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We are considering problem of modeling vehicle structure interactions using finite element 
method, this will be the concluding lecture on structural stability analysis we will begin a new 
topic towards the end of this lecture on finite element model updating. 



So what we have done in the study of time varying systems and stability is we considered 
Floquet’s theory for periodical time varying systems, these coefficients help us to determine 
boundaries of stability for response of dynamical systems with period time varying, periodic 
coefficients. 
In certain class of problems that is statically loaded structures in certain class of problems a 
dynamic analysis is needed to resolve the questions on stability, and this we discussed in the 
previous lecture, and we have derived the governing partial differential equation for beam 
moving oscillator systems, and we started discussing weighted integral and weak formulations 
to develop FE models starting from governing partial differential equation. 



So we will continue with this and now consider the finite element analysis of vehicle structural 
interactions, so this quickly recall the supporting structure is modeled as the Euler-Bernoulli 
beam with these parameters, and the moving vehicle is modeled as a single degree freedom 
oscillator, MU is unsprung mass, MS is the sprung mass, KV and CV are the vehicle spring and
damping coefficients, this type of problems are currently gaining importance, study of this type 
of problems because of development of high-speed trains, and mobile, aircraft launchers, and in
even a numerically controlled machines where the tools move on the job at a fairly high speed 
to enhance productivity, so when we talk about vehicle structure interactions the scope of the 
problem need not really be confined to only highway bridges or railway bridges it can 
encompass a broader class of problems and the kind of formulation that we are going to discuss 
is in principle applicable to this wide range of problems. 



This equation we have derived in the previous lectures, so the vehicle enters the bridge span at 
T = 0 and exits at T exit it moves with an acceleration A and velocity V which remain time 
which do not change when the vehicle is on the bridge, and we have one equation for the 
vehicle a single degree freedom oscillator it has terms containing the bridge response and the 
beam response itself is governed by a Euler-Bernoulli beam equation, and the wheel force has 
contribution from weight of the vehicle and the vehicle spring stiffness, damper and the inertial 
effects due to the unsprung mass, we are using total derivatives here because the wheel moves 
on a deflected profile of the beam and it will induce Coriolis forces, and once the vehicle exists 
the bridge we consider only the free vibration of the beam assuming that our interest is basically
on the beam and not so much on the vehicle, so we discretize the beam into set of 



capital N elements, and for an Nth element the coordinates are XN – 1 and XN, and the degrees
of freedom we model this element with 2 noded Euler-Bernoulli beam element with 2 degrees 
of freedom per node U1, U2, U3, U4 are displacements, P1, P2, P3, P4 are the corresponding 
stress resultants.
Now LN is the length of the beam, and TN - 1 is a time at which the vehicle enters the nth 
element, and at TN it exits the vehicle, sorry the vehicle exits the nth element, so we are now 
considering what happens during the time period when vehicle enters this element and leave 
this element.



So the equation of motion while the vehicle is on the nth element are as follows, this is 
oscillator equation, so we use an indicator function to indicate that this force is valid only when 
the element is carrying the load so the vehicle exists on the element over the time period TN – 
to TN an indicator function takes a value of 1 when T is in this range otherwise it is 0, and this 
is a wheel force again it is multiplied by an indicator function and these are the terms that we 
already discussed.
Now we denote by Y naught (t) the deflection of the supporting structure under the wheel load 
which is Y(x naught, t) where X naught is VT + 1/2 AT square, we must note that X and X 
naught are calculated from the left end of the beam.



Now we make a coordinate transformation, this is the nth element of length LN we introduce a 
coordinate XI as defined through this X – actually, XN - 1 and by this arrangement the XI 
would lie between 0 to LN. Now sai naught is the position of the wheel in the local coordinate 
system, so this is XN - 1 is some addition of all the length elements up to this point, and this 
XN is the length that includes this LN as well. 



Now the equation of motion while the vehicle is on the nth element we have already written, 
now this prime here is now with respect to XI, so this is the only difference we have introduced 
the XI coordinate system which is specific to the nth element.



