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In the last class we started discussing topics related to dynamic analysis of stability and analysis
of time varying systems, so we started by discussing the effect of presence of an axial load on 



natural frequency of a beam like this, and we showed that when P approaches the critical value 
the natural frequency drops to 0 and the solutions will start growing in time. 



The next question we considered was what happens if the axial loads are time dependent, we 
considered few situations, for example straight forward case is when a beam like this is a 
subjected to axial load P(t) or a stacked like this subjected to bi-axial earthquake ground 
motions, so there will be a vertical component we saw that the presence of vertical component 
appears as a parameter in the governing differential equation and we call this type of systems as
parametrically excited systems. Here if you write the equation for the beam oscillations P(t) 
will appear as a parameter in the equation of motion, in the sense it multiplies a term involving 
dependent variable therefore it is called parametrically excited systems. 
Another important application in civil engineering problems is problems of vehicle structure 
interaction that is encountered typically in bridge engineering problems, so here as a vehicle 
traverses supporting structure like this if one writes the combined equation for dynamics of 
vehicle and the beam we saw that the governing partial differential equation had time varying 
terms. 



So we will continue our discussion with this and we posed a few problems one of the problem 
that we need to we’ve agreed to address is that of problems of follower force, so here suppose if
you consider a cantilever beam which is loaded actually like this and as the structure deforms if 
the direction of the application of the load remains unaltered we already analyze this problem, 
suppose if you imagine a situation where the line of action of the load remains tangential to the 
deformed middle axis of the beam, then we need to revisit this problem and we need to find out 
what is the critical value of P, so we will consider this problem in today's class and we will 
show that if you perform a static analysis for this problem it will not yield a satisfactory 
solution, but on the other hand if you perform a dynamic analysis it gives a different answer and
that seems to be logically agreeable. 



So we will consider three problems, one is how to characterize resonances in systems governed 
by equations of the form M(t) X double dot, C(t) X dot + K(t) X = 0. Now the resonances occur
because there are time varying terms in the mass, stiffness, and damping matrices, and if these 
terms are periodic in nature and then the question of resonance is appropriate because it’s 
excitations have a steady state character, so we could expect steady state responses from the 
system as well and see whether the responses remain bounded or grow in time. 
Next we'll consider another problem where we start with partial differential equations with time
varying coefficients, we saw that in the previous lecture that this type of systems are governed 
by partial differential equations which have time varying terms, and we will ask the question 
how to make finite element models for such systems. 
Next we will consider if there are any situations in statically loaded systems wherein one needs 
to use dynamic analysis to infer stability conditions, so these are the some of the questions that 
is on our agenda, we'll consider this in this and the following lecture. 



So we'll begin by considering qualitative analysis of parametrically excited systems for purpose
of illustrating the basic concepts, we will consider a single degree freedom system and that is 
U(t) is the scalar variable, a scalar function of time, and it is governed by a second order 
differential equation of the form U double dot P1(t) U dot + P2(t) UT = 0. 
Now let us assume that there are some nonzero initial conditions, and we are assuming that P1 
and P2 are periodic with period capital T, now the governing equation is a linear second order 
ordinary differential equation with time varying coefficients, it admits 2 fundamental solutions 



so let U1 and U2 be the fundamental solutions of this equation, then any solution U(t) can be 
written as linear superposition of the fundamental solutions therefore I get C1 U1(t) + C2 U2(t),
now we will consider the governing equation at T = t + T, so if I write this it will be U double 
dot(t + T) + P1(t+ T) etcetera equal to 0, now since the coefficients are periodic with period 
capital T, I can write for P1(t + T) and P2(t + T) I cannot P1(t) and P2(t), so what this means is 
if U(t) is a solution then U(t + T) also is a solution to the governing equation, because if U(t) 
satisfies this equation U(t + T) also satisfies this equation, so this enables us to write U1, that is 
the two fundamental solutions at t + T is another solution in terms of U1 and U2, so I get U1(t +
T) as this and U2(t + T) this, and in a matrix form I get this equation, so we are interested in 
nature of the solution as T tends to infinity, so this we briefly touched upon towards the end of 
the previous lecture, so we will formulate this problem in greater detail as we go along. 



Now we are interested in finding limit T tending to infinity what happens to U(t), this is 
equivalent to asking I will write U(t) as (t + NT) and allow N to infinity, where N is an integer 
1, 2, 3, 4, 5, 6 etcetera, now U(t + T) is AU(t), therefore U(t + 2T) is AU(t + T) which is A 
square U(t) and so on and so forth, so if I write U(t + NT) it will be A to the power of N U(t), so
the behavior limit of N tending to infinity of U(t + NT) is controlled by the behavior of this 
behavior of A to the power of N as N tends to infinity, so intuitively one can see that this in turn
depends upon the nature of eigenvalues of A. 



