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We will continue the discussion on finite element model updating, in the previous lecture we



The two states of the system

+ Postulated (I) and experimentally
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derived sensitivity of natural frequencies, mode shapes, and frequency response functions, we
considered situations where natural frequencies where free vibration was done for damped
systems and as well as undamped systems.

So we postulated basically two states for the system, in the context in which we discussed this
in the previous lecture there was one state one which is the postulated model for the structural
behavior on which measurements have been done, the second state is the model on which
experimental studies have been done. Now our objective is to arrive at a finite element model
for the system on which measurements have been made, there is an alternative perspective
which is related to this approach, this is related to problems of damage detection, it is closely
related to problem of finite element model updating here also we postulate two states, one is
system in its healthy state, let us call it as undamaged state and system which is postulated to be
in a damaged state. So the word damage here could mean lot of changes in stiffness, mass, or
damping characteristics in the context of problem that we are dealing with, and our objective
would be to, you know analyze the measurements carried out on the damaged system and infer,
if the structure is indeed damaged if yes, where is the damage? And what is the quantum of
damage? And more complicated questions like what is the residual life left and things like that.
Now so in the discussion to follow we will try to adopt these two alternative perspectives, so it
could be that we are dealing with a system on which the object is not to do damage detection
but to simply identify the parameters of the model, so the postulated finite element model is the
first state of the system and our objective as I already said to derive the finite element model for
the structure in the way it currently exists.



Now so we have a FE model 1 and measurements made on existing structure which is model 2,
and the updating procedure leads to the FE model for system in state 2. So depending on the,
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based on the various sensitivity information that we studied we got the updating equation in this
form we have certain changes in response characteristics on the system that we call as delta
gamma this is to be determined experimentally, part of it is measured experimentally, and part
of it is postulated through the baseline the finite element model for the structure, and the
difference is calculated. This S matrix is the matrix of sensitivity you know sensitivity matrix,
this has to be determined from the postulated finite element model, these delta is the vector of
unknown updating parameters, so this typically constitutes a set of over determined equation
this is a formulation based on first order sensitivity method, and we obtain delta typically by
using pseudo inverse of S into delta gamma, we can refine this procedure as I discussed in the
previous lecture by using Tikhonov’s regularization strategies.

So the task to be done is experimental determination of delta gamma, an analytical
determination of elements of S matrix that is sensitivity analysis, then solution of the over
determined set of equations either by iteration, pseudo-inverse, singular value decomposition,
Tikhonov regularization etcetera.

Now this problem is notably different from the forward problem of design sensitivity in which
we impart certain changes to system parameters in the, parameters of the system and we would
like to know what would be the change in response characteristic that is the objective of a
forward sensitivity problem, but we are using the idea of the sensitivity analysis in the inverse
way, that means we have seen that certain changes have taken place in the system response
characteristics and we don’t know what are the changes in system parameters that have caused



those changes and we use the same equation to find delta instead of delta gamma as in forward
responsive design sensitivity analysis.
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Now there are many research papers on this subject of finite element model updating, there are
some few useful references, this is a book by Friswell and Mottershead which is entirely
dedicated to problem of finite element model updating, and the book on modal testing by Ewins
has a chapter on, you know topics related to finite element model updating, and in this collected
papers edited by Maia and Silva, there is a chapter again on finite element model updating.




Mode Indicator Function

+ MIFs are often real valued frequency dependent functions that
show local maxima/minima at the system natural frequencies
corresponding to the real normal modes

« They can be used to identify repeated eigenvalues
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+The peaks in the first (largest) CMIF indicate the location of natural frequencies
*Double or multiple natural frequencies are indicated by simultaneously large
values of two or more CMIF values
{"'- iated with w= wr, the left singular vector indicates the mode shape for that
Tigle and the nght singular vector represents the approximate force pattern
ed to generate response on that mode only
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In the previous lecture we discussed briefly the quantity known as complex mode indicator
function, so the mode indicator function are often real valued frequency-dependent functions
that show local maxima or minima at the system natural frequencies corresponding to the real
normal modes. They can be used to identify repeated eigenvalues. So if H(Omega) is N x P
measured frequency response functions we can do a singular value decomposition of this
rectangular matrix and the matrix of singular values, you know we define what is known as
complex mode indicator function in terms of singular values of this matrix, and this is the
definition.

Now we discuss some of properties of CMIF and we Illustrated this with respect to a 7 degree
freedom system in which natural frequencies were repeating, but I would like to augment that
discussion with 1 or 2 illustrations, so that’s why this topic we have returned to again, the peaks
in the largest CMIF indicate the location of natural frequencies, double or multiple natural
frequencies are indicated by simultaneously large values of 2 or more CMIF values, associated
with omega = omega R, that is the R-th natural frequency, the left singular vector indicates the
mode shape for that mode, and the right singular vector represents the approximate force
pattern needed to generate response on that mode only, so this is something that is a property of
singular value decomposition of the FRF matrix.
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Now we have considered few examples I want to illustrate this with one more example, suppose
we again consider a 7 degree freedom system, this is a stiffness matrix, this is a mass matrix,
and we use this as a damping ratios and C matrix can be constructed based on you know these
modal damping ratios and that is given here.
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Now the question that I am trying to answer here is as you saw here we are talking about
frequency response function which is not necessarily square, if you measure all frequency in a
discrete multi-degree freedom model the frequency response function matrix will be DOF/DOF
but often we will not measure all the elements of the frequency response function so the point
that [ am trying to discuss now is what happens if we have a rectangular frequency response
function matrix.

