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We will continue the discussion on finite element model updating, in the previous lecture we 



derived sensitivity of natural frequencies, mode shapes, and frequency response functions, we 
considered situations where natural frequencies where free vibration was done for damped 
systems and as well as undamped systems. 
So we postulated basically two states for the system, in the context in which we discussed this 
in the previous lecture there was one state one which is the postulated model for the structural 
behavior on which measurements have been done, the second state is the model on which 
experimental studies have been done. Now our objective is to arrive at a finite element model 
for the system on which measurements have been made, there is an alternative perspective 
which is related to this approach, this is related to problems of damage detection, it is closely 
related to problem of finite element model updating here also we postulate two states, one is 
system in its healthy state, let us call it as undamaged state and system which is postulated to be
in a damaged state. So the word damage here could mean lot of changes in stiffness, mass, or 
damping characteristics in the context of problem that we are dealing with, and our objective 
would be to, you know analyze the measurements carried out on the damaged system and infer, 
if the structure is indeed damaged if yes, where is the damage? And what is the quantum of 
damage? And more complicated questions like what is the residual life left and things like that. 
Now so in the discussion to follow we will try to adopt these two alternative perspectives, so it 
could be that we are dealing with a system on which the object is not to do damage detection 
but to simply identify the parameters of the model, so the postulated finite element model is the 
first state of the system and our objective as I already said to derive the finite element model for
the structure in the way it currently exists. 



Now so we have a FE model 1 and measurements made on existing structure which is model 2, 
and the updating procedure leads to the FE model for system in state 2. So depending on the, 

based on the various sensitivity information that we studied we got the updating equation in this
form we have certain changes in response characteristics on the system that we call as delta 
gamma this is to be determined experimentally, part of it is measured experimentally, and part 
of it is postulated through the baseline the finite element model for the structure, and the 
difference is calculated. This S matrix is the matrix of sensitivity you know sensitivity matrix, 
this has to be determined from the postulated finite element model, these delta is the vector of 
unknown updating parameters, so this typically constitutes a set of over determined equation 
this is a formulation based on first order sensitivity method, and we obtain delta typically by 
using pseudo inverse of S into delta gamma, we can refine this procedure as I discussed in the 
previous lecture by using Tikhonov’s regularization strategies. 
So the task to be done is experimental determination of delta gamma, an analytical 
determination of elements of S matrix that is sensitivity analysis, then solution of the over 
determined set of equations either by iteration, pseudo-inverse, singular value decomposition, 
Tikhonov regularization etcetera. 
Now this problem is notably different from the forward problem of design sensitivity in which 
we impart certain changes to system parameters in the, parameters of the system and we would 
like to know what would be the change in response characteristic that is the objective of a 
forward sensitivity problem, but we are using the idea of the sensitivity analysis in the inverse 
way, that means we have seen that certain changes have taken place in the system response 
characteristics and we don’t know what are the changes in system parameters that have caused 



those changes and we use the same equation to find delta instead of delta gamma as in forward 
responsive design sensitivity analysis. 

Now there are many research papers on this subject of finite element model updating, there are 
some few useful references, this is a book by Friswell and Mottershead which is entirely 
dedicated to problem of finite element model updating, and the book on modal testing by Ewins
has a chapter on, you know topics related to finite element model updating, and in this collected
papers edited by Maia and Silva, there is a chapter again on finite element model updating.



In the previous lecture we discussed briefly the quantity known as complex mode indicator 
function, so the mode indicator function are often real valued frequency-dependent functions 
that show local maxima or minima at the system natural frequencies corresponding to the real 
normal modes. They can be used to identify repeated eigenvalues. So if H(Omega) is N x P 
measured frequency response functions we can do a singular value decomposition of this 
rectangular matrix and the matrix of singular values, you know we define what is known as 
complex mode indicator function in terms of singular values of this matrix, and this is the 
definition. 
Now we discuss some of properties of CMIF and we Illustrated this with respect to a 7 degree 
freedom system in which natural frequencies were repeating, but I would like to augment that 
discussion with 1 or 2 illustrations, so that’s why this topic we have returned to again, the peaks
in the largest CMIF indicate the location of natural frequencies, double or multiple natural 
frequencies are indicated by simultaneously large values of 2 or more CMIF values, associated 
with omega = omega R, that is the R-th natural frequency, the left singular vector indicates the 
mode shape for that mode, and the right singular vector represents the approximate force 
pattern needed to generate response on that mode only, so this is something that is a property of 
singular value decomposition of the FRF matrix. 