Now so what we do to analyze this problem, we consider this equation U(t + T) = AUT, then we
introduce the transformation U(t) is Q into V(t) with the aim to diagonalize A matrix, so U(t + 
T) is AUT that means QV(t + T) is AQV(t) that means in this equation I'm substituting for U 
according to this transformation. Now I will pre multiply by Q transpose so I get this equation, 
now the objective of making this transformation is that we wish to select Q such that A is 
diagonalized that is we wish to find Q such that Q transpose Q and Q transpose AQ are 
diagonal, so we can start by considering the eigenvalue problem associated with matrix A, A phi
is lambda phi. Now mind you A is not a symmetric, need not be a symmetric matrix it is real 
valued but not necessarily symmetric. 
Now we select Q to be the matrix of eigenvectors of A, that is phi 1 phi 2, and we can show that
V(t + T) is lambda 1 V(t) because the eigenvectors will be satisfying the conditions phi T phi 
will be I, I can normalize them such that this is true and then I can Q phi will be some diagonal 
matrix lambda, which is the matrix of eigenvalues of A as shown here. 



Now that would mean VI(t + T) is lambda VI((t) for I equal to 1 to 2, now since the matrix is 
diagonalized I can do that, now therefore VI(t + NT) is lambda I to the power of N, VI(t) this, 
now we want to now investigate what happens to these solutions as N tends to infinity, the 
original function U(t) can be constructed by superposing V1 and V2, so therefore behavior of U
is controlled by behavior of V1 and V2 as N tends to infinity, so we can see that as T tends to 
infinity that means N tending to infinity of VI(t + NT) it goes to 0 if modulus of lambda is less 
than 1, because a scalar equation this we saw in the last class this is a condition, because every 
time you multiply this number starts shrinking and it goes to 0 as N tends to infinity. On the 
other hand if modulus of lambda is greater than 1 this solution will blow off, if lambda is equal 
to 1 then it is periodic with period capital T, on the other hand if it is - 1 then after every 2T it 
returns to the original state, the first time you operate it will become minus of the quantity and 
then square of that quantity which is again returns to the original state, so the period will be 2T, 
so depending on the nature of eigenvalues there are 4 different behaviors possible either the 
solution will go to 0 as T tends to infinity or it will shoot to infinity as T tends to infinity, or it 
will be periodic with period capital T, or it will be periodic with period capital 2T.



Now we will try to reduce these results into a standard form, so what we will do is we will 
consider this equation V(t + T) is lambda I VI(t), now I introduce a new variable gamma I and I 
multiply the both side of this equation by this quantity exponential - gamma I ( t + T) as I do 
this lambda and gamma are related by this equation that you can see that and therefore gamma I
is nothing but 1/T log E lambda I. 
Now therefore exponential of - gamma T and (t + T) is VI (t + T) which is exponential gamma 
IT VI(t), now if I call this quantity exponential - gamma IT into VIT as sai(t) it is clear from this
expression that sai(t) is periodic function with period capital T, so therefore I can write VI(t) as 
exponential gamma I(t) into a periodic functions sai(t), so this is a periodic function, so 



what we have done now? We have expressed the solution as a periodic function multiplied by 
an exponent and this exponent could be periodic, aperiodic with decay or aperiodic with 
explosion depending on nature of gamma I, so we will make some remarks, gamma I 1/T log E 
lambda I, these are called as the characteristic exponents or Floquet coefficients. Any solution 
U(t) can be expressed as linear superposition of V1 and V2, behavior of U(t) as T tends to 
infinity is governed by the nature of the exponent, suppose gamma IT is, we can expect it to be 
complex value so I write gamma as alpha I + J beta I, J is now square root – 1, I, I am using for 
index, so the complex number is now expressed in terms of J, so if the real part of this you 
know controls the growth or decay of the solution and this contributes to the oscillatory 
behavior so U(t) is periodic if alpha = 0, that means if this is pure imaginary this will be E raise 
to pure imaginary exponent this is sine and cosine terms will emerge, and therefore VI(t) will be
periodic, so when gamma I is pure imaginary U(t) is periodic, if lambda = 1, U(t) is periodic 
with period capital T, that means this exponent you have to find out and related to gamma I, if 
lambda is – 1, U(t) is periodic with period 2T. 