Now we write the weighted residual form of the beam equation, so we take all the forcing 
functions to the left side and multiply by a weight function and integrate over 0 to LN = 0, so 
W(xi) is the weight function, now to get the weak form we carry out integration by parts so that
the demands on continuity on trial functions and weight function can be equally distributed, so 
this we have seen in the previous lecture so this leads to this equation for the first upon doing 
integration by parts twice I get this equation. Now this is our weak form of the, weak statement 
of the equation. 



Now we denote by V, the shear force and the bending moment EIY ripple prime and EIY 
double prime and VN - 1 is the value of shear force at the left end, and VN is the shear force at 
the right end, similarly we define MN – 1, MN as the bending moments at XI = 0 and LN, the 
weak form using these notations now take this you know they will be represented by this 
equation. Now our job is to approximate the field variable in terms of the nodal degrees of 
freedom and suitable interpolation functions, so this is the representation that we use, there are 
2 nodes and 2 degrees of freedom per node therefore we need 4 generalized coordinates, and as 
before we take cubic polynomials and we obtain equations, we substitute into this and we use 
the weight functions phi I(xi) for 1, 2, 3, 4 and to get a set of four equations which lead to the 
required equation for the nodal degrees of freedom UI(t). 



Now I write, I use capital Phi to denote this trial functions, it is 1 row and 4 columns here, and 
at XI = 0 it is given by this, and at XI = Ln this is given by this, and similarly phi dash of, phi 
dash at XI = 0, and XI = LN are given by this, now using these relations we can take care of the
terms at the boundary, and we can show that the terms that is this boundary terms lead to force 
vector – V N – 1, M N-1, VN and – MN transpose because of these you know with properties 
of the trial function. 
Now we can examine each term one by one and see what is the contribution they make, so this



 first term MW(sai) Y double dot(sai, t) and the second term W double prime EIY double prime 
lead respectively to a beam, mass, and stiffness matrices given by this, where L is LN is given 
by this, so this we have seen in the last class. Similarly the third term involving damping terms 
leads to the beam element damping matrix. Now the evaluation of the other term which is 
W(sai) F, that the wheel force term which is actually since is a direct delta function we can 
quickly do the integration it is given by this, so this requires elaboration. 



Now what I will do is I will use alpha(t) to denote the nodal degrees of freedom U1, U2, U3, 
U4 transpose, so it is a 4 x 1 vector, so now F(xi naught, t) is given by using the definitions that 
we have introduced given by, this is given by this, and now Y naught (t) itself is Y(xi naught, t) 
which is phi(xi naught) alpha, that is the representation we are using, so this is 1 x 4, this is 4 x 
1, therefore this is scalar representation. 



Now I have to take care of this terms D/DT of Y naught, D square/DT square of Y naught, so 
we can write now D/DT as this is operator nu + AT dou/dou sai + dou/dou T, operating on Y 
naught it produces this equation and we get this equation, that is this, this acts on Y naught and 
we get this equation, and the second derivative accordingly can also be obtained by repeating 
this product operation on this, so we get the terms this and this are computed. 



Now, so we have D square Y naught/DT square using this notation we get this representation, 
so we can rearrange the terms and now see what happens, so this is the phi sai transpose and phi
double sai transpose that is required in defining these functions, that is elaborated here. 



Now we can now write the resulting equations, so what we have done is the weight function is 
taken to be one of the trial functions, there are four trial functions and we get four equations, 
and these equations are assembled in the matrix form, so the terms involving flexural rigidity 
will lead to K alpha, inertia will lead to M alpha double dot and damping is C alpha dot, this is 
a wheel four term, so here of course the indicator function multiplies all the terms so that, it is 
clear that these terms are valid only when the vehicle is on the element under consideration, so 
these details can be absorbed but what we should notice is this has terms involving alpha, alpha 
dot, and as well as alpha double dot, so these terms can be transferred to the left hand side, so if 



I transfer all the terms that multiply alpha double dot to the left hand side the mass matrix will 
have, the mass matrix of the beam element plus the contribution from the wheel force, the 
damping matrix that of the beam element plus the contribution from the wheel force, and 
similarly stiffness of the beam element plus the contribution from the wheel force, this must be 
equal to the contribution due to the cell fate of the structure and the load transferred from the 
vehicle. 