Now we have considered few examples I want to illustrate this with one more example, suppose
we again consider a 7 degree freedom system, this is a stiffness matrix, this is a mass matrix, 
and we use this as a damping ratios and C matrix can be constructed based on you know these 
modal damping ratios and that is given here. 



Now the question that I am trying to answer here is as you saw here we are talking about 
frequency response function which is not necessarily square, if you measure all frequency in a 
discrete multi-degree freedom model the frequency response function matrix will be DOF/DOF
but often we will not measure all the elements of the frequency response function so the point 
that I am trying to discuss now is what happens if we have a rectangular frequency response 
function matrix. 
So for this system if we have the full 7 by 7 FRF matrix, these are the singular, the CMIF's and 
the blue one is the largest you know the singular value, and we see that there are 7 peaks 
corresponding to frequencies at which there are system natural frequencies, so this is fair 
enough, this is clear. 



Now if I now take FRF’s to be 4 by 3, that means I will consider 4 rows and 3 columns, and 
assume that only this is available, then we are getting only 5 peaks so CMIF from partial 
measurements may not provide all the natural frequencies, and this is another one where I have 



taken rows 2 to 5, and columns 1 to 3. Now in some other combination we see that all 
frequencies are captured, so this is something that one should be alert to when using CMIF with
partially measured FRF matrix. 





On the other hand the receptance functions themselves may not capture all the natural 
frequency, there are 7 frequencies from a mere visual inspection of this, we will not be able to 
see the 3 more natural frequencies, but if I look at other elements of FRF matrix we will be able
to see certain other frequencies which is not, is mildly perceptible here, it becomes more 
pronounced here, and you know other you know by reducing damping I am trying to show that 

there is another peak here between 160 to 165, this is a zoom of H12(omega), amplitude of 
H12(omega) that is not perceptible here, but this kind of peaks are clearly seen if you look at 
CMIF plots.



So a few comments can be made, CMIF with full FRF provides clear indication of all the 
modes, CMIF with partial FRF measurement could miss some of the most, elements of FRF 
matrix may fail to indicate at least visually the existence of a resonant frequencies, the modal 
extraction algorithms may be able to pick them up, although you may not see it in the FRF 
plots. The CMIF frequencies and MDOF frequencies need not match, so this also is something 
to do with variation of mode shapes at the drive and measurement points, because of which 
there will be again fluctuations in the FRF plots, therefore there would be differences, okay. 



Now we move on to a brief review of another question, how do we quantify the proximity of 
analytical model and experimental model, that is the question we are asking is how closely do 
the analytical and experimental models agree, so how do you quantify this? Now there are few 
matrix for this, that’s what I will quickly review, there is lot of literature on this but I just want 
to give a flavor of what the issues are. Now the preliminary step would be the matching of the 
size of, matching the size of the experimental and analytical model this issue I have already 
mentioned in experimental work the number of sensors you have may not match the number of 
degrees of freedom in a finite element model, often the number of degrees of freedom in a finite
element model far exceeds the number of degrees of freedom in an experimental work, simply 
because some of the interior nodes will not be accessible, certain responses may not be easily 
measurable like rotation and so on and so forth. 
Now we can use either model expansion, that means the experimental model is expanded to 
match the degrees of freedom of the analytical model or a model reduction on the analytical 
model to match the degrees of freedom included in the experimental work, so for this typically 
we use SEREP, this I have discussed earlier in the context of model reduction in one of the 
previous lectures. 
Now the basis for setting up measures for comparing analytical and experimental models is 
again something to do with orthogonality relation, so we define phi to be mass normalized 
modal matrix, phi transpose M phi is I, and phi transpose K phi is diagonal matrix of squares of 
system natural frequencies, we use the subscript A to indicate analytical model, and subscript X 
for experimental model, and phi we use for mass normalized mode shapes, and sai is arbitrarily 
normalized mode shapes, so this is the nomenclature, subscript A refers to analytical model, 
subscript X refers to the experimental model, so mass normalized normal modes will satisfy 



this condition, if it is not mass normalize this matrix will still be diagonal, but the elements will 
be you know the generalized masses will not be identity equal to 1. 