So for this system if we have the full 7 by 7 FRF matrix, these are the singular, the CMIF's and
the blue one is the largest you know the singular value, and we see that there are 7 peaks
corresponding to frequencies at which there are system natural frequencies, so this is fair
enough, this is clear.
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Now if I now take FRF’s to be 4 by 3, that means I will consider 4 rows and 3 columns, and
assume that only this is available, then we are getting only 5 peaks so CMIF from partial
measurements may not provide all the natural frequencies, and this is another one where I have
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taken rows 2 to 5, and columns 1 to 3. Now in some other combination we see that all
frequencies are captured, so this is something that one should be alert to when using CMIF with
partially measured FRF matrix.
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On the other hand the receptance functions themselves may not capture all the natural
frequency, there are 7 frequencies from a mere visual inspection of this, we will not be able to
see the 3 more natural frequencies, but if [ look at other elements of FRF matrix we will be able
to see certain other frequencies which is not, is mildly perceptible here, it becomes more
pronounced here, and you know other you know by reducing damping I am trying to show that

cam-5a 13

there is another peak here between 160 to 165, this is a zoom of H12(omega), amplitude of
H12(omega) that is not perceptible here, but this kind of peaks are clearly seen if you look at
CMIF plots.



Remarks

« CMIF with full FRF provides clear indication of all the modes.
« CMIF with partial FRF measurement could miss some modes.

+ Elements of FRF may fail to indicate (visually) the existence of
resonant frequencies. The modal extraction algorithms may be
able to pick them.

+ “CMIF frequencies” and “MDOF frequencies” need not match

®

So a few comments can be made, CMIF with full FRF provides clear indication of all the
modes, CMIF with partial FRF measurement could miss some of the most, elements of FRF
matrix may fail to indicate at least visually the existence of a resonant frequencies, the modal
extraction algorithms may be able to pick them up, although you may not see it in the FRF
plots. The CMIF frequencies and MDOF frequencies need not match, so this also is something
to do with variation of mode shapes at the drive and measurement points, because of which
there will be again fluctuations in the FRF plots, therefore there would be differences, okay.
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[How closely do the analytical and experimental models agree
o Prehminary step: matching the size of the expenmental and
analytical models

¢ Use either model expansion or model reduction

e Recall discussion on model reduction using SEREP
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¢ =i" mass normalized mode shape from the analytical model
¢. =i" mass nomalized mode shape from the experimental model
|,ar~ =" arbitranly normalized mode shape from the analytical model
5=/ arbitranly normalized mode shape from the experimental model

o
".I";L cript .4 : refers to the analytical model

|Subsenipt X : refers to the expenmental model 5

Now we move on to a brief review of another question, how do we quantify the proximity of
analytical model and experimental model, that is the question we are asking is how closely do
the analytical and experimental models agree, so how do you quantify this? Now there are few
matrix for this, that’s what I will quickly review, there is lot of literature on this but I just want
to give a flavor of what the issues are. Now the preliminary step would be the matching of the
size of, matching the size of the experimental and analytical model this issue I have already
mentioned in experimental work the number of sensors you have may not match the number of
degrees of freedom in a finite element model, often the number of degrees of freedom in a finite
element model far exceeds the number of degrees of freedom in an experimental work, simply
because some of the interior nodes will not be accessible, certain responses may not be easily
measurable like rotation and so on and so forth.

Now we can use either model expansion, that means the experimental model is expanded to
match the degrees of freedom of the analytical model or a model reduction on the analytical
model to match the degrees of freedom included in the experimental work, so for this typically
we use SEREP, this I have discussed earlier in the context of model reduction in one of the
previous lectures.

Now the basis for setting up measures for comparing analytical and experimental models is
again something to do with orthogonality relation, so we define phi to be mass normalized
modal matrix, phi transpose M phi is I, and phi transpose K phi is diagonal matrix of squares of
system natural frequencies, we use the subscript A to indicate analytical model, and subscript X
for experimental model, and phi we use for mass normalized mode shapes, and sai is arbitrarily
normalized mode shapes, so this is the nomenclature, subscript A refers to analytical model,
subscript X refers to the experimental model, so mass normalized normal modes will satisfy



this condition, if it is not mass normalize this matrix will still be diagonal, but the elements will
be you know the generalized masses will not be identity equal to 1.

Normahzed Cross Orthogonality (NCO)
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Now there is a quantity known as normalized cross orthogonality denoted as NCO, it is a
quantity that is computed between 2 modes, suppose from the experiment you pick the I-th
mode, and from the analysis you pick the J-th mode, we define this quantity, this is sai X
transpose, MA, sai A you know analytical, MA is analytical mass matrix which will be available
to you. Now what is the issue here? The issue is when I experimentally extract certain modes,
natural frequencies and mode shapes and I computationally predict them, how do you order,
how do you pair, which mode in analysis corresponds to which mode in experiment, so we call
them as correlated model pairs, so it is very important that we establish the correct pairing
between the modes of, modes predicted from analysis and experimentally measured modes, it is
quite conceivable that in an experimental model we miss some of the modes, so suppose if you
measure 5 modes experimentally and your analytical model has 25 modes which 5 of the
experimental modes correspond to which of these 25 modes in a computational model is not a
question that can easily be answered, so we define the quantities like NCO to able to answer
that, so this is as you see it is defined in terms of arbitrarily normalized real normal modes, and
you can see that if sai X is sai A that means the experimental and analytical mode shapes match
this quantity will be 1, if they are very much different that quantity will approach 0.
Values closer to one indicating the closeness of analytical and experimental mode shapes, now
if M is the number of experimental modes and N is the number of analytical modes, NCO
would be M x N matrix, okay, then those elements of this M x N matrix which are close to one,
provide the correct strategy to identify the correlated modal pairs.



So first mode in experiment will be purely, the NCO between first mode in experiment and say
third mode in analysis will be close to 0 if these modes are correctly, nomenclature is correctly
assigned to them. If you are dealing with say third model in experiment and third mode in
analysis, NCO will come pretty close to 1, so this helps in identifying the correlated modal
pairs. Now if sai X is alpha time sai A, NCO will be an identity matrix that means if mode
shapes are proportional, okay, this NCO will be 1.

Modal Assurance Crtenion (MAC)
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Now this as you see requires the mass matrix of the analytical model, we can define another
quantity known as Modal Assurance Criterion, here we don’t use any structural matrices, again
this is defined between I-th experimental mode shape, and J-th analytical mode shape, this is a
MAC of between these two modes is given by this quantity, these are all intuitively defined
quantities there is no mathematical basis for arriving at these quantities.

