configuration, so this is gamma 1, there are 2 coordinate system that we can think of using to 
describe the problem, one is known as Eulerian, the other is Lagrangian, in Lagrangian 
description we take X1 capital (X1, X2, X3,T) as independent variables, that means the point P 
is described by its position in the initial configuration, that is capital X1, X2, X3 those X1, X2, 
X3, are taken as independent variables. In Eulerian description we take the lower case x1, x2, 
x3 as independent variables. 
Now X is returned position vector X is written as XI EI which is nothing but X1 E1 + X2 E2 + 
X3 E3, so this is a position vector of a material point in the initial configuration, this does not 
change with time, because initial configuration is some reference position that doesn’t change 
with time, it labels all material points, whereas x the lower case x which is again XI EI this 
provides the position of a point in the current configuration, changes as configurations evolve in
time. In problems of solid mechanics we adopt Lagrangian descriptions, the Lagrangian 
description is also known as material description, and the Eulerian description is also known as 
spatial description, the motion itself that is this function Phi (X, T) is defined, motion that is a 



coordinate in the current configuration, a point in the current configuration that is the position 
vector of a point in the current configuration is related to where the point was in the reference 
configuration through this function, so this is in long hand that is, there are 3 functions X1, X2, 
X3, phi 1, phi 2, phi 3 that relate the capital X1, X2, X3, to the lowercase x1, and x2 and x3. 
When reference and initial configurations coincide at T = 0, X(x,0) is capital X, so that would 
mean which is phi(x,0), so then XI(XI, X,0) this is the definition which is phi I(x,0) and this is 
an identity transformation. 
So in material coordinates displacement is given by X - capital X, which is nothing but phi(x,t) 
– phi(x,0) or phi(x,t) – capital X, velocity is its time gradient, capital X does not change with 
time therefore the gradient is simply DU/DT as shown here, there is no dou U/dou X term 
which gets multiplied by dou X/dou T that is not there because capital dou of capital X/dou T is
0, so similarly acceleration also can be defined. 



On the other hand in the spatial coordinates if you want to define the gradient of a function say 
phi(x,t), this is dou phi/dou T + dou phi/dou XJ and DXJ/DT, so there will be a new term, so 
acceleration gets defined like this, and this is a definition of acceleration if you are looking at 
spatial coordinates. 

Now a primary quantity of interest in discussing deformation is what is known as deformation 
gradient, so the problem is, the question is, the issue is this, this is a configuration of the body at



time T = 0, and PQ is a line segment, upon deformation capital P goes to small p, and capital Q 
goes to capital Q and this line segment DX gets mapped to this lowercase dx, the question is 
how this dx is related to this capital DX, and that will be through a matrix known as 
deformation gradient. So we will take up this discussion on deformation gradient and follow up 
this topic in the next lecture, so we will close this lecture at this point. 
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