Now the vehicle a degree of freedom itself can be written in this form, there is a Y naught here 
and DY naught/DT I will use the representation that we have derived earlier this is what we get 
here, so I can write now the mass matrix as M + M tilde, damping matrix as C + C tilde, and 
stiffness as K + K tilde, this related quantities are functions of time and they are described here, 
so XI naught itself is a position of the wheel which changes with time, so it is the VT + 1/2 AT 
square so there is a time dependency here also, so all these terms are functions of time, so we 
get the governing equation for the beam and for the vehicle. 



Now I can now combine the beam degree of freedom with the vehicle degree of freedom and 
define a combined displacement vector call it as DN, that is alpha(t) + and U(t), FN I write it as 
the nodal forces as the consisting of these quantity as FN, so with these notations the equation 
now become some M(t) into DN double dot + C(t) into DN dot + some K(t) into D dot is equal 
to some forcing function plus the nodal forces, so this you know is of the form that we have 
been talking, so this is like so we have now the time-varying, mass, stiffness, and damping 
terms, so this is the main feature of this problem, this is the equation at the element level, now 
further steps involves assembly and imposition of boundary conditions this I am not going to 
elaborate because we have done this several times for various problems so we need not revisit 
this issue again. 
Now what is to be noted here is that because of the time dependency of the structural matrices 
these equations although they are linear the concept of natural coordinates etcetera are not 
applicable here, so you can’t talk about natural frequency and mode shapes for this type of 
systems, and the only way to tackle these problems quantitatively is to integrate them using one
of the integration schemes that we discuss like Newmark-Beta method or any other method that
we discussed earlier. Of course if a series of loads pass on this and if there is some periodicity 
associated with these functions then one can use Floquet’s theory and determine stability 
conditions for the vehicle, for the bridge vehicle system that is of course one possibility if we 
are interested in qualitative behavior, if only one vehicle passes on the bridge these time 
dependency is of a transient nature and there is a questions about stability will not be you know 
steady state, stability of steady state solutions are not discussed for this type of problems. 



Now as I already said what we have idealized the supporting structure as Euler-Bernoulli beam 
and the moving oscillator as a, moving vehicle as a single degree freedom system. Now in 
practice however the supporting structure can be very complex, this is one of the simpler forms 
of a bridge, the bridge structures are lot more complicated than this, and this is a moving train 
you know it is a series of elastics you know systems having mass, and stiffness, and damping 
characteristics, the thing is when do we need to do a vehicle structure interaction problem, that 
is a question that we can consider. Typically if the mass of the moving vehicle is comparable to 
the mass of the supporting structure, and if the speed of the vehicle is high, and if the natural 
frequency of the vehicle and the bridge are comparable, there are various conditions under 
which one can think of expecting that vehicle section interactions would be important. In this 
type of problems for example in railway bridge, a plate girder bridge, a single span plate girder 
bridge typically could weigh about 15 to 20 tons, whereas a locomotive like this can weigh a 
more than 100 tons, 110 to 120 tons, when this type of vehicle passes on bridge the mass of the 
vehicle becomes predominantly higher than that of the supporting structure and vehicle 
structure interaction would be significantly important. 



Now to illustrate the formulation that we have developed a simple exercise has been done this 
one of our students has developed the software based on this formulation, and this is a data for 
the beam structure a single span beam, this beam structure is more like a laboratory model than 



a realistic real life structure, so this structure has been discretized with 12 elements and there 
are 25 degrees of freedom in this model, and then the Newmark-Beta implicit scheme has been 
used to integrate with these details of integration and some of the results are shown here, so this



 is mid span deflection as a function of the position of the load, if you see here there is one 
result that corresponds to analysis of structure under static loads, that is the traditional influence
line type of studies that we would do.
The second graph that is the moving force diagram takes into account, the weight of the 
structure travelling, weight of the vehicle moving on the bridge system, the full line is a 
complete coupled dynamic analysis and this results are specifically designed to show the 
reasonableness of the algorithm developed and the calculations perform, so this is actually the 



mid-span displacement as a function of the position of the load, and this is actually the same 
response now plotted as a function of time. So this is just an illustration of the formulation that 
is developed. 