Now you observe this here we are allowing for complex valued mode shapes, that means
influence of damping in determining mode shapes is included, as I already pointed out in an
experiment you will be always be measuring damped normal modes. Now this can be used in
conjunction with coordinate-incomplete mode shapes, and for example the analytical mode
shape can simply be partitioned instead of doing a model reduction or expansion. And MAC
also lies between 0 and 1, and values closer to 1 indicating the closeness of analytical and
experimental mode shapes. Again MAC would be a M x N matrix if M is the number of
experimental modes and N is the number of analytical modes, this matrix facilitates again
establishing the correlated modal pairs.

Now if phi X is alpha phi A in this case MAC won't be an identity matrix, because this is not,
there is no mass matrix here, you recall that the mode shapes the way we are deriving by
solving the eigenvalue problem associated with K and M are orthogonal with respect to mass



and stiffness matrix, so phi transpose phi is not a diagonal matrix, it is phi transpose M phi is a
diagonal matrix, so this won't be equal to an identity matrix.

Nomalized Modal Difference ( NMD ) and Modal Scale Factor ( MSF)
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Now there is another quantity known as Normalized Modal Difference and Modal Scale Factor,
so again this is defined with respect to 2 mode shapes, this is given by this quantity phi X(I) -
gamma phi A(J) this is L2 norm/L2 norm(gamma) phi AJ, and this gamma itself is, this is
modal scale factor between the 2 modes, and this itself is defined in this manner. We can show
that in this normalized modal difference is related to MAC through this equation, I’1l leave it as
an exercise. Again here no FE matrices are used, but the utility of this notion is that mode shape
at each DOF, for example is erroneous by 10% then this NMD will become 0.1, so it gives you
directly a measure of error in a more direct way.
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How to locate spatial regions where the differences between
analvtical and expenmental mode shapes are the most pronounced’

> Coordinate Modal Assurance Crntenion |COMAC i.'||

Let N, = number of correlated modal pairs
¢(1. ) = value of the mode shape at the (™ coordinate in the /™ mode
b RINICN TN
COMAC()
TJ" i‘TL"I.' |
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ronouncedly. Such regions need not be the regions where actual errors

are located. (e.g.. errors in modehing fixed end comitions in a cantilever beam )

Now this MAC and NCO compare 2 mode shapes and give a measure of, which mode has to be
paired with from experiments with, which mode in analysis, but they do not tell where is the
location of difference between analytical model and the experimental model, so the spatial
information is not included there, so to do that we ask the question how to locate spatial regions
where the differences between analytical and experimental mode shapes are the most
pronounced, okay that is where you may like to update the model parameter, that is a hope, but
there is a catch in that which we must understand carefully, so with that in mind we introduce
what is known as coordinate modal assurance criterion, here let NCMP be the number of
correlated model pairs which has been established by some criterion, then phi 1J I define as
value of mode shape at the I-th coordinate in the J-th mode, so I is the coordinate, J is the mode
count, so the coordinate modal assurance criteria for the I-th coordinate, okay it is defined with
respect to coordinate not with respect to a mode, and all the modes are summed here, this
metric is obtained by summing over the mode shapes at that value of the spatial coordinate or
the degree of freedom that is defined in terms of the analytical mode shape and the
experimental mode shape through this relation as shown here.

This COMAC also lies between 0 and 1, it has no physical basis it is intuitive, it can be
displayed as a contour plot over the domain of the structure, that means you can plot the
structure and you can have color coding for different values of COMAC or draw contours and
where COMAC is close to 1 we suspect that the agreement, disagreement between the
analytical model and experimental model is most pronounced.

Regions of low COMAC represent the regions where the consequences of difference between
analytical and experimental modes are felt most pronouncedly, these need not be the region



where you have actually made errors, there are errors in parameter values, it is only the place
where the consequence of the difference is felt most pronouncedly, so for example in a
cantilever beam if you have made an error in modeling boundary condition at the fixed end then
the effect of that error will be most pronounced at the free end of the cantilever, you might have
done modeling at the free end appropriately, but the error done elsewhere, the consequence of
that will be felt somewhere else, so that precaution you have to take, but typically we tend to
use COMAC to identify those spatial regions where we want to correct the parameters, but
while doing so that is a hope that COMAC indicates that, but it is not guaranteed to do that but
it gives you kind of a hint that there could be something wrong with properties in those regions
where COMAC is low, okay, so that is how this is done.

Dynamic force balance method
'l [ e b ‘l |
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wherein one uses measured and analvtical FRF-s instead of mode stfapes

lency Response Assurance Cntenton (FRAC)

Now there are few other metrics I will just for sake of completeness briefly mention them,
suppose you have determined mode shape, suppose J-th mode shape has been determined and J-
th natural frequency has been determined, and if I now plug it back into the analytical model K
into phi - omega square MA into phi must be 0 that is the eigenvalue problem that you need to
solve, but if there is an error there will be a residual force that again tells you where is the
trouble, okay, so if these 2 are equal that is phi XJ = phi AJ it is automatically satisfied because
KA and MA are analytical matrices, and phi AJ is analytically determined mode shape that has
to satisfy the eigenvalue, statement of the eigenvalue problem.

Now to implement this idea you require coordinate complete measurements, that means this phi
XJ should be, the size of phi XJ should be equal to the degree of freedom in analytical model,
so you may have to expand the experimentally measured mode shapes using a suitable strategy,
so the answers will be affected by the strategy that you employ, so the aspiration is it would



help in locating regions at which residual errors are high, the errors could be in stiffness or mass
that issue doesn’t get resolved here.