Now this is a well-known classical result in study of parametrically excited systems, so the 
Floquet’s coefficients help us to determine boundaries of stable solutions. Now in numerical 
work, how do we determine Floquet’s constants? So what we can do is we revisit this equation 
U double dot(t) + P1(t) U dot(t) + P2(t) U(t) = 0, now let U1 and U2 be two solution of this 
equation with the following initial condition, U1(0) is 1, U1 dot(0) is 0, and U2(0) is 0, and U2 
dot(0) is 1 that means I am selecting two solutions which start from a set of linearly 
independent initial conditions, so I can write U1(t + T) therefore I can write in terms of A11 
U1(t) + A12 U2(t), and similarly U2(t) is written like this. Now if you find, our objective is to 
find A matrix you see for a given system, how do you find A matrix? Moment you find A matrix
you perform eigenvalue analysis and look at the nature of the eigenvalues that answers our 
question on stability, so it’s as simple as that, so U1(0) you see it is U1(t) which is A11 U1(0) + 
A12 U2(0) which is nothing but A11, similarly U1 dot(0) is U1 dot(T) which is A12, similarly I
can find out A11, A12, A21, A22 so therefore elements of A matrix are determined by solving 
this equation with two linearly independent solution over one period of excitation, that is all the
numerical work that we need to do, moment we do that we will be able to form this matrix and 
after we can perform an eigenvalue analysis of this and then examine the nature of eigenvalues, 
and we will be able to infer whether the solution is periodic, decays to 0 or grows and it is 
periodic with period capital T or periodic with period capital 2T. 



So we find eigenvalues of A and infer the nature of solutions by using the following criteria this
we have discussed, so if modulus of lambda I is less than 1 for I = 1 to 2 then the solution will 
decay, and if it is greater than 1 for any of I’s, if any one of the eigenvalues has satisfy this 
property solution will go to infinity, and this is periodic with this, if both lambdas are equal to 
1, and it is periodic with period 2T both lambda’s are -1, so this completes the you know a 
calculation of Floquet’s coefficient by simple integral, so you can use if you formulate a finite 
element model you could use a numeric beta or any other method that we have discussed earlier
and integrate this equation over one period of the parametric excitation. 



If the condition lambda, modulus of lambda greater than one occurs we say that the system has 
got into parametric resonance, so here the motion grows exponentially with time, okay you 
recall how, if that is here if you recall how a harmonically driven single degree freedom system 
gets into resonance for that if you consider X double dot + omega square X = P cos lambda T 
with say 0 initial conditions you can show that solution is given by this. Now as lambda tends 
to omega we get the solution as PT/2 lambda sine lambda T, so as lambda goes to omega and T 
tends to infinity, X(t) goes to infinity and the growth is linear in time, so this is when external 
excitation creates resonance in the system, but if the system gets into parametric resonance the 
growth is exponential. 
Now in the resonance in external excitations, the resonance response amplitudes are limited by 
damping and non-linearity of course would also be important as response grows, but in 
parametrically excited systems damping has no role, if the system gets into resonance presence 
of damping does not limit the amplitude of the response that is you can see here already I have 
a U dot term, so presence of U dot term is not changing the nature of the solution. 
So in this case if your damping treatment won't solve problems of parametric resonances, 
whereas that will solve the problem of resonance under external excitations, now here of course
as amplitudes become large for a linear system amplitude tends to infinity but once amplitude 
cross certain limits the system nonlinearities kick in and the behavior will be altered due to 
presence of nonlinear terms. 



How do you deal with multi degree freedom systems? So we can consider equation of this form
U double dot P(t), U dot + Q(t) U, again let us assume P and Q are periodic with period capital 
T, so in the equation that we got say M(t) X double dot + CX dot etcetera that is in the model 
that we got we had M(t) X double dot + C(t) X dot + K(t) X = 0, so I can reduce this equation 
to this form by multiplying by M inverse, so it reduces to this form. 
Now again by using the logic that we have discussed U(t + T) can be written as A into U(t), 
now A will be, size of A will be equal to the, suppose U is N x 1, A will be N x N, so how do 
you find A? We solve this equation over one period of excitation with a set of linearly 
independent initial condition, we have to select a set of N linearly independent initial conditions
and integrate the solutions over one period, and by examining the response at capital T will be 
able to construct A matrix, again we can examine the eigenvalues of A and infer whether the 
solution grows in time, or decays in time, or becomes periodic, etcetera, so this is how a 
qualitative analysis of a time varying system can be performed.