Now there are several studies on structures under moving vehicles, the book by Fryba is one of 
the classical books in this field, there is another book recent book by Yang and others on vehicle
bridge interaction dynamics, these two books contain quite useful information for those who 
wish to study this subject further.



Now as an exercise I would suggest that the problem of a stack under biaxial earthquake ground
motion we have formulated in the previous lecture, the exercise is to develop a finite element 
model for this structure using the weak formulation, so that means you start with a given partial
differential equation include the parametric excitation terms and of course the time-dependent 
boundary support motion and then discretize it using say Euler-Bernoulli beam formulation and
just as you have done for vehicle structure interaction problem the exercise is to develop a 
model for finite element model for this system, here again you will see that the structural 
matrices would be time dependent. 



Now before we leave the subject of structural stability analysis there are couple of instances 
where stability questions arise, I just would like to mention because they have you know 
considerable you know interest both from application point of view and from the point of view 
of understanding the collage of different kinds of problems that arise in stability analysis, so 
this is a problem of vibration of a pipe that is conveying fluid, the fluid is moving in this pipe 
with a velocity V, this is a pipe cross section, area of flow is A and these are the diameters, outer
and inner diameters the fluid density is rho and P is the pressure under which it is flowing, and 
V is the velocity of the flow. 
Now the thing is that what we should model here is the fluid mass experiences centrifugal 
acceleration as it flows through the deflecting pipe, so this is the issue that we have to 
additionally handle other than the stiffness and inertia of the pipe and mass of the fluid that is 
flowing through, so this book by Blevins on flow induced vibration contain many examples of 
fluid structure interaction problems especially vibration problems of piping and other systems, 
so this illustration is picked up from details provided in this book. 



Without getting into the fluid mechanics arguments I will present the governing field equation 
and explain what the terms mean, so we have EIY4 rho A VY double dot 2 rho AV Y dot prime 
and M + rho A Y double dot = 0, so this is a boundary condition for a simply supported beam 
condition, this is a flexural rigidity, terms coming from flexure of the beam this is the inertial 
term, M is the mass per unit length of the beam and this is mass per unit length of the fluid, so 
these 2 terms are the new terms, if there was no flow we would write this equation I mean omit 
these 2 terms and write the equation. 
Now what is this rho A, VY double prime, prime is DY/DX dou/dou X, this is a centrifugal 
force due to the acceleration of fluid through the curvature of the deformed pipe, it produces 
axial compression and as you have seen presence of axial load reduces the natural frequencies 
and it causes buckling, so this is the effect that we can expect from this term, this is also an 
interesting term, this is a force required to rotate the fluid mass with local pipe rotation, this is a
Coriolis force, you should notice the mixed derivative here Y dot prime is actually this is dou 
square Y/dou X dou T, so this is a mixed derivative term which creates some interesting 
features in obtaining the solution it causes an asymmetric distortion of the classical mode 
shapes, so sine N pi X/L will not you know as we will shortly see sine N pi X/L will not be the 
mode shape for this, exact mode shape for this. Capital M is mass per unit length and that 
includes mass per unit length of the pipe and the flowing fluid. 



Now we want to now construct a solution for this, and for example estimate natural frequency 
and see how it depends on the flow velocity that is the question. Are there any stability related 
issues in handling this problem? Now if we start by taking that phi(x) is sine omega T and when
you substitute here this Y dot prime term will lead to cosine terms, so you will have problem in 
dealing with that. Similarly if you take Y(x,t) as phi(x) into A sine omega T + B cos omega T 
says, now to allow for presence of cos omega T term I can include cos omega T terms, so we 
can avoid this problem by doing this, but if we take phi(x) as sine N pi X/L, this prime Y dot 
prime will produce cosine functions, so again that will be problematic in handling because it 
will be a special asymmetric terms, it will induce spatially asymmetric terms for symmetric 
mode shapes for 1, 3, 5, and spatially symmetric terms for asymmetric mode shapes, so what 
we do is therefore a mode shape, a single mode shape is assumed in a Fourier series like this, it 
has sine N pi X/L term with odd indices multiplying sine omega T and again sine N pi X/L with
even number of terms multiplying cos omega T. 
Mind you this is not a modal summation this is a series representation for a single mode, okay 
that should be understood, this summation is not over omega N. 