Now this is the matrix that I have talked about are in terms of natural frequencies and mode
shape they can be damped or undamped, we can also define similar quantities, these frequency
response functions, analytically we can predict the frequency response function and
experimentally also you can measure the frequency response function. Now on the lines of
MAC and COMAC one can define frequency domain assurance criteria called FDAC, and
frequency response assurance criteria called FRAC, wherein one use is measured and analytical
FREF’s instead of mode shapes, so in the definition of MAC and COMAC instead of using mode
shapes you use the measured frequency response functions, so you get FDAC and FRAC, so
they again serve the same purpose as MAC and COMAC by enlarge, and it doesn’t require
extraction of mode shapes, and natural frequency.

lllustrative Examples
* A hypothetical MDOF system

« Studies on beams and simple building frame models
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Now this is just a brief overview of the model correlation methods again you need to go back to
the references that I provided especially the book by Evins to you know completely understand
what the issues are, so here in these 2 lectures on finite element model updating I am trying to
provide a flavor of how to approach these problems and what are they issues and in some
simple illustrations. So the illustrative examples that [ am going to present now are with respect
to a class of hypothetical multi degree freedom systems, and we have done some studies on
simple beams and building frame models experimentally, and the presentation of some of these
results will now follow.



Study 1: Inverse eigensensitivity analysis for undamped systems

Objectives 1. Evaluation of mass and stiffness parameters
2. Study the effect of cross orthogonality relations

Summary of solutions of equations of motion
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In the first study we want to you know apply the inverse Eigen sensitivity analysis for
undamped systems, so the objective of this illustration is evaluation of mass and stiffness
parameters and study the effect of including cross orthogonality relations in deriving the
updating equations, so this is quick recall of the governing equation, this is a equilibrium
equation, this is assumed solution, this is eigenvalue problem to be solved, these are the natural
frequencies and mode shapes, these are the orthogonality relations.



Assembled equations for damage detection

(V) = number of eigenvalues
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Now in the previous lecture we have derived the equations for sensitivity of eigenvalues and
eigenvectors and based on that we form the updating equation, and we got the solution as delta
is S pseudo inverse delta gamma, now we will apply this on a 5 degree freedom system as
shown here.




Numerical illustration

Baseline model
Xass parameters Wike

Stufness parameters A (N'm)

Un 1-tll+"l.|lI||iIHIl.[ll v o, (rad's)

{.1)1: nahized modal mamx @

Five degree of freedom system

DO Oy 00700 001420

Now these are the masses, these are the stlffnesses and for this system these are the natural
frequencies, and this is mass normalized modal matrix. we call this as a baseline model and I
am going to alter some of the properties of mass and spring and call it as system in damaged
state, so if we are not talking about damaged and undamaged systems it could be a postulated
finite element model and the model unknown model from which we have taken measurements,
in the illustration that I am presenting in this part the experimental results are synthetically
generated, that there is no true experiment but numerically we are doing an experiment. The
idea here is to see how the updating equations can be implemented, and what if any are the



Wedenote ™ =am . k' =[k" and
Parameters @./.” denote the damage indicator factors

If the structure suffers no damage « - 1./ -1 & 1

Method 1 = no cross orthogonality relabons
Mathod 2 - cross orthogonality relations included

Case 1. Damage scenarowith (o, =07.a,=0%%.a, =085, =08 a, =06

(B =058 =058 =045.8 =05, 8 =08.8 =075, 8 =035 4 =0.85)

5

2 Damage scenario with (a, =03.a, =055,¢, =065.a, =04.a, =06)

(8 =058 =01508=04.0 =050 =08 | 045 035 4 =06)

pitfalls in using that, this is a exercise that is worth doing before you actually start working
with experimentally observed structural properties, so what I will do is I will use the language
of damage and undamaged systems, so MI in damaged state is taken as alpha A into MI in
undamaged state, this MI, KI, and CI are the discrete elements shown in this figure, so we
introduced alpha I, beta I, and gamma I and the updating parameter is consequently are these
non-dimensional numbers alpha I, beta I, and CI, if the structure suffers no damage all these
quantities will be equal to 1.

Now we will adopt two methods, in first method we will not include cross orthogonality
relations. In the second method we will include the cross orthogonality relations and see if there
is any advantage in doing including cross orthogonality relation, now there are 2 damage
scenarios with various levels of severity, the notes for this presentation will be available with
you, you can study this in greater detail I will now present the main features of the result
without getting into the base all the intricate details.
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Method 1 where cross orthogonality is not included predicts the 5 masses in acceptable manner,
and stiffness parameters also in an acceptable manner for the method 1, that is case 1, for case 2
what happens, the method does not perform acceptable, for example on X-axis in all these plots
is the iteration, the global iteration step that I mentioned in the previous lecture you start with
initial guess and improve upon that successively through an iterative process, here you can see
the algorithm is not converging, where as you can see here all the system parameters have
converged and have become constant after about 10 iterations, whereas here they seem to be
diverging here. So method 1 does not perform for case 2 of the so-called damage scenario.



Results: Method 2
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Now you include now the cross orthogonality relations we see that case 1 the method works,
case 2 the method indeed works, so this is an example where the objective is to illustrate that by
including the cross orthogonality information in driving sensitivity information we are able to
achieve better solutions in terms of determining finite element model updating parameters.



Study 2: Inverse eigensensitivity analysis for damped systems

Objectives 1. Evaluation of mass, stiffness and damper parameters
2. Study the effect cross orthogonality relations

3. Analysis with complex modes

Swnmary of solutions of equations of moton

@ Lo al s

This study was for undamped system, in the next study we are considering the same approach
inverse eigensensitivity analysis, but now for damped systems, so the objective here is to
evaluate mass, stiffness, and as well as damper properties, then again study the effect of cross
orthogonality, and how to carry out analysis with complex modes that is the objective, so we
rewrite the equation of motion in this form AY dot + BY = F(t) and we get the mode shape,
modal matrix in this form, and eigenvalues are N pair of complex conjugates and these are the
mode shapes both are complex valued and the orthogonality relations are as here, so this we
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have done the sensitivity analysis in the previous lecture and this is the using first order
sensitivity method, this is the updating equation that we need to solve, so these are complex



Sumerical illustration

Baseline model

(damping matrix s
proportional )

e
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valued and we separate the real and imaginary parts and arrive at appropriate simplified
updating equations.