Now there is a quantity known as normalized cross orthogonality denoted as NCO, it is a 
quantity that is computed between 2 modes, suppose from the experiment you pick the I-th 
mode, and from the analysis you pick the J-th mode, we define this quantity, this is sai X 
transpose, MA, sai A you know analytical, MA is analytical mass matrix which will be available
to you. Now what is the issue here? The issue is when I experimentally extract certain modes, 
natural frequencies and mode shapes and I computationally predict them, how do you order, 
how do you pair, which mode in analysis corresponds to which mode in experiment, so we call 
them as correlated model pairs, so it is very important that we establish the correct pairing 
between the modes of, modes predicted from analysis and experimentally measured modes, it is
quite conceivable that in an experimental model we miss some of the modes, so suppose if you 
measure 5 modes experimentally and your analytical model has 25 modes which 5 of the 
experimental modes correspond to which of these 25 modes in a computational model is not a 
question that can easily be answered, so we define the quantities like NCO to able to answer 
that, so this is as you see it is defined in terms of arbitrarily normalized real normal modes, and 
you can see that if sai X is sai A that means the experimental and analytical mode shapes match 
this quantity will be 1, if they are very much different that quantity will approach 0. 
Values closer to one indicating the closeness of analytical and experimental mode shapes, now 
if M is the number of experimental modes and N is the number of analytical modes, NCO 
would be M x N matrix, okay, then those elements of this M x N matrix which are close to one, 
provide the correct strategy to identify the correlated modal pairs. 



So first mode in experiment will be purely, the NCO between first mode in experiment and say 
third mode in analysis will be close to 0 if these modes are correctly, nomenclature is correctly 
assigned to them. If you are dealing with say third model in experiment and third mode in 
analysis, NCO will come pretty close to 1, so this helps in identifying the correlated modal 
pairs. Now if sai X is alpha time sai A, NCO will be an identity matrix that means if mode 
shapes are proportional, okay, this NCO will be I.

Now this as you see requires the mass matrix of the analytical model, we can define another 
quantity known as Modal Assurance Criterion, here we don’t use any structural matrices, again 
this is defined between I-th experimental mode shape, and J-th analytical mode shape, this is a 
MAC of between these two modes is given by this quantity, these are all intuitively defined 
quantities there is no mathematical basis for arriving at these quantities. 
Now you observe this here we are allowing for complex valued mode shapes, that means 
influence of damping in determining mode shapes is included, as I already pointed out in an 
experiment you will be always be measuring damped normal modes. Now this can be used in 
conjunction with coordinate-incomplete mode shapes, and for example the analytical mode 
shape can simply be partitioned instead of doing a model reduction or expansion. And MAC 
also lies between 0 and 1, and values closer to 1 indicating the closeness of analytical and 
experimental mode shapes. Again MAC would be a M x N matrix if M is the number of 
experimental modes and N is the number of analytical modes, this matrix facilitates again 
establishing the correlated modal pairs. 
Now if phi X is alpha phi A in this case MAC won't be an identity matrix, because this is not, 
there is no mass matrix here, you recall that the mode shapes the way we are deriving by 
solving the eigenvalue problem associated with K and M are orthogonal with respect to mass 



and stiffness matrix, so phi transpose phi is not a diagonal matrix, it is phi transpose M phi is a 
diagonal matrix, so this won't be equal to an identity matrix. 

Now there is another quantity known as Normalized Modal Difference and Modal Scale Factor,
so again this is defined with respect to 2 mode shapes, this is given by this quantity phi X(I) - 
gamma phi A(J) this is L2 norm/L2 norm(gamma) phi AJ, and this gamma itself is, this is 
modal scale factor between the 2 modes, and this itself is defined in this manner. We can show 
that in this normalized modal difference is related to MAC through this equation, I’ll leave it as 
an exercise. Again here no FE matrices are used, but the utility of this notion is that mode shape
at each DOF, for example is erroneous by 10% then this NMD will become 0.1, so it gives you 
directly a measure of error in a more direct way. 



Now this MAC and NCO compare 2 mode shapes and give a measure of, which mode has to be
paired with from experiments with, which mode in analysis, but they do not tell where is the 
location of difference between analytical model and the experimental model, so the spatial 
information is not included there, so to do that we ask the question how to locate spatial regions
where the differences between analytical and experimental mode shapes are the most 
pronounced, okay that is where you may like to update the model parameter, that is a hope, but 
there is a catch in that which we must understand carefully, so with that in mind we introduce 
what is known as coordinate modal assurance criterion, here let NCMP be the number of 
correlated model pairs which has been established by some criterion, then phi IJ I define as 
value of mode shape at the I-th coordinate in the J-th mode, so I is the coordinate, J is the mode 
count, so the coordinate modal assurance criteria for the I-th coordinate, okay it is defined with 
respect to coordinate not with respect to a mode, and all the modes are summed here, this 
metric is obtained by summing over the mode shapes at that value of the spatial coordinate or 
the degree of freedom that is defined in terms of the analytical mode shape and the 
experimental mode shape through this relation as shown here. 
This COMAC also lies between 0 and 1, it has no physical basis it is intuitive, it can be 
displayed as a contour plot over the domain of the structure, that means you can plot the 
structure and you can have color coding for different values of COMAC or draw contours and 
where COMAC is close to 1 we suspect that the agreement, disagreement between the 
analytical model and experimental model is most pronounced.
Regions of low COMAC represent the regions where the consequences of difference between 
analytical and experimental modes are felt most pronouncedly, these need not be the region 