Now we substitute this into the governing equation we compute Y, Y dot prime and we will 
have problem here because we have sine N pi X/L and when I compute the mixed derivative 
there will be cos N pi X/L term, this term will be difficult to handle, so what we do is this cos N
pi X/L term itself, we will expand in a Fourier series containing sign P pi X/L, okay now so this
can be done, these terms can be evaluated but the problem is that the cos N pi X/L term will not
satisfy the boundary conditions, although it may represent the behavior away from the 
boundaries, at the boundaries it will not satisfy the prescribed boundary condition, but we will 
ignore that effect and we'll go ahead because it brings in only sign terms to represent spatial 
variations and that is helpful for us. 



So with all this we can go ahead and obtain these equations, for N odd I get this equation, for N 
even I get this equation, these are infinite number of equations, they are infinite number of 
terms, so for practical computation we truncate this at capital N number of terms, suppose A bar
is A1, A2, AN then I get KNP as this, and we can write the eigenvalue problem in terms of KNP
as KA bar - omega square MIA = A bar, I is identity matrix, M is the total mass. 



Now for non-trivial solutions the determinant of this equation should be 0, now for illustration 
what we will do is, we will retain only 2 terms so that we can get some simple explanation 
terms and examine how the solution behaves, so we will carry out this as details are not 
provided here, so we introduce 2 parameters omega capital N, it is not the capital N natural 
frequency but instead it is the fundamental natural frequency of the pipe in absence of fluid 
flow, and VC is the critical velocity for buckling, as we saw this term is like a compressive 
force so we can compute the Euler buckling load corresponding to that and that gives rise to 
this VC, and this is this. Now in terms of that I get this equation, so this is an characteristic 
equation for omega I can solve for it, I get this equation. 



Now if we examine this we see that there are 2 roots because we written 2 terms, and omega 1 
and omega 2 real whenever velocity is less than the critical velocity, and we can approximate 
this by ignoring the terms involving mass, and this is actually we can simplify this and as a first
approximation we can get the natural frequency as given by this, so at critical velocity of flow 
the pipe buckles, because the natural frequency goes to 0, so at that time omega is a, natural 
frequency would be 0. 
Now how about the mode shapes? We can put omega = omega 1, and evaluate the ratio of 
A2/A1 and we can show this, and whenever this velocity flow is less than critical velocity you 
can show that this ratio A2/A1 is less than about the small number this indicates that mode 
shape is predominantly sinusoidal, although there is an asymmetric distortion this you know 
seems to produce marginal effect and results from this formulation have been compared in the 
Blevins book with experimentally observed data and reasonable comparisons have been found. 
Now I would like to set an exercise we will consider this problem, and starting with this 
equation the problem is to develop a finite element model by performing an eigenvalue analysis
that introduce Coriolis terms estimate the critical velocity, that means we will not adopt this 
representation in solving the problem, that is this representation we will discretize deal with a 
generalized eigenvalue problem and examine the relationship between complex valued natural 
frequencies mode shapes and the flow velocity, and infer without introducing any ad hoc 
assumptions or you know selecting functions which don’t satisfy boundary conditions and so on
and so forth, we can examine what the finite element model teaches us, so this is left as an 
exercise. 



Now there is one more topic which has been quite widely studied in existing literature, can 
there be parametric instabilities if the parametric excitations are transient in nature, for example
if we have suddenly applied loads or impulsive loads, impulsive axial loads or suddenly applied
axial loads how does the structure behave? Now we can quickly recall a simple model that is 
undamped single degree freedom system which is subjected to N suddenly applied load, so we 
can examine how the system respond, so you can see U(t) the step function, that means a 
constant load is applied suddenly at T = 0, and let us assume that initial conditions system is at 
rest when this happens, and this is a complementary function plus particular integral, and using 
this prescribed initial conditions we can show that the total solution is given by 1/K (1 - cos 
omega T) 1/K is actually the static response, if the load were to be not suddenly applied, so the 
dynamic amplification because we have applied the load suddenly for the undamped case is 
about 2, okay, so this tells you that for statically loaded systems actually loaded, structures 
which are actually loaded by static forces, if the force were to be applied suddenly there could 
be instabilities, so this has been studied I have given two references here which have useful 