Now in the numerical illustration I again consider a 5 degree freedom system, these are the
masses and stiffnesses, and these are the 5 damper elements, and undamped natural frequencies
are this, and this is the modal matrix, and I am applying this method now on a proportionally
damped system, so we can use complex normal mode analysis on a proportionally damped
systems also, it doesn’t prevent us from doing that, so these are the natural frequencies and
these are the damped natural frequencies, clearly you will see that there is a relationship
between this damping ratios and the quantity shown here.



Study 2: Inverse eigensensitivity analysis for damped systems

Objectives 1. Evaluation of mass, stiffness and damper parameters
2. Study the effect cross orthogonality relations
3 Analysis with complex modes

Summary of solutions of equations of motion

" - e A Moo
W I
=B F
il
[ T LR L " }
sl e
R - .
——— - L B
L | {1
i L &
I i, by g - (1 i} i
TR I
\ $.la A ]
{*‘- .I Il .
X 4 X A ‘t't‘
NPTEL . : .
- gl rulstam \
iRk [ .1

Now this is the modal matrix you can understand this right now it has this structure, that phi
lambda, phi*, lambda*, phi and phi* so you can see that such a structure exists here, now the



Method 1 - no cross orthogonality relations
Method 2 - cross orthogonality relations included

Case 1: Damage scenaro with

|z _l.|'u_ =075 @ =085 o, =1 K, =0.7)
(A=054=0358=0650-064=0354=-07A=0754 =03)
{7, =04, 7. =035,y =03, v, =033, %, =06)

Case 2: Damage scenano with

(@, =0T.a, =075a =075a,=07a,=07)

(A =0458 =058 =0458,=03508,=0506, =045 4 =06, 4 =0435)

(7 =025.7 =037, =0257 =025y =03)

problem is we will introduce 2 damaged scenarios, we will simultaneously change the mass
properties, damper properties, and stiffness properties, and there are 2 such scenarios that we
are adopting, and the objective of this study is to see how the first order sensitivity method
performs by including cross orthogonality relations and by excluding cross orthogonality
relations.
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So for method 1 the first case that seems to perform reasonably well, the second case shows
certain instabilities it is not satisfactory, there are certain perturbations and so on and so forth.




Results: Method 2
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So we use method 2, the solutions are much well behaved all the stiffness, parameters,
damping, mass and damping parameter for both the cases are show stable behavior as iterations
proceed.
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Obgectives 1. Evaluation of mass, stiffness and damper parameters
2. Compare first and second order sensitivity methods
3. Assess their performance for partial measurements of FRF matrix
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Okay here again we reach the similar conclusion that including cross orthogonality relations is
helpful in getting better solutions. Now we also seen that we can perform inverse sensitivity



response functions

Obsectives 1. Evaluation of mass, stifiness and damper parameters
2. Compare first and second order sensitivity methods
3. Assess their performance for partial measurements of FRF matnix
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analysis using frequency response functions themselves, so we need not have to extract natural
frequencies in mode shapes and do this analysis, we can directly do the analysis with the
measured frequency response functions, this we have derived in the previous lecture so we will
not repeat that. In a first order frequency response based sensitivity analysis, this is the finite
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element model updating equation and we will illustrate that now, we will take a baseline model,



Numerical illustration

Baseline model the damping matnx is taken to be diagonal
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Method 1. First order sensitivity analysis
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2. Second order sensitivity analysis

ge scenand. o =08%a, =06,a, =06 a, =06a, =06
NMPTEI g=060=0890=0890=08.0=0894=080.42 =089, % =089
=085 ».=08S » =088 ~ =0 RS » =0RS
the damping matrix is simply taken to be diagonal and this is for again for illustration, these are
the undamped natural frequencies and this is a mass normalized modal matrix.
Now there is a damaged scenario as depicted here, and we are going to use first order sensitivity
analysis and also we are going to illustrate the functioning of second order sensitivity analysis

where we have increased the level of damage to see whether we gain any advantage in using
second order methods.




Results: Method 1 (first order sensitivity)
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So for the method 1 and damage scenario 1, the first order sensitive method seems to provide



Results: Method 2 (second order sensitivity)
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reasonably good answers so this is fine, and second order method also provides good results,
both the methods seem to perform well here.



Study 4: Inverse sensitivity of singular values of FRF matrix

Objectives

« Damage detechon in systems with repeated/closely spaced modes

+ |[dentify damage parameters in systems
a) case 1.Distinct modes (before damage) and repeated modes (after damage)
b) case 2:repeated modes (before damage) and repeated modes (after damage)
¢) case 3 repeated modes (before damage) and distinct modes (after damage)

Definition
let B,  =aa and Q. aa
Here [a] — Receptance matnxofsize V. «V. H = conjugate transpose

Eigenvalue problem: A\ - u\ for every @, e =@, - @),

_. = the nonzero eigenvalues of B and Q can be shown to be equal

|~ Mhe spectrum of these nonzero exgenvalues |u| 1s lermed as the CMIF
wrre1 their square root provide the singular values of matnx ofw)

- the CMIF can be used as response feature for damage detection
Now we talked about inverse sensitivity of singular values of FRF matrix, now here we will
select an example where our objective is to do damage detection in systems with repeated or
closely spaced modes, and identify damage parameters in the systems, so we synthetically
simulate a few situations where before damage the structure as distinct modes and because of
damage the system will have repeated modes, this is an artificially simulated scenario but it is
useful to see in these limits how the system performs and the solution strategy performs, so
before damage the system has repeated modes and after damage also it continues to have
repeated modes, and third case is repeated modes before damage and distinct modes after
damage, so how these methods perform? So in state 1 there are either there is a repeated natural
frequencies or not in the state 2 the similar thing with different combinations are used, so we
have gone through this definition of singular values and things like that I will not repeat that, so
we consider this system now, so this is again a 5 degree freedom system, now it is supported




Baseline mode| (damping matrix is proportional)
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Method 1 Inverse CMIF sensitivity analysis
Method 2 Inverse eigensensitivity analysis of real modes without cross orthogonality

Method 3. Inverse eigensensitivity analysis of real modes with cross orthogonality

Undamaged structure with repeated eigenvalues Y0000 153361 6 X0 61299 230506 ragn

t;\amaged structure with repeated eigenvalues X . 42 el
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and connected in a slightly different way so we consider now the scenario where this are the
properties, and in the undamped natural frequency you will see here that the third and fourth
natural frequencies are repeating, okay.