Now the next problem that I mentioned was that of so-called follower force problems, so here 
the line of action of P remains tangential to the deform beam axis, so work done by P is 
dependent on path of the deformation, so such forces are called non conservative forces. So 
now what is the critical value of P that is the question we are asking? 



So what we can do is we can perform a static analysis, see when we performed stability analysis
of a beam where load was, direction of the load was unaltered what was a conceptual 
framework within which we did that, we started with small values of P and incremented P in 
steps, at every increment, at every step of incrementing P we gave a slight perturbation to the 
system and the system gets into oscillations, and presence of damping ensures that the system 
either returns to its original state our assumes an neighboring equilibrium position, so there was
an element of dynamics even in this, so but if you were to perform a dynamic analysis of that 
problem and examine the nature of fixed points associated with the governing equations we 
would reach the same conclusion as we would do by simply performing a static analysis, we 
have discussed the issue about fixed points etcetera in one of the earlier lectures. 
Now inspired by that what we will do is we will formulate this problem using purely a static 
consideration, so we can resolve this load as P sine phi and P cos phi, and when I write the 
equation for bending moment at any section I will include bending moment due to the 
horizontal component and due to the vertical component, so I will set up a coordinate system X 
is measured from this and I want to write bending moment at X, so it will be P cos phi into this 
lever arm, which will be F – Y, and P sine phi will be a lever arm will be this, okay, so that is 
sine of phi L – X. 
Now if we assume that phi is small we can assume cos phi as 1 and sine phi as phi, so the 
governing equation becomes by simplifying this I get EIY double prime + PY = PF - P phi L-
X), F is the displacement here and phi is the rotation. So what are the unknowns in this 
problem? F and phi are unknowns here, we don't know what they are, because they have to be 
determined by analyzing the problem, now I'll divide by EI and introduce K square as P/EI and 



I will get this equation, and this is a linear equation and I can write the complementary function 
and particular integral. 
Now what are the boundary conditions? At X = 0, Y(0) is 0, Y prime (0) is 0, and what are these
F and phi? F is Y(l) and phi is Y prime(l), that is how we have introduced that. Now 

therefore there are now 4 constants A, B, F and phi which are unknowns, and there are four 
conditions, what are these four conditions? These are the four conditions, so I can now impose 
that so Y(x) is this and Y prime(x) I can find out by differentiating this, and by imposing the 
four boundary condition Y(0) is 0, Y prime(0) is 0, Y(l) is F, Y prime(l) = phi, I get a set of four 
equations, and the unknowns are A, B, F and phi, so I can cast it in a matrix form and write in 
this form, so for non-trivial solution the determinant of this equation must be 0, so if I 



impose that we get the determinant of this matrix will be – 1 if we expand that, and it is 
independent of the applied load, so that means determinant of this matrix is not 0, so the only 
possible solution is a trivial solution so what it means that only trivial solution is possible for all
values of K, that means no matter what is a load P, the equilibrium position is always stable, so 
that is structure state of rest is always stable for all values of P, this defies expectations, so did 
we miss anything in doing this problem? 



So the thing that we have missed is a, we have done a static analysis. So the idea is if we say 
that loss of structural stability is accompanied by oscillations whose amplitude grows in time, 
whose amplitude grow in time if we notice that then we can include inertial effects in 
considering the stability of the equilibrium state, suppose if you do that there is nothing wrong 
in trying that out, so let us consider the case when P was applied in a conservative manner that 
means direction of P would remain unaltered due to deformation of the structure, so when 
dynamic analysis was performed and when P = P critical the response grew linearly in time 
when natural frequency was 0, the result from static and dynamic analysis coincided, okay, so 
this we can recall in this context. 



Now what we will do is we will reformulate this problem, now let's again assume that at some 
stage in the deformation the beam occupies this position, neighboring equilibrium position and 
P remains tangential to the deform axis of the beam, now what are the boundary conditions at X
= L for the deformed configuration? The bending moment and shear force must be equal to 0, 
this is because P has 0 components along A, okay so now therefore the boundary conditions at, 
whereas when we consider this problem the boundary conditions at X = L was EIY double 
prime = 0 + EIY triple prime + PY prime = 0, so P appeared in specification of boundary 
condition here, but whereas here since it appears tangent in load remains tangential to the axis 
of the beam, the boundary conditions involving shear force P won't appear. 