where you have actually made errors, there are errors in parameter values, it is only the place 
where the consequence of the difference is felt most pronouncedly, so for example in a 
cantilever beam if you have made an error in modeling boundary condition at the fixed end then
the effect of that error will be most pronounced at the free end of the cantilever, you might have
done modeling at the free end appropriately, but the error done elsewhere, the consequence of 
that will be felt somewhere else, so that precaution you have to take, but typically we tend to 
use COMAC to identify those spatial regions where we want to correct the parameters, but 
while doing so that is a hope that COMAC indicates that, but it is not guaranteed to do that but 
it gives you kind of a hint that there could be something wrong with properties in those regions 
where COMAC is low, okay, so that is how this is done. 

Now there are few other metrics I will just for sake of completeness briefly mention them, 
suppose you have determined mode shape, suppose J-th mode shape has been determined and J-
th natural frequency has been determined, and if I now plug it back into the analytical model K 
into phi - omega square MA into phi must be 0 that is the eigenvalue problem that you need to 
solve, but if there is an error there will be a residual force that again tells you where is the 
trouble, okay, so if these 2 are equal that is phi XJ = phi AJ it is automatically satisfied because 
KA and MA are analytical matrices, and phi AJ is analytically determined mode shape that has 
to satisfy the eigenvalue, statement of the eigenvalue problem. 
Now to implement this idea you require coordinate complete measurements, that means this phi
XJ should be, the size of phi XJ should be equal to the degree of freedom in analytical model, 
so you may have to expand the experimentally measured mode shapes using a suitable strategy, 
so the answers will be affected by the strategy that you employ, so the aspiration is it would 



help in locating regions at which residual errors are high, the errors could be in stiffness or mass
that issue doesn’t get resolved here. 
Now this is the matrix that I have talked about are in terms of natural frequencies and mode 
shape they can be damped or undamped, we can also define similar quantities, these frequency 
response functions, analytically we can predict the frequency response function and 
experimentally also you can measure the frequency response function. Now on the lines of 
MAC and COMAC one can define frequency domain assurance criteria called FDAC, and 
frequency response assurance criteria called FRAC, wherein one use is measured and analytical
FRF’s instead of mode shapes, so in the definition of MAC and COMAC instead of using mode
shapes you use the measured frequency response functions, so you get FDAC and FRAC, so 
they again serve the same purpose as MAC and COMAC by enlarge, and it doesn’t require 
extraction of mode shapes, and natural frequency. 

Now this is just a brief overview of the model correlation methods again you need to go back to
the references that I provided especially the book by Evins to you know completely understand 
what the issues are, so here in these 2 lectures on finite element model updating I am trying to 
provide a flavor of how to approach these problems and what are they issues and in some 
simple illustrations. So the illustrative examples that I am going to present now are with respect
to a class of hypothetical multi degree freedom systems, and we have done some studies on 
simple beams and building frame models experimentally, and the presentation of some of these 
results will now follow. 



In the first study we want to you know apply the inverse Eigen sensitivity analysis for 
undamped systems, so the objective of this illustration is evaluation of mass and stiffness 
parameters and study the effect of including cross orthogonality relations in deriving the 
updating equations, so this is quick recall of the governing equation, this is a equilibrium 
equation, this is assumed solution, this is eigenvalue problem to be solved, these are the natural 
frequencies and mode shapes, these are the orthogonality relations. 



Now in the previous lecture we have derived the equations for sensitivity of eigenvalues and 
eigenvectors and based on that we form the updating equation, and we got the solution as delta 
is S pseudo inverse delta gamma, now we will apply this on a 5 degree freedom system as 
shown here. 