Now we will introduce a damaged scenario and here if you see, because of this damage
scenario the third and fourth natural frequency still repeat but they have a different value, okay
so this is in the damaged state, this is undamaged state, so we have undamaged structure with
repeated eigenvalues and damage structure with repeated eigenvalue, but the natural
frequencies are having different values okay, so this is how this artificially stimulated, so we
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have, in method 1 it is inverse CMIF sensitivity analysis, method 2 inverse eigensensitivity



Results:

Method 2 - b b b
Stiffness

paramelers

analysis of real modes without cross orthogonality and inverse eigensensitivity analysis with
cross orthogonality, so method 1 seems to perform reasonably well, and method 2 there is
problems here, it’s not working nicely, method 3 cross orthogonality is included it seems to



Results:

Method 3
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converge to give the convergent answers, but we have to see whether that is right or wrong, so
this is just an example so you can verify whether these results are acceptable.



Study 6: Frequency response function method

Objective. Evaluation of mass and stiffness parameters (with model reduction)

The govemning equations in frequency domain for the structure in damaged state

e M, i, + K, | X, =F

If X., are the measured dofs
Vo = T X
where T, 15 the model reduction transfonmation mamx given by
I (K —'M 'K -o'M_] Dynamic condensation
.;"_ - - )
)
. &
MET .'i:' oo | o SEREP
i

Now there is yet another method known as a frequency response function method, this we’ve
not discussed earlier so we can quickly review what this is, so here it is evaluation of mass and
stiffness parameters with model reduction, now let’s consider the equilibrium equation of the
system in the damaged state and this is the equation. Now XD’s are the degrees of freedom
whose size is equal to the XA which is analytical degrees of freedom but we have to do a model
reduction so that degrees of freedom match and we use this transformation matrix either could



Using one of the transformations. the above equation can be recastas
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be condensation or SEREP, we use SEREP and substituting that I get the reduced equation and
this is the equation which we will use to predict the measured FRF’s, so the FRF predicted from
this will not match the measured FRF, so that by writing this equation at different frequencies
we can adjust the parameters of these models and get adequate number of equations to solve
that, so at a frequency one value of driving frequency if you arrange these terms we will get see
UK, VK, and WK are this and I am putting it here I get these equations, and if I repeat this
equation for a set of Q frequencies at which FRF’s are measured I get this over determined set
of equations, and I get the updating equation in this form, so this is straightforward
conceptually there is no problem but there is a model reduction step that is involved, so this we



Numerical illustration
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have applied on one of the examples I am just flashing the results, I implore you to study this

and maybe verify the results shown here.
So this is before updating, this is before damage detection and updating you see there are

differences, and after the updating process is completed you see that the matching is perfect
thereby indicating success of the updating procedure.

o F



Summary

+ Methods based on sensitvity of undamped eigensolutions can detect
changes that occur in the stifness and mass parameters

+ The other inverse methods are all capable of detecting changes in not
only mass and stiffness, but also, the damping charactenstics

* Inclusion of sensitivity information with cross orthogonality relations helps
in identifying systems which have higher damages

* Inverse CMIF sensitvity method successfully identifies damages in
system with repeated modes while inverse eigensensitivity method is
found to be unsuccessful

« The numerical investigations have revealed that the method based on
inverse eigensensitivity that includes complex nature of the
eigensolutions and information on cross urthnganalnt‘y seems to perform
most satisfactonly

NFTEIL

Now we can summarize what we saw, so what we have seen is methods based on sensitivity of
undamped Eigen solution can detect changes that occur in stiffness and mass properties, the
other inverse methods are all capable of detecting changes not only in mass stiffness but also in
damping characteristics potentially they are capable, inclusion of sensitivity information with
cross orthogonality relations helps in identifying systems which are higher levels of damages,
inverse CMIF sensitivity method successfully identifies damages in system with repeated
modes, while inverse eigensensitivity method is found to be unsuccessful in such cases, the
numerical investigations have revealed that the method based on inverse eigensensitivity that
includes complex nature of the Eigen solutions and information on cross orthogonality seems to
perform most satisfactory, except in situations where you have repeated natural frequencies and
such you know exceptional situations.



Numerical and experimental investigations on structural models

Three systems considerad
1. acantilever beam with inhomogeneous distribution of mass properties
2. afree-free beam with inhomogeneous mass and stiffness properties

3. athree-stoned shear buillding model with inhomogeneous mass and stiffness
properes

5

Now all these illustrations were with respect to synthetic examples where measurement was
artificially simulated on a obviously overly simplified idealized system. Now finite element
model updating is actually meant for studies that are actually performed in laboratory on
existing structures, so to explore how the methods that we have discussed perform in a
laboratory condition we have considered three problems, one is a cantilever beam with
inhomogeneous distribution of mass properties, other one is a free-free beam with
inhomogeneous mass and stiffness properties, and a three storied shear building model with
inhomogeneous mass and stiffness property.



Structure 1. Cantilever beam
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So in the cantilever beam, first example is a cantilever beam this is shown here you can see here
this is a cantilever beam and what you see here as white you know boxes here, these are the
accelerometers and the person here is hitting this beam with a instrumented impulse hammer
and this is being done to measure the frequency response function and if you see carefully here
the measured frequency response function is displayed here, so this is a complete experimental
set up which involves the instrumented hammer, and sensors, and a computerized data
processing system.