information, see for example we have studied this problem of snap through under constant load,
so when P(t) was P we found that this has a load deflection path and there is a snap through and 
things like that. 
Now suppose snap through occurs at some P = P critical say, now if this P, instead of applying 
slowly if I apply suddenly then you can easily imagine that there is room for dynamic 
amplification of the response because load is applied suddenly then the response can shoot up, 
so even for value of P which is less than P critical the structure can lose stability and it can, you 
know escape and it can snap and start oscillating somewhere else, so when that happens the 
load that you are applying may be less than the static critical load value, because the load has 
been applied dynamic suddenly that happen, so this type of problems have been studied I am 
not going to discuss this in detail, suddenly applied loads and even impulsive loads that is load 
acting for a short time you know so they will, they can also cause buckling. 
So in general the shell type of structures and other structures if you have impulsive type of 
loading there will be membrane forces that will be set up due to that transient membrane forces 
and during that period they can interact with flexural responses and create instability conditions,
so that intuitively one can expect that might happen, but how to characterize this etcetera is this 
matter that it has to be studied and as I said already there are a couple of references that I have 
suggested for that. So with this we conclude our discussion on stability of structures. 



So we move on to now a new module that is, that addresses studies on existing structures, so 
before a structure comes into existence the only way we can investigate how the structure might
behave is through developing mathematical models, that is what we often do when we design 
structures and at the same time of design the structure would not have come into existence, but 
once the structure comes into existence then you have the opportunity to measure the response 
of the structure and you get an experimental approach to study the structure you know as an 
option. Now even after a structure comes into existence we can continue to use a mathematical 
modeling, now if we conduct a measurement on the performance of the structure under a given 
set of loading and observe the structural response, and if we were to predict the same structural 
response for the similar type of loading using a mathematical model it is quite likely that the 
two results would not match. 
Now the basic question is can we combine these two models, okay, what are the issues that 
arise when we try to answer this question? So this type of questions are studied in a subject 
known as finite element model updating, so the question is you make a finite element model for
an existing system you have a set of measurements that are available to you on this structure 
and you can mimic the situations under which you have got these measurements through a 
mathematical model, and the prediction from mathematical model and the observed 
performance of the structure may or may not match, and if there is difference how do you deal 
with that? Can we, for example improve upon the finite element model so that the results from 
finite element model are reconciled with prediction from measurements from experiment 



model, to address this we have to understand that given the advent of sensing technology it has 
become possible now to instrument structures, so this is a railway bridge structure in which we 
did a field work where this was instrumented through nearly about 50 to 100 sensors, we had 
strain gauges, we had a LV DT’s that measured displacement, we had vibrations wire strain 
gauges that again there is a strain gauge, accelerometers, uniaxial, biaxial etcetera, so this 
bridge structure was instrumented and its performance was measured under operating loads, 
static, dynamic, diagnostic loads where we knew what loads we were applying, and ambient 
loads which was due to the prevailing traffic on this bridge line, and so on and so forth. 
Now the question is after obtaining this data from this existing bridge, and suppose if I were to 
make the finite element model for this and conduct this test numerically on my finite element 
model I will still be able to predict what should be the readings from these sensors, but those 
readings will not, those predictions will not match with what exactly we observed in the field, 



so we can measure several things, this is a test that is done to measure impulse response 
functions from which we can extract the frequency response function of the system, there are 
various tests that can be done on the structure, like a bridge structure, and these are the typical 



you know readings that we get, this is a strain gauge reading, this is an accelerometer reading, 
and this is readings from LV DT'S, so this type of data can emanate from existing structures. 