Now these are the masses, these are the stiffnesses, and for this system these are the natural 
frequencies, and this is mass normalized modal matrix. we call this as a baseline model and I 
am going to alter some of the properties of mass and spring and call it as system in damaged 
state, so if we are not talking about damaged and undamaged systems it could be a postulated 
finite element model and the model unknown model from which we have taken measurements, 
in the illustration that I am presenting in this part the experimental results are synthetically 
generated, that there is no true experiment but numerically we are doing an experiment. The 
idea here is to see how the updating equations can be implemented, and what if any are the



 pitfalls in using that, this is a exercise that is worth doing before you actually start working 
with experimentally observed structural properties, so what I will do is I will use the language 
of damage and undamaged systems, so MI in damaged state is taken as alpha A into MI in 
undamaged state, this MI, KI, and CI are the discrete elements shown in this figure, so we 
introduced alpha I, beta I, and gamma I and the updating parameter is consequently are these 
non-dimensional numbers alpha I, beta I, and CI, if the structure suffers no damage all these 
quantities will be equal to 1. 
Now we will adopt two methods, in first method we will not include cross orthogonality 
relations. In the second method we will include the cross orthogonality relations and see if there
is any advantage in doing including cross orthogonality relation, now there are 2 damage 
scenarios with various levels of severity, the notes for this presentation will be available with 
you, you can study this in greater detail I will now present the main features of the result 
without getting into the base all the intricate details. 



Method 1 where cross orthogonality is not included predicts the 5 masses in acceptable manner,
and stiffness parameters also in an acceptable manner for the method 1, that is case 1, for case 2
what happens, the method does not perform acceptable, for example on X-axis in all these plots 
is the iteration, the global iteration step that I mentioned in the previous lecture you start with 
initial guess and improve upon that successively through an iterative process, here you can see 
the algorithm is not converging, where as you can see here all the system parameters have 
converged and have become constant after about 10 iterations, whereas here they seem to be 
diverging here. So method 1 does not perform for case 2 of the so-called damage scenario. 



Now you include now the cross orthogonality relations we see that case 1 the method works, 
case 2 the method indeed works, so this is an example where the objective is to illustrate that by
including the cross orthogonality information in driving sensitivity information we are able to 
achieve better solutions in terms of determining finite element model updating parameters. 



This study was for undamped system, in the next study we are considering the same approach 
inverse eigensensitivity analysis, but now for damped systems, so the objective here is to 
evaluate mass, stiffness, and as well as damper properties, then again study the effect of cross 
orthogonality, and how to carry out analysis with complex modes that is the objective, so we 
rewrite the equation of motion in this form AY dot + BY = F(t) and we get the mode shape, 
modal matrix in this form, and eigenvalues are N pair of complex conjugates and these are the 
mode shapes both are complex valued and the orthogonality relations are as here, so this we 



have done the sensitivity analysis in the previous lecture and this is the using first order 
sensitivity method, this is the updating equation that we need to solve, so these are complex 



valued and we separate the real and imaginary parts and arrive at appropriate simplified 
updating equations.
Now in the numerical illustration I again consider a 5 degree freedom system, these are the 
masses and stiffnesses, and these are the 5 damper elements, and undamped natural frequencies 
are this, and this is the modal matrix, and I am applying this method now on a proportionally 
damped system, so we can use complex normal mode analysis on a proportionally damped 
systems also, it doesn’t prevent us from doing that, so these are the natural frequencies and 
these are the damped natural frequencies, clearly you will see that there is a relationship 
between this damping ratios and the quantity shown here. 



Now this is the modal matrix you can understand this right now it has this structure, that phi 
lambda, phi*, lambda*, phi and phi* so you can see that such a structure exists here, now the 



problem is we will introduce 2 damaged scenarios, we will simultaneously change the mass 
properties, damper properties, and stiffness properties, and there are 2 such scenarios that we 
are adopting, and the objective of this study is to see how the first order sensitivity method 
performs by including cross orthogonality relations and by excluding cross orthogonality 
relations.



So for method 1 the first case that seems to perform reasonably well, the second case shows 
certain instabilities it is not satisfactory, there are certain perturbations and so on and so forth. 



So we use method 2, the solutions are much well behaved all the stiffness, parameters, 
damping, mass and damping parameter for both the cases are show stable behavior as iterations 
proceed.





Okay here again we reach the similar conclusion that including cross orthogonality relations is 
helpful in getting better solutions. Now we also seen that we can perform inverse sensitivity 



analysis using frequency response functions themselves, so we need not have to extract natural 
frequencies in mode shapes and do this analysis, we can directly do the analysis with the 
measured frequency response functions, this we have derived in the previous lecture so we will 
not repeat that. In a first order frequency response based sensitivity analysis, this is the finite 



element model updating equation and we will illustrate that now, we will take a baseline model,



the damping matrix is simply taken to be diagonal and this is for again for illustration, these are 
the undamped natural frequencies and this is a mass normalized modal matrix. 
Now there is a damaged scenario as depicted here, and we are going to use first order sensitivity
analysis and also we are going to illustrate the functioning of second order sensitivity analysis 
where we have increased the level of damage to see whether we gain any advantage in using 
second order methods. 