So now what we have done is there is a mass M whose position can be varied, and we assume
that in the structure when it is in healthy state this mass is placed here and upon occurrence of
damage this mass is removed, so we get system in 2 states and on both the, beams in both these
states we perform this experiment and try to identify the properties, and the question is do we
really detect whether where was the mass before it was removed, it is a self-validating exercise
in the sense I know where the mass was, so it would help us to understand how the method
works, there is one complication here which is invariably present in experimental work
involving a fixed and pin boundary conditions, see if you see carefully see here this beam is
clamped to a rigid block here with two bolts it is not clear whether this arrangement is adequate
enough to deem this support conditions as being fixed. In a static sense maybe yes, but in high
frequency vibration problems we are not sure whether that end is truly fixed or not, so what we
do is in identification problem we add a rotary spring here to indicate that there is a partial
fixity condition that we need to be aware of.

Expermental setup on cantiever beam



Structure 2° Free-free beam
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Expenmental setup on free-free beam o s B C semsges sirvetse
The second experiment is done on a free-free beam there is no problem of you know supporting
the beam, but it is suspended through flexible wires, ropes as shown here and this person is
again hitting this beam with impulse hammer to measure the frequency response functions, so
there are various configurations of this beam that have been created by adding certain stiffness,
so if you see carefully here there is stiffener that is added, and there is also a mass that can be
moved so there are a 4 you know configurations here as shown here, and this is, A, B, C are the
damaged configurations, and this is the undamaged configuration that is where all these
stiftness and mass elements are shown as here.



Structure 3. Three stoned shear building model
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Now the third example is on a three storied shear building frame, here there are system in two
states are displayed here you can see here in this state there is a mass that is placed on this slab,
and also there is a stiffener that is added in the ground floor, so by removing this we create this
state, so we measure frequency response functions on these two systems and by comparing the
differences in natural frequency mode shapes, FRF’s etcetera we would like to identify the fact
that this structure has been obtained from this structure by removing these known elements, so
configuration 3 [ mean we can define several configurations, in configuration 1 the stiffener and
mass are present, in configuration 2 all of them are removed, in configuration 3 we can remove
only one of these, either the mass or the stiffener, so we can create by different configuration, a
different combination of removal of these elements, 4 different configurations, so that is
outlined here and this is experimental system this is a extra mass that [ mentioned and this is
instrumented hammer that will be used to measure the frequency response functions.



Analytical Results: Free-free beam
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So we have performed the studies that I have mentioned, so I will leave this details in the nodes
I leave it as a reading exercise for you to you know go through these 3 examples and see what
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X ntally measured FRFs beam

Ampiitude and phase spectrum for the 6 FRFs measured on undamaged beam
at locations A1-A3

conclusions have been reached, these are the experimentally measured frequency response
functions, this is the amplitude plot and these are the phase plots at different locations, and as I
said I am not going to discuss all the details here we have computed the modal assurance



Detais of COMAC(i). Case 1. updating of baseline model, Case 2. check after camage detection
> I [2 3 1 $ 6 |
[Cmel (09960  [09%972 09986 09I 09983 (0996 |
[Case?  [099% 09963 09982 091 0998 0% |
Updating of baselme model

Updatng parameters Valuebefore  Value after * 5 upedation
. | updstmg = updatey
KeiNmrad) 10000 | WE 9 0200
M, (kg [ 0 3643 | 0 3864 -6 0700
M: (kg) | 032914 | 02743 4 K800
M; (kg) 02429 0 2348 26100
M, (kg) | 0 1643 | 0 3864 o | 0
Mikg) | ond T 0 1250
| M, (kg) | 02429 | 0 2380 2 (M)
Resuits of damage detection’
Cross orthogonality relabions not iIncluded in computing esgenvector agnsitvity
[ Danmage Scheme | Scheme 1 Scheme (I
mdicanng

parametery | Epected | Detected | % | Expected | Detected | % | Expected | Detected | %

VeCTon ecior Emor Vecton vechor Emor Ve Vechor Emor
1. Cu0H LOOES | «Quib06 | | 0000 05669 | 33110 10000 10121 | 12100
| Oty 09970 | 05004 1 D000 09815 | | 8696 1 00 10017 | 01700

10732 | 10866 | -12012] 1ORM | 10216 [-3e1T1] LU | 1127 |0
PTEL 10000 | 09431 | 47872 | 10000 | 0994 | D441 | 10000 | 09793 | 10700
A 10000 | 09988 | 01237 | 10000 | LOMS | ~49767 | 10000 | 0989 | 10100

|

Ag 1 D0 LO06s | 0663 | 000D | 0%64% | 39014 | ] 0000 Loe




Results on cantilever beam TR T
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criterion to pair the experimental and experimeﬁtal determine normal modes and aﬁalytiéally
determine normal modes that is also provided, the details are provided here and these are some
of the results of COMAC and detection results of damage detection, so here I am showing the



Results of damage detection
cross orthogonality reiations included in computing eigenvector sensitivity
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neTeL Comparnison of 3rd mode shape for the damaged beam obtained using experiments
and predicted using detected damage parameters

experimentally determined normal mode and analytically predicted normal mode, the red one
indicates the experimentally determined normal mode.
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Point accelerance for the frame (Case C) before and after model updating

So these results as I said I am not going to discuss, this is for as a reading exercise for you to
understand what these are, so this is for the case of the shear building model, this is how the
two FRF's before you know we do damage detection and predict the behavior, appear and after
the damage detection has been performed this is how it is reconciled.



Summary of results on damage detection

« The performance of damage detection algorithms when applied to synthetic
data was found to be highly satisfactory

« The accuracy of damage detection when apphed to expenmental data vaned from
) 0.02 to 10.7% (for beams using inverse eigensensitivity method)
) 0.14 to 21.48% (for beams using frequency response function method)
m) 1.41 to 8 92% (for building frame model using inverse aigensensitivity method)
) 0.09 to 7.7% (for building frame model using frequency response function

method)

®

So the summary of the findings of this investigation is that the performance of damage
detection algorithms when applied to synthetic data was found to be generally very satisfactory
that is to be expected, it validates the procedures developed and the way they have been coded
and the method has been implemented all that is validated, this is an essential first step if you
are going to do any of the implement any of these methods in practice, first you can try out all
the algorithms encoding with respect to a synthetic example, where you know what is the
change, where is the change, etcetera. When applied to experimental data we would not know,
what is the actual, true parameters would be unknown, so whatever the method tells we have to
you know except in some sense.