Now we need another question that we try to answer is having had these measurements can we 
identify the parameters of the finite element model that we postulate for the given structure, the 
need for such exercise for example in the context of these bridges arise for example these 
bridges might have been designed to carry a specific level of axial loads, the user may like to 



enhance the axial loads for future use, or have trains that move faster than what they were 
enraged at a time of design heavier vehicles, faster movement, longer trains, so on and so forth, 
so can these bridges cope up with those increased demands or should we repair and retrofit 
these retrofit these bridges to carry higher you know level of loads and so on and so forth. To be
able to answer that one way is to really apply those enhanced loads and see whether the bridge 
can take it or not, but in life bridges that is not possible, we can’t really apply you know loads 
that might cause destruction to these bridges, so the best way is to apply the loads that are 
permitted on these bridges and then take measurements of the kind that I mentioned and make a
finite element model whose predictions are reconciled with the measurements made by 
updating the model parameters or details of modeling, and then on the updated finite element 
model we can apply enhance loads, make the loads move with faster speeds and so on and so 
forth, and predict the performance of the structure. 



Now so the general framework for this type of problems can be you know classified as shown 
here, so we have a system input and output, suppose if we know inputs completely and if the 
system is represented by a known mathematical model completely, and if we want to predict the
output that is a problem of response analysis, but it is not always that we deal with that tag of 
problems, inputs could be partially known, it could be noisy, the noise itself could be having 
certain mathematical features the system could be represented by a known mathematical model,
but the model parameters could be partially known, and the system behavior could be linear or 
non-linear, the output could be related to state variables where a mathematical model for 
example if you measure strain and in the mathematical model you have displacement as the 
state variable the relationship between measured strain and displacement is through a strain 
displacement relation which is, could be linear or non-linear that is a call that modular has to 
take, so there is a mathematical modeling issues involved in relating what we measure through 
the system states of the mathematical model. The measurements would be noisy, and the 
parameters of the model could be partially known, and again the noise characteristic would 
have complicating features.



So with this, within this framework we can classify problems in vibration engineering into 
several categories, for example if input is given and system is given, and if response has to be 
determined there is a problem in response analysis, this is a forward problem, on the other hand 
if I know the input and if I know the output may be partially, and our task is to determine the 
system, that means we have to determine the mathematical model parameters of the system then
this problem is known as system identification, there is various levels of making system 
identification it could be parametric or nonparametric as well, but it pertains to a mathematical 
model for the system behavior. 
Similarly if the input is to be determined and system is to be determined and response is given, 
this is what is known as blind system identification, you only know the response of the system 
you have not even measure the input nor the, nor you know many things about the system. Now
if input is not given and if system is known and the response is known, the unknown will be the
applied input, so this is a problem of force identification or it is also a problem of measurement 
this is a principle on which a sensor would work, in a sensor we know the system 
characteristics and the response of the sensor, but we will not know what is causing the sensor 
to produce an output. 
Now we can generalize this kind of classification, for example if input is given and system has 
to be selected and on the response I have prescribed bounds, then how do you select parameter, 
system parameters, that is a problem of design. Now response analysis is a forward problem it 
is a fairly simple problem that is what we have been discussing so far in the course, other 
problems are more difficult, problem of system identification is an inverse problem, it has its 
own set of difficulties and some of that hopefully we will be able to see as we go along.



So in structural system identification basically these are studies on existing structures, and these
studies represent combined experimental and analytical studies, and these are inverse problems,
as I already said given the input and the output our problem is to determine the system 
parameter. 



Now if I make a finite element model for an existing structure what could be sources of errors, 
those which are inherent in finite element method, for example there will be discretization error,
and a question of interpolation, then there are solution errors you carry out integrations, there is 
the round off on a computer you will adopt certain algorithms for eigenvalue extraction, you 
expand response in you know mode shapes and you may truncate the modes at a given value 
and there are many computational issues like inverting matrices and so on and so forth. The 
other issue is modeling of damping, so damping is a very contentious issue whether damping is 
linear or non-linear, viscous, or structural, proportional or non-proportional, or a mixture of all 
of them, there are many issues there. 
Now these are some of the things that are inherent in any finite element, whenever you use 
finite element method you have to make choices on all these parameters related to this so that 
you get acceptable results, but whenever an analyst use this finite element method for the same 
problem not analyst will come out with the same model, so one has to choose elements to 
represent the given geometry then you may omit unimportant details, then modeling of 
boundary conditions requires careful consideration, most of the important decisions that a 
modeler takes in context of modern finite element method, application of final element method 
to structural engineering problems relate to questions on boundary conditions, is the boundary 
condition on displacement fixed or hinged or sliding or whatever. 
Then modeling of joints, so if there is partial fixity or the joints are flexible, for example in a 
transmission line tower the joints may not be pinned, there may be partial transmission of 
moments, and similarly at joints where we think there is a fixity a condition it may not be truly 
fixed there could be some flexibility. Then choice of constitutive laws, we often make 



assumptions of homogeneity, isotropy, and so on and so forth, how far they are valid? Then 
numerical values assigned to the model parameters, these are the decisions that analyst makes, 
analyst has options and to make more and more refined models to make you know to deal with 
each of these issues, but in any given situation some choice will be made.