So for the method 1 and damage scenario 1, the first order sensitive method seems to provide 



reasonably good answers so this is fine, and second order method also provides good results, 
both the methods seem to perform well here.



Now we talked about inverse sensitivity of singular values of FRF matrix, now here we will 
select an example where our objective is to do damage detection in systems with repeated or 
closely spaced modes, and identify damage parameters in the systems, so we synthetically 
simulate a few situations where before damage the structure as distinct modes and because of 
damage the system will have repeated modes, this is an artificially simulated scenario but it is 
useful to see in these limits how the system performs and the solution strategy performs, so 
before damage the system has repeated modes and after damage also it continues to have 
repeated modes, and third case is repeated modes before damage and distinct modes after 
damage, so how these methods perform? So in state 1 there are either there is a repeated natural
frequencies or not in the state 2 the similar thing with different combinations are used, so we 
have gone through this definition of singular values and things like that I will not repeat that, so
we consider this system now, so this is again a 5 degree freedom system, now it is supported 



and connected in a slightly different way so we consider now the scenario where this are the 
properties, and in the undamped natural frequency you will see here that the third and fourth 
natural frequencies are repeating, okay. 
Now we will introduce a damaged scenario and here if you see, because of this damage 
scenario the third and fourth natural frequency still repeat but they have a different value, okay 
so this is in the damaged state, this is undamaged state, so we have undamaged structure with 
repeated eigenvalues and damage structure with repeated eigenvalue, but the natural 
frequencies are having different values okay, so this is how this artificially stimulated, so we 



have, in method 1 it is inverse CMIF sensitivity analysis, method 2 inverse eigensensitivity 



analysis of real modes without cross orthogonality and inverse eigensensitivity analysis with 
cross orthogonality, so method 1 seems to perform reasonably well, and method 2 there is 
problems here, it’s not working nicely, method 3 cross orthogonality is included it seems to 



converge to give the convergent answers, but we have to see whether that is right or wrong, so 
this is just an example so you can verify whether these results are acceptable. 



Now there is yet another method known as a frequency response function method, this we’ve 
not discussed earlier so we can quickly review what this is, so here it is evaluation of mass and 
stiffness parameters with model reduction, now let’s consider the equilibrium equation of the 
system in the damaged state and this is the equation. Now XD’s are the degrees of freedom 
whose size is equal to the XA which is analytical degrees of freedom but we have to do a model
reduction so that degrees of freedom match and we use this transformation matrix either could



 be condensation or SEREP, we use SEREP and substituting that I get the reduced equation and 
this is the equation which we will use to predict the measured FRF’s, so the FRF predicted from
this will not match the measured FRF, so that by writing this equation at different frequencies 
we can adjust the parameters of these models and get adequate number of equations to solve 
that, so at a frequency one value of driving frequency if you arrange these terms we will get see 
UK, VK, and WK are this and I am putting it here I get these equations, and if I repeat this 
equation for a set of Q frequencies at which FRF’s are measured I get this over determined set 
of equations, and I get the updating equation in this form, so this is straightforward 
conceptually there is no problem but there is a model reduction step that is involved, so this we 



have applied on one of the examples I am just flashing the results, I implore you to study this 
and maybe verify the results shown here. 
So this is before updating, this is before damage detection and updating you see there are 
differences, and after the updating process is completed you see that the matching is perfect 
thereby indicating success of the updating procedure. 



Now we can summarize what we saw, so what we have seen is methods based on sensitivity of 
undamped Eigen solution can detect changes that occur in stiffness and mass properties, the 
other inverse methods are all capable of detecting changes not only in mass stiffness but also in 
damping characteristics potentially they are capable, inclusion of sensitivity information with 
cross orthogonality relations helps in identifying systems which are higher levels of damages, 
inverse CMIF sensitivity method successfully identifies damages in system with repeated 
modes, while inverse eigensensitivity method is found to be unsuccessful in such cases, the 
numerical investigations have revealed that the method based on inverse eigensensitivity that 
includes complex nature of the Eigen solutions and information on cross orthogonality seems to
perform most satisfactory, except in situations where you have repeated natural frequencies and 
such you know exceptional situations. 