Now since we move in these examples what was the change that we have made to the structure,
because we added a stiffener removed a stiffener added a mass remove the mass etcetera,
etcetera, we have some idea of what is the changes that we are making, so based on this it is
concluded that about 0.02 to 10.7% is the accuracy for beams using inverse eigensensitivity
method, and this is shoots up for FRF based method, and inverse eigensensitivity for the
building frame, this is the error that we observed, and this is based on FRF’s, so there is no
definite recommendation that we can make which method works so it seems to, it is fair enough
to say that the errors that we encounter depends on the situation, all the methods can potentially
lead to equally good results if applied correctly.




Other FE model updating methods

+ Direct matrix method
+ Eigendynamic constraint method
+ Optimization approach

+ Bayesian filtering

Before I close this discussion I would like to briefly touch upon a few other a finite element
updating methods, we have basically discussed inverse eigensensitivity and FRF based,
frequency response function based methods, but there are other strategies also so I will quickly
review them, the first one is known as direct matrix method, so here what we do is for example

Direct matnx method

Find elements of M. which mmmuze
O, =M (M. -M )M~
or

”1-. HKIJ:I'I‘:; _Kl }KIH:H

subject to the constraints

M =M,
K. =K
oM D, -]
DK Dy = Ay
Remarks

,{I’Ii‘ ycal connectivity of structural model may not be honored
i)

M, &K, - K, are not guamnteed to represent physically meaning ful

iditities

MX is the mass matrix for the experimental model which is not known, we assume that we
propose that the elements of MX can be determined by minimizing a metric delta M as defined
here, so MA is analytical mass matrix, MX - MA can be you know is defined, it is the error and



this is not known, MX is not known, so elements of MX are the variables of optimization,
similar statement can be made for stiffness matrix also.

So now if you are focusing on finding elements of MX which minimizes delta M we need to
put some constraints, for example mass matrix has to be symmetric, stiffness matrix has to be
symmetric, and these orthogonality relations must be satisfied, where phi X and lambda X are
experimentally determined. Now this is one of the earliest methods of finite element model
updating that was developed, but the problem here is the physical connectivity of structural
model may not be honored, if you are simply changing elements of mass matrix you may get a
nonzero entry in the mass matrix which is not supported by the actual connectivity that you see
in the existing structure, so that is not imposed as a separate constraint, and also the changes
that we observe that is MU — MD and KU - KD are not guaranteed to represent physically
meaningful quantities, so this is not quite satisfactory, a remedy to some extent to this can be

Eigendynamic constraint method
Consider the 1™ finite element
m (l+a)lm
k (1+6) k
1.2 N
D) [M] Dy} =1
(K], 1@} -A, [M] @] =0,j=12,.N
[4]{, =18

d
r )
i

formulated as follows, so what we can do is we if there are N elements, that is N ELEM number
of finite elements in your analytical model we can assume that each of these analytical mass
matrix of the analytical financial model need to be corrected by a factor Al to obtain the
corresponding mass matrix in an experimental model which is not known actually, so Al is our
scalar factors associated with each element.

Similarly this is BI with stiffness matrix, now what we can do is we can formulate the
experimental mass and stiffness matrix, in terms of these unknown AI’s and BI’s and would
have measured the normal mode say phi X is measured so we can substitute them into this
equation, and see we will get a set of equation from the 2 orthogonality relations and they can
be recast in this form, that means we are actually constraining these Al’s and BI’s by the
orthogonality relations of the normal modes and the relationship between natural frequency and
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mass matrix, sorry stiffness and mass matrix and the eigen solution, so this leads to by suitable
manipulation a set of over determined equations, and this is what you have to solve by doing
maybe pseudo inverse seeing with regularization and so on and so forth.

Optimization approach

Objective function

J-Y . - | p) ' TT O ()-D (p.l]) -

s yays

location
g-number of expenmentally measured natural frequencies
s = number of experimentally measured mode shapes

R=number of dofs at which mode shapes are measured

p=parameters (o be determined
In a more direct approach suppose you have measured Q number of natural frequencies and R
number of mode shapes, or S number of mode shapes at R number of spatial coordinates, so we
can define a metric of differences, so this is the sum of squares of observed differences between
the experimental and analytical natural frequencies, this is the sum of squares of difference,
observed difference between experimental model and analytical model summed over all modes,
summed over all the space, so J is a positive quantity because we all square at this. Now this J
will be function of the unknown system parameters so what we can do is we can optimize J, we
find P which minimizes J, so unsuitable constraints that can also be imposed in solving these
equations, those constraint reflecting the basic dynamical characteristics of the structure, so the



Other FE model updating methods

-

Direct matrix method
Eigendynamic constraint method
Optimization approach

-

Bayesian filtering

4
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other method that I briefly mentioned here the Bayesian filtering method I remarked in the
previous lecture, this is one of the most powerful methods, this is based, this has roots in
probabilistic methods, we apply Bayes theorem we treat the mathematical model and the
measurements as being imperfect, and we use probabilistic arguments and derive the posterior
probability density function of system parameters conditioned on the measurements made, so in
this approach all the system parameters are treated as random variables, so this can be applied
to linear problems, nonlinear problems, and in fact the resulting equations can be solved using
Monte Carlo simulations, but as I already said the scope of this method is outside the per view
of this course, so we will not be elaborating further on this.
So with this brief overview we will close our discussion on finite element model updating, and
in the next remaining part of this course we will look at some problems of nonlinear structural
dynamics problems, so how to deal with non-linearity especially in the framework of finite
element formulations, what really happens? Can we still formulate element matrices? Can we
still assemble? How do we solve the equations? All these questions can be posed and we will
find suitable answers to those questions. So that we will take up in the next lecture, we will
close this lecture at this point.
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