Now equipped with this now I will write this equation EIY4 + PY double prime + MY double 
dot = 0, so the boundary conditions are at X = 0, Y and Y prime are 0, and X = L bending 
moment and shear force are 0, so I will again assume a solution where all points on the 
structure oscillate harmonically at the same frequency and I get this eigenvalue problem, so I 
divide this equation by EI and introduce K Square and a parameter A, which is square root 
M/EI, so here this is a linear equation with constant coefficients therefore exponential must 
satisfy this equation, so I get phi(x) as phi naught E raise to SX and this is a characteristic 
equation, so this is biquadratic equation so I can get the roots by solving this quadratic equation
and these are the roots, so based on this I will be able to write the solution phi(x) is A cos 
lambda 1X + B sine H lambda 1X + C cos lambda 2X + D sine lambda 2X, this is negative 
therefore square root of lambda 2 will be imaginary therefore we will get sine and cosine terms,
whereas this will be positive therefore we will get sine and cosine term, sine H and cos H terms.
So now I have four boundary conditions and I can do that I am skipping those steps, the 



condition for non-trivial solution we can obtain in this form by you know writing the four 
equations, forming the coefficient matrix and demanding that the determinant of the coefficient 
matrix is 0 I get this equation, now this actually is the characteristic equation and it relates P 
and omega, so this leads to the relation between P and omega and we have this Y(x,t) is 
exponential I omega T, this omega need not be real in this case, so if I assume omega to be A + 
IB then Y(x,t) will be exponential IA - B into T, so for B less than 0 there will be instability, 
because the real part of this exponent will be positive and as T tends to infinity the solution 
grows and that helps us to determine the critical load which is 19.739 EI/L square, so this result 
contradicts this analysis which showed that for all values of P the response is stable. 



Now if P were to be greater than P critical and this is how the solution would grow, it will be 
oscillatory and it grows, so this is called flutter and things like that, now there are two books, 
which this book by Bolotin gives a classical book which discusses these problems, and in the 
existing literature there has been criticism of this model and the basic question that has been 
asked is are there any situations where we can apply static loads which obey this hypothesis that
they remain tangential to the deformed axis, so apparently no experiment till today has been 
done to characterize this that is a claim, but there is a review paper in which these issues are 
discussed so if you wish to understand the issues related to this discussion in the existing 
literature you can read this reference. 



Now we will now move on to the next item on our agenda on how to make finite element 
analysis for systems which are governed by partial differential equations with time varying 
coefficients, so we will consider this problem we have considered in the previous class, where I 
have explained all the basic terminologies of this problem and we have got the governing 
differential equation, so the coordinate system is the origin is here, X is measured along this 
axis, Y is the displacement measured from the neutral axis here and vehicle is taken to enter the 
bridge at T = 0 and it leaves the bridge at T exit, and the time that it spends on the bridge is 
governed by the its motion parameters, acceleration and velocity we assume that these two are 
constant the time the vehicle is on the bridge, the vehicle itself is characterized in terms of an 
unsprung mass and a spring mass, and stiffness and damping characteristics of the isolation. 



So there will be now a degree of freedom associated with the vehicle and dependent variable 
Y(x,t) associated with deformation of the beam, so these are the governing differential 
equations, the equation for U will obviously have the displacement of the beam because the 
force in the spring and the force in the damper depends on the relative displacement and 
velocity between this point, between this point and this point, so this point itself is deforming so
we will get these terms, and also I pointed out that as the structure deforms and this mass rolls 
on the bridge, this wheel rolls on the bridge it will be rolling on a deflected profile, therefore 
when I compute velocity and accelerations needed to characterize the spring forces and the 
inertial forces we need to consider the total derivative, so that is why we are writing capital 
D/DT of Y(X(t),t) and this is the equation for the vehicle degree of freedom, and this is the 
equation for the beam oscillations, F(x,t) is the wheel force that consists of weight of the 
vehicle, the force transferred from the spring, and the force transferred from the damper, and 
the inertial force of the unsprung mass, and this is a concentrated force which point of 
application changes with time as the vehicle moves and that is depicted through this direct delta
function, so F(x,t) is the wheel force, as the vehicle exits the bridge the bridge undergoes small 
oscillations and since our interest is primarily on the bridge we will not write the corresponding
equation for the vehicle.
So at T exit to solve this equation if you wish to model how the free vibration decay takes place
after the vehicle lose the bridge you should, this is valid from T exit and the state of the bridge 
at T exit should be computed by analyzing this problem, so that means as the vehicle leaves the 
bridge the displacement and velocity field of the bridge must be captured through the model 
that is applicable for this time origin, so what remains as the snapshot of the bridge response at 
T exit will serve as initial conditions to solve this problem. 