Now all these illustrations were with respect to synthetic examples where measurement was 
artificially simulated on a obviously overly simplified idealized system. Now finite element 
model updating is actually meant for studies that are actually performed in laboratory on 
existing structures, so to explore how the methods that we have discussed perform in a 
laboratory condition we have considered three problems, one is a cantilever beam with 
inhomogeneous distribution of mass properties, other one is a free-free beam with 
inhomogeneous mass and stiffness properties, and a three storied shear building model with 
inhomogeneous mass and stiffness property. 



So in the cantilever beam, first example is a cantilever beam this is shown here you can see here
this is a cantilever beam and what you see here as white you know boxes here, these are the 
accelerometers and the person here is hitting this beam with a instrumented impulse hammer 
and this is being done to measure the frequency response function and if you see carefully here 
the measured frequency response function is displayed here, so this is a complete experimental 
set up which involves the instrumented hammer, and sensors, and a computerized data 
processing system. 
So now what we have done is there is a mass M whose position can be varied, and we assume 
that in the structure when it is in healthy state this mass is placed here and upon occurrence of 
damage this mass is removed, so we get system in 2 states and on both the, beams in both these 
states we perform this experiment and try to identify the properties, and the question is do we 
really detect whether where was the mass before it was removed, it is a self-validating exercise 
in the sense I know where the mass was, so it would help us to understand how the method 
works, there is one complication here which is invariably present in experimental work 
involving a fixed and pin boundary conditions, see if you see carefully see here this beam is 
clamped to a rigid block here with two bolts it is not clear whether this arrangement is adequate 
enough to deem this support conditions as being fixed. In a static sense maybe yes, but in high 
frequency vibration problems we are not sure whether that end is truly fixed or not, so what we 
do is in identification problem we add a rotary spring here to indicate that there is a partial 
fixity condition that we need to be aware of.



The second experiment is done on a free-free beam there is no problem of you know supporting
the beam, but it is suspended through flexible wires, ropes as shown here and this person is 
again hitting this beam with impulse hammer to measure the frequency response functions, so 
there are various configurations of this beam that have been created by adding certain stiffness, 
so if you see carefully here there is stiffener that is added, and there is also a mass that can be 
moved so there are a 4 you know configurations here as shown here, and this is, A, B, C are the 
damaged configurations, and this is the undamaged configuration that is where all these 
stiffness and mass elements are shown as here.



Now the third example is on a three storied shear building frame, here there are system in two 
states are displayed here you can see here in this state there is a mass that is placed on this slab, 
and also there is a stiffener that is added in the ground floor, so by removing this we create this 
state, so we measure frequency response functions on these two systems and by comparing the 
differences in natural frequency mode shapes, FRF’s etcetera we would like to identify the fact 
that this structure has been obtained from this structure by removing these known elements, so 
configuration 3 I mean we can define several configurations, in configuration 1 the stiffener and
mass are present, in configuration 2 all of them are removed, in configuration 3 we can remove 
only one of these, either the mass or the stiffener, so we can create by different configuration, a 
different combination of removal of these elements, 4 different configurations, so that is 
outlined here and this is experimental system this is a extra mass that I mentioned and this is 
instrumented hammer that will be used to measure the frequency response functions. 



So we have performed the studies that I have mentioned, so I will leave this details in the nodes 
I leave it as a reading exercise for you to you know go through these 3 examples and see what



 conclusions have been reached, these are the experimentally measured frequency response 
functions, this is the amplitude plot and these are the phase plots at different locations, and as I 
said I am not going to discuss all the details here we have computed the modal assurance 





criterion to pair the experimental and experimental determine normal modes and analytically 
determine normal modes that is also provided, the details are provided here and these are some 
of the results of COMAC and detection results of damage detection, so here I am showing the 



experimentally determined normal mode and analytically predicted normal mode, the red one 
indicates the experimentally determined normal mode.



So these results as I said I am not going to discuss, this is for as a reading exercise for you to 
understand what these are, so this is for the case of the shear building model, this is how the 
two FRF's before you know we do damage detection and predict the behavior, appear and after 
the damage detection has been performed this is how it is reconciled. 



So the summary of the findings of this investigation is that the performance of damage 
detection algorithms when applied to synthetic data was found to be generally very satisfactory 
that is to be expected, it validates the procedures developed and the way they have been coded 
and the method has been implemented all that is validated, this is an essential first step if you 
are going to do any of the implement any of these methods in practice, first you can try out all 
the algorithms encoding with respect to a synthetic example, where you know what is the 
change, where is the change, etcetera. When applied to experimental data we would not know, 
what is the actual, true parameters would be unknown, so whatever the method tells we have to 
you know except in some sense. 
Now since we move in these examples what was the change that we have made to the structure,
because we added a stiffener removed a stiffener added a mass remove the mass etcetera, 
etcetera, we have some idea of what is the changes that we are making, so based on this it is 
concluded that about 0.02 to 10.7% is the accuracy for beams using inverse eigensensitivity 
method, and this is shoots up for FRF based method, and inverse eigensensitivity for the 
building frame, this is the error that we observed, and this is based on FRF’s, so there is no 
definite recommendation that we can make which method works so it seems to, it is fair enough
to say that the errors that we encounter depends on the situation, all the methods can potentially 
lead to equally good results if applied correctly. 