How about in experimental work? So there is data acquisition errors, so there are mass loading 
effects of the transducers, then the exciter and structure interactions could be there, and how do 
you support the structure in a modal testing? These are in relation to model testing, and there is 
measurement noise, and how do you know the structure is behaving linearly when you are 
conducting a test aimed at finding natural frequencies and mode shapes? Then there is again in 
experimental work also the number of sensors is limited, so measurement of limited number of 
points on the structure and certain degrees of freedom may not be possible to measure like 
rotation and interior degrees of freedom, the sensing technology is improving with you know 
many things are becoming possible, but still there are limitations. 
Then limits on frequency range, the signal processing errors, there is leakage, aliasing, 
windowing, and effect of using discrete Fourier transform, and when you measure frequency 
response function you will have to do averaging across a fixed number of samples that has, that 
introduces sampling fluctuations, and then after you measure frequency response functions to 
extract the natural frequencies and mode shapes that you have to use certain algorithm, a simple
one is circle fit method, you can use a single FRF or multiple FRF method so on and so forth, 
so we are not discussed these issues but I am summarizing the possible sources when we do 
model testing, model testing are aimed at finding natural frequencies mode shapes participation 
factors and modal damping through experimental methods. 



Now the problem of updating you know the issue is that finite element model are aimed at 
studies on an idealized mathematical model, and experimental model are studies on actual 
structure, so it is generally believed that experimental results are more trustworthy than the 
result based on numerical modeling. The general philosophy of updating is that results from 
numerical models plus corrections lead to results from experiments I mean this is 
oversimplified statement but this is a general philosophy. 
Now we can do, there are two things, we can do local corrections, that means we can find out 
where exactly within the finite element model there are errors, we localize the errors and correct
the errors, it is assumed that the mathematical model consists of discrete locatable errors 
associated with the physical meaning. Then global corrections, corrections are made in a curve 
fitting sense the corrections would not have any specific physical meaning simply the 
mathematical model is forced to reconcile with the prediction from experiments. 



Why experimental models are more acceptable? There are no compromises on constitutive 
laws, boundary conditions, joint behavior, damping characteristics, and stiffness and mass 
distributions, and any presence of residual stresses, so we don’t make any assumption, they are 
what they are in an experiment, but whereas in a mathematical model we need to make a model 
for each one of this, it can be as refined as you wish but finally a choice has to be still made. 



Now difficulties associated with locating errors in the theoretical model, we may have 
insufficient experimental modes, insufficient experimental coordinates, and size and mesh 
incompatibility of the experiment and finite element models, then experimental random and 
systematic errors, and absence of damping in FE normal modes and presence of damping in 
experimental normal modes, so when you measure natural frequencies using experimental 
methods it will be always damped natural frequencies, and damped normal modes there is no 
way you can switch off damping in an experimental work, whereas in finite element model 
traditionally we use undamped natural frequencies and undamped normal modes, and derive 
natural coordinates from them. 



So this is just a quick overview of some of the issues that arise when we think of reconciling 
finite element model predictions with experimental, so what I aim to do in next 1 or 2 lectures 
is to give a glimpse of basic issues related to finite element model updating, the discussion will 
be focused on mathematical framework for carrying out a FE model updating, we specifically 
discuss what is known as inverse sensitivity methods. And then what are the tools for 
comparing 2 models, suppose one experimental model you have and another mathematical 
model you have, how do we compare the two models? So that takes us into a discussion on 
model correlation, so some of the metrics used for this we will discuss. So these two topics will 
try to cover in the following lectures, at this stage we will close this lecture. 
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