So what we will do is we will try to develop a finite element model for this pair of equation, 
ordinary differential equation and partial differential equation by using what is known as an 
integral and weak formulation. In the development of finite element method so far in the course
we have started with the variational principle, we didn't start from the governing differential 
equation when we started discussing approximate method we saw that Rayleigh-Ritz method 
the way we apply Rayleigh Ritz and Galerkin method we’re somewhat different, Galerkin 
method we applied on a governing differential equation whereas Rayleigh-Ritz was on a 
variational formulation, so here we will assume that the starting point for discussion is a partial 
differential equation, okay, and how do we analyze this? So we need to prepare some basics for 

that, before we get into this we can consider some more aspects of this problem, see there are 
certain idealizations made in arriving at this model for example we are assuming that the bridge
deck is smooth, but in reality the bridge deck could be, there could be guide way unevenness 
and the vehicle will actually be moving on a bumpy bridge, one the deformation of the bridge 
along with the roughness of the bridge surface contributes to the input to the vehicle, for 
example if this bridge was undeforming but it is, that means if this vehicle was running on a 
rigid pavement but with undulations it will still feel the oscillations, not here the vehicle is 
running on a deforming elastic medium, but it has certain undulations, so this can also be 
included in our model. 



And there could be series of loads crossing the bridge, so again principle of superposition won't 
be valid here, by that I mean if you find the bridge response bridge vehicle system response due
to passage of one vehicle and similar response analysis for passage of another vehicle that 
cannot be superposed to find response when both the vehicles pass the bridge that principle of 
superposition is not acceptable, we can improve upon the vehicle model, we can include 



translation and pitching of the vehicle, we can model for the vehicle in greater details, and this 
type of models have also been studied in the literature. 

In practical situation of course the supporting structure itself will be a 3, you know 3 
dimensional structure lattice girder bridge like this and the moving vehicle itself will be a fairly 
complicated engineering system, so this should be borne in mind when we analyze this type of 
models, so in reality to explore the, to realize the full potential of finite element method this 
type of problems need to be analyzed in the framework of a supporting structure being modeled
as a, using as a finite element model and the moving system also using another finite element 
model, and these two models move relative to each other, it is that problem that we should 
eventually be able to solve as we start with such an ideal situations such as this.



Now as a prelude to for developing finite element model starting from a partial differential 
equation we will revisit some you know basic notions about how to do this by considering a 
simpler problem, so what we do is we consider situations in which the system to be analyzed 
described in terms of a governing differential equation, this is in contrast over study so far 
wherein we started with Hamilton's principle in formulating the problem, so what we do is we 
consider the equilibrium equation which is a partial differential equation say in homogeneous 
beam EIY double prime double prime + M(x) Y double dot = F(x,t) and let’s assume that the 
beam initial condition there is a time varying term at the boundary, for example it's a fixed at 
the left end and it is free at the other end but it carries a time varying moment, and it's assumed 
that it starts from rest. 
Now our aim is to find an approximate solution to this equation in the form with certain trial 
function phi N(x) and generalized coordinates AN(t), and we have seen earlier the substitution 
of the assumed solution into the governing equation leads to a residue, so what we do is we 



write what is known as a weighted residual statement for the problem, what we do is we take all
the terms which are on the right hand side to the left hand side, and we get on the right hand 
side 0, and multiply that by a weight function W(x) and integrate over the domain of the 
problem, so we get this equation, this equation is the statement of the, is known as a weighted 
residual statement, where W(x) is a weight function, if Y(x,t) is the exact solution the term 
inside the bracket would be 0, so this will be automatically satisfied. 
On the other hand if Y(x,t) is replaced by an approximation, this term inside the bracket won't 
be 0 and this can be used to obtain equation for AN(t), so how we'll do this? We select a set of, 
suppose there is a capital N generalized coordinates, we select a capital N set of weighting 
functions and write this equation for those capital N number of weight functions, and that leads 
to the equation for AN(t), so the above statement implies that the error of representation is 0 in 
the weighted integral sense by choosing N independent weight functions, we get N independent
equation for the unknowns AN(t), N = 1 to N, and that is how we formulate the problem. 
Now here if you see here when I am representing, here we have to choose two things now, one 
the trial function and the weight function, now if we now look at the demands on continuity of 
this trial function and the weight function here you will see that the trial function need to be 
differentiable up to fourth order, whereas weight function need not be differentiable also it 
should be simply integral okay, so the demand on the weight function and the trial function is 
not even, if that is not a restriction we can simply go ahead and select a capital N number of 
weight function and solve the problem, but obviously that is not a fair situation to construct the 
trial functions which are differentiable up to fourth order requires fairly elaborate representation
for phi N(x) and that leads to increased computational burden, so we want to reduce the demand