Before I close this discussion I would like to briefly touch upon a few other a finite element 
updating methods, we have basically discussed inverse eigensensitivity and FRF based, 
frequency response function based methods, but there are other strategies also so I will quickly 
review them, the first one is known as direct matrix method, so here what we do is for example 

MX is the mass matrix for the experimental model which is not known, we assume that we 
propose that the elements of MX can be determined by minimizing a metric delta M as defined 
here, so MA is analytical mass matrix, MX - MA can be you know is defined, it is the error and 



this is not known, MX is not known, so elements of MX are the variables of optimization, 
similar statement can be made for stiffness matrix also.
So now if you are focusing on finding elements of MX which minimizes delta M we need to 
put some constraints, for example mass matrix has to be symmetric, stiffness matrix has to be 
symmetric, and these orthogonality relations must be satisfied, where phi X and lambda X are 
experimentally determined. Now this is one of the earliest methods of finite element model 
updating that was developed, but the problem here is the physical connectivity of structural 
model may not be honored, if you are simply changing elements of mass matrix you may get a 
nonzero entry in the mass matrix which is not supported by the actual connectivity that you see 
in the existing structure, so that is not imposed as a separate constraint, and also the changes 
that we observe that is MU – MD and KU - KD are not guaranteed to represent physically 
meaningful quantities, so this is not quite satisfactory, a remedy to some extent to this can be 

formulated as follows, so what we can do is we if there are N elements, that is N ELEM number
of finite elements in your analytical model we can assume that each of these analytical mass 
matrix of the analytical financial model need to be corrected by a factor AI to obtain the 
corresponding mass matrix in an experimental model which is not known actually, so AI is our 
scalar factors associated with each element. 
Similarly this is BI with stiffness matrix, now what we can do is we can formulate the 
experimental mass and stiffness matrix, in terms of these unknown AI’s and BI’s and would 
have measured the normal mode say phi X is measured so we can substitute them into this 
equation, and see we will get a set of equation from the 2 orthogonality relations and they can 
be recast in this form, that means we are actually constraining these AI’s and BI’s by the 
orthogonality relations of the normal modes and the relationship between natural frequency and



mass matrix, sorry stiffness and mass matrix and the eigen solution, so this leads to by suitable 
manipulation a set of over determined equations, and this is what you have to solve by doing 
maybe pseudo inverse seeing with regularization and so on and so forth. 

In a more direct approach suppose you have measured Q number of natural frequencies and R 
number of mode shapes, or S number of mode shapes at R number of spatial coordinates, so we
can define a metric of differences, so this is the sum of squares of observed differences between
the experimental and analytical natural frequencies, this is the sum of squares of difference, 
observed difference between experimental model and analytical model summed over all modes,
summed over all the space, so J is a positive quantity because we all square at this. Now this J 
will be function of the unknown system parameters so what we can do is we can optimize J, we 
find P which minimizes J, so unsuitable constraints that can also be imposed in solving these 
equations, those constraint reflecting the basic dynamical characteristics of the structure, so the 



other method that I briefly mentioned here the Bayesian filtering method I remarked in the 
previous lecture, this is one of the most powerful methods, this is based, this has roots in 
probabilistic methods, we apply Bayes theorem we treat the mathematical model and the 
measurements as being imperfect, and we use probabilistic arguments and derive the posterior 
probability density function of system parameters conditioned on the measurements made, so in
this approach all the system parameters are treated as random variables, so this can be applied 
to linear problems, nonlinear problems, and in fact the resulting equations can be solved using 
Monte Carlo simulations, but as I already said the scope of this method is outside the per view 
of this course, so we will not be elaborating further on this. 
So with this brief overview we will close our discussion on finite element model updating, and 
in the next remaining part of this course we will look at some problems of nonlinear structural 
dynamics problems, so how to deal with non-linearity especially in the framework of finite 
element formulations, what really happens? Can we still formulate element matrices? Can we 
still assemble? How do we solve the equations? All these questions can be posed and we will 
find suitable answers to those questions. So that we will take up in the next lecture, we will 
close this lecture at this point.
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