on differentiability on phi N(x), so what we do? So the observation is that continuity 
requirements and W(x) and phi N(x) are different, the requirements on phi N(x) are more 
stringent, the weighted integral statement is equivalent to the governing field equation and does 
not take into the boundary conditions, because boundary condition issue has not yet come up, 
the unknowns AN(t) can be determine by considering N weight functions as shown here, so you
write this equation for a set of N weight functions, and we get the required N equation.
So to proceed further with the solution we need to select the trial functions phi N(x), N = 1 to N
which possess fourth order derivatives and satisfy the prescribed boundary conditions, but there
is no such stringent requirements on the weight functions, so this looks a bit unfair, because we 
have to select both of them.

So now what we do is we integrate the term by parts, by integrating by parts first time, the first 
term integrated by part, other terms we can retain as it is, so it becomes now the fourth 
derivative becomes third derivative, and here we get the first derivative on the weight function, 
the other terms remains the same, so integrate once again then this term is following from this, 
and from this term I get W prime(x) EIY double prime, so the derivative on this, this derivative 
has now vanished, and in the integrand I get now W double prime(x) and Y double prime(x) 
DX + this term as it is, now this statement is known as a weak form. 
Now if you decide that we will work with this form of the equation then the original weighted 
residual form statement, then we see that the trial function now need to be only differentiable 
up to second order, but now the weight function need to be differential up to second order, so 
the demand on the trial function and the weight function as far as differentiability goes is now 
even, so by integrating by parts we’ve achieved the trade off from on differentiability 



requirement on trial functions and weight function, so we'll make these comments, so the 
differentiability requirement on Y(x) and hence on the trial functions has come down to 2, and 
the requirement on W(x) has gone up to 2.
The integration by parts has enabled us to trade the differentiability requirements between trial 
functions and the weight functions. 

Now consider now we have 2 more terms because of integrating by parts, now let us consider 
those 2 terms. Now based on this we can identify 2 types of boundary condition, these terms are
associated with what happens at the boundaries X = 0, and X = L, so these are clearly 
associated boundary conditions, so based on this we can identify 2 types of boundary 
conditions, one set known as natural, and the other one known as essential. Now the rule for 
this division is as follows, we call coefficients of the weight function and its derivatives in the 
above terms as secondary variables, for example weight function W(x), the coefficient is EIY 
double prime prime, so EIY double prime prime is a secondary variable, similarly here weight 
function derivative is multiplied by EIY double prime, so EIY double prime is called the 
secondary variable. Specification of the secondary variables on the boundaries constitute the 
natural or force boundary conditions, the dependent variables expressed in the same form as a 
weight function, as appearing the boundary terms are called the primary variables, thus we have
W(x), therefore Y(x,t) and we have W prime(x) and thus Y prime(x,t) are the primary variables.
Specification of the primary variables on the boundaries constitutes the essential or geometric 
boundary condition, so we divide, in summary we are dividing the boundary conditions into 
natural and essential, and we have now developed a prescription for classifying these boundary 
conditions, the variables as being primary and secondary and the boundary condition being 
natural or geometric.



Now in this type of formulation if you are dealing with even order differential equations which 
we are always doing in many of the structural engineering problems, the number of primary and
secondary variables will be equal, the secondary variables have direct physical meaning as far 
as the problem is concerned, for example here EIY double prime is a bending moment, EIY 
double prime is the shear force, so each primary variable is associated with a corresponding 
secondary variable, so there is a natural pairing of primary and secondary variables, for 
example if you have secondary variable which is bending moment, the primary variable is the 
slope, if the secondary variable is the shear force the primary variable is a displacement, so 
essential boundary conditions involve specifying displacement and slope at the boundaries, and 
natural boundary conditions involves specifying bending moment and shear force at the 
boundaries for the beam problem. 



Now on the boundary either a primary variable can be specified or the corresponding secondary
variable can be specified, a given pair of SV and PV cannot be specified simultaneously the 
same boundary, thus for example at a free end of a beam we can specify bending moment to be 
0 but the slope remains unspecified, similarly shear force can be specified to be 0 in a simple 
supported end and displacement remains, no in the free end shear force can be specified to be 0 
but the displacement remains unspecified, okay, so now we use some notation EIY double 
prime prime as V which is shear force, EIY double prime as M we write the weak form in this 
way, so the weak form statement is this. 



Now we now require the weight functions to satisfy the essential boundary conditions of the 
problem, recall the boundary conditions we are considering is Y at X = 0, Y and Y prime is 0, 
and at X = L, we have M naught applied bending moment and shear force which are 0. Now we
demand that at X = 0, W(0) and W prime(0) is 0 so this is similar to the virtual displacement 
concept where virtual displacement conforms to the prescribed boundary condition, so this 
weight functions must also conform to the prescribed boundary condition, thus we have W(x) 
V(x), 0 to L will be simply this, which is this, and the weak form with this understanding that 
the weight function satisfy the geometric boundary conditions we get as this, this can be now 
used to proceed further with the problem. 



So this is equivalent to the original differential equation and the natural boundary conditions. 
Now what we did was we started with this assumed solution, so what we will do now is here 
AN(t) needs to be determined, so now I will substitute this into the weak form I get this, and I 
will now use in one way of proceeding further W(x) to be equal to the trial function themselves,
and we obtain a set of N equations for AN(t) and we can proceed further with the analysis. 



This you know approach leads to symmetric coefficient matrices when you formulate the 
problem, and the natural boundary conditions are included in the weak form and the 
approximate solutions need to satisfy only the essential boundary conditions, so a discussion on
this is available in the textbook by JN Reddy you can see this also, so what is weak here is the 



requirement on differentiability of the trial function has been weakened, it is in that sense the 
formulation is called a weak formulation. 



How do we develop finite element solutions for this? Phi N(x) where globally valued shape 
functions in the previous formulation, now if you want to apply finite element method we 
divide the domain into say N elements, so and if you consider a typically a K-th element with 



coordinate XK - 1 on the left and XK on the right, and suppose each node has 2 degrees of 
freedom, so what we can do is we can consider the K-th element and introduce a local 
coordinate system XI as X - I = N - 1 LI, where LI is XI + 1 - XI which is a length of the 
element, so as X varies from XK - 1 to XK, XI varies from 0 to LK, so for the K-th element 
using the notation prime, Y prime as dou Y/dou sai I can write the equation in this form. 



So now the boundary conditions are here at XI = 0, the displacements are U1 and U2, and XI = 
1, displacements are U3 and U4, similarly there will be a shear force and bending-moment here 
a shear force and bending moment here, so these are the set of 8 boundary conditions that we 
need to you know consider. So the weighted residual statement is given by this, the weak form 
including the required boundary conditions, that means again we differentiate integrate by parts 
twice and the order of differentiability on Y and W becomes equal, and we get this weak form. 
Now we have this function F1, F2, F3, F4 which appear on the boundary I write in this form, so
I have this as a weak form for the K-th element. 



Now this is a weak form and now I assume the solution Y(x,t) is I = 1 to 4, UI(t) phi (XI) and 
we can now select phi(XI) to be the cubic polynomials, I don’t want to discuss the issues on 
how to select the polynomials here we have seen that, so we can select them and we select 
W(sai) to be the trial functions themselves, and I can get I can now perform these integrations 
and the terms involving EI will lead to the stiffness matrix KIJ as shown here, and terms 
involving mass will lead to the inertial the mass matrix as shown here, and the remaining terms 
contribute to the equivalent nodal forces as shown here, this is for K-th element, so these are 



like cubic polynomials I select and the mass matrix and stiffness matrix we have derived earlier 
in our studies and this is same, there's a same consistent mass matrix and the elastic stiffness 
matrix. 



Now we need to assemble. Assembling, this is a formulation up to K-th element, now the 
requirements for assembling is the inter element continuity of primary variables into deflection 
and slope in this case, and inter element equilibrium of secondary variable that is bending 
moment and shear force, so that is how, I mean this we need not discuss in greater detail 
because we’ve already seen how to do these things, then imposition of boundary conditions 
primary variables are not constrained, the corresponding secondary variables are 0, if primary 
variables are not constrained the secondary variables will be 0, for example at a free end the 
translation and rotation are not constrained, therefore this shear force and bending-moment 
would be 0, unless you have externally applied actions at the free end, that's what I'm saying. 
Then primary variables are prescribed, for example they are prescribed to be 0 or they can be 
prescribed to specified functions of time as in the earthquake ground motion or any other 
support motion problem, so in that case the corresponding secondary variables determine the 
reactions, so this leads to the governing equation of motion. So this is a framework where we 
start with the governing partial differential equation and develop the finite element model for 
the problem. 



So in the next class what we will do is we will consider this framework and consider the 
problem of vehicle structure interaction, this is a partial differential equation and the ordinary 
differential equation that we have derived, and we will develop the finite element model for this
case starting from the integral and weak formulation. So we will close the lecture at this, this 
lecture at this stage, and we will pick up on this in the next lecture. 
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