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We are discussing questions on stability analysis of structures made of beam elements, so in the



 last class we derived the geometric stiffness matrix for an Euler-Bernoulli beam and this is the 
total potential and we use this as a trial function, and this is the geometric stiffness matrix that 
we derived.



We also reviewed the definition of nonlinear strain displacement relations, and we derived the 
geometric stiffness matrix for a general solid element and that we obtain K Sigma in this form 
we started with an assumption that in a 3 dimensional solid, an initial state of stress prevails in 
the body and that is denoted by a sigma naught with element sigma XX naught, sigma YY 
naught etcetera, and sigma ZX naught. And as the body strains these initial stress remain 
unaltered and work done by these stresses on the deformation is given by this, and this gets 
partitioned into one set of terms which lead to the equivalent nodal forces due to the presence of
the initial stress, and the other one represents the interaction between deformation and the initial
stress and leading to the geometric stiffness matrix as shown here, and we using this 
formulation we derived the geometric stiffness matrix for an axially deforming rod, and we 
obtained this as a geometric stiffness matrix. 



Using this and combining with the geometric stiffness matrix that we derived for Euler-
Bernoulli beam we formulated the 2 1 dimensional beam element, and that beam element to 



analyze frames we need to transform them into, from local to global coordinate systems and 
that rules for that follows what we did when we were discussing vibration analysis and that we 
re-capsulated. 



And we were asking towards the end of the class how to deal with analyzing stability of 
structures such as this, this could be more complicated than this in terms of loading and 
geometry, but right now we are considering planar frames with the discussion that we had till 
now, so the recipe for doing this is what we will start today's lecture with.



So what we do is we assemble the reduced structure elastic stiffness matrix K and the 
equivalent nodal force vector F for the given structure, then we solve that problem and find out 
the axial thrust diagram for this structure, that is a first step, that is a simple linear static 
analysis, then having established the axial thrust in different elements with that as a parameter 
in the geometric stiffness matrix we formulate the reduce structural geometric stiffness matrix 
KG for each of the elements and then transform them to the global coordinate system, 
assemble, all that we will do, that leads to a KG which is a reduced geometric stiffness matrix 
for the structure. Then we solve the eigenvalue problem and estimate the lowest value of 
lambda by solving this eigenvalue problem. 



What is lambda? Suppose the loading pattern, I write in a notional way as Q(x,y) which 
represents all these concentrated forces and maybe some moments and so on and so forth, this 
is collectively represented by this function Q(x,y), now what I do is I increase this loading 
pattern by a scalar parameter alpha, and I will go on increasing this till the time the structure 
reaches a critical state, our objective is to estimate this value of alpha so we might have 
designed the structure for some notional value of alpha = 1 for example, then Q(x,y) is what we
are discussing here, so how much that loading need to increase before the structure reaches, you
know the verge of losing its stability is the question we are trying to answer, so that lambda that
is alpha now, we will estimate this lambda min and this is a factor by which the prevailing 
loading pattern needs to be multiplied so that the structure reaches a critical state, so this factor 
is also called load factor. 



The associated eigenvector leads to the definition of the lowest buckling mode shape, so this 
analysis therefore has 2 steps, both steps are quite familiar to us, one is simply perform a static 
analysis, construct the axial thrust diagram this we have done for a simple beam structures in 
the previous class, then using that actual thrust diagram we formulate the geometric stiffness 
matrix for each of the element, transform them to global coordinate, assemble, all that after we 
do that we get the structure elastic stiffness matrix, the reduced structural elastic stiffness matrix
and the reduced geometric structures stiffness matrix, so then we do the eigenvalue analysis and
find out this alpha is in fact lambda to get the idea about the condition under which the structure
loses stability. 



Now I will not be discussing too many examples here because both the steps are familiar, we 
have done something similar for both vibration and vibration analysis already and simple 
problems have already been solved, so I will leave this as an exercise we’ll consider a frame 
made up of 3 members and which is loaded as shown here, cross sectional properties are given 
here the problem is to determine the critical value of load P, then plot the axial thrust diagram at
the critical loading condition and plot the corresponding buckling mode shape, so you could use
3 elements, one element for this, another element for this, and another element for this, if you 
go back in your lecture notes one of the earlier lectures where we studied the vibration analysis,
we’ve analyze the same structure, so the stiffness matrix, elastic stiffness matrix is already 
available you have to follow the same steps, but assemble the geometric stiffness matrix and 
perform the eigenvalue analysis.



Now in the discussion so far we have discussed about determining the load factor that helps us 
to determine the possible existence of a neighboring equilibrium state in the structure but we 
could also do a response analysis by including geometric stiffness even when the structure is 
not on the verge of buckling we are no infrastructure when the loading may not have reached a 
critical state but still I may like to include effect of geometric stiffness in characterizing the 
response, so that we have done in the study of beam columns we got the stability functions and 
how the response amplifies all that we have discussed.
So to do this now total potential will write, this is the work done by the loads and again use the 
trial function such as like this and construct the function U and write the equilibrium equation, 
here I will get the equilibrium equation to be K – PJ into U = Q, and U is obtained by inverting 
this relation after imposing suitable boundary conditions etcetera. Similar exercise can also be 
done for this type of problem also, even when P is not close to a critical state we can find out 
the influence of geometric stiffness on the response, as an exercise what we could do is we can 



revisit this beam column problem, we have considered a simply supported beam with a 
concentrated load Q and axial load P, and when the load is applied at the mid span and if you 
are focusing on the mid span displacement we have found out the mid span displacement to be 
the displacement with P = 0 multiplied by this chi(u) which is the stability function, A is lambda
L/2, lambda itself is square root P/EI that we have done earlier, so we have these 3 stability 
functions chi, epsilon, and XI. Chi characterizes displacement, epsilon characterizes the rotation
at left end, and this XI characterizes the amplification with the bending moment. 
Now what we could do is you can carry out an analysis using finite element method and 
compare the response obtained using this exact calculation, analytical calculation with a finite 
element solution and see the influence of number of you know choice of number of elements 
and such issues can be examined using that, this is an exact solution that is available so this 
forms a forum benchmark against which you can check your answer, so this I‘ll leave it as an 
another exercise. 



Now that is effect of geometric stiffness on static behavior of the structure, now we could also 
do a similar analysis using include geometric stiffness as well as in dynamic analysis, so this we
will consider slightly later, we will study the effect of axial loads on natural frequencies and 
forced response of structures but as a prelude this context it is worth mentioning that this is also
possible, so this generalization of beam column type of analysis for dynamic loads. Here the 
axial load modifies the natural frequencies and mode shapes, and naturally the force response 
also would get modified. 

Now we have considered so far the coupling between the axial load and bending, so we can also
ask the question if there is coupling between axial load and twisting, okay, so see the issue is we
are using nonlinear strain displacement relations, so a given strain component is related to 



several gradients of U, V, W, so a coupling has to be expected I mean that should not come as a 
surprise, so to be able to do that what we do is we recall we have discussed that problem of 
torsion of shafts in lecture 11, so from there we pick on we are considering now XZ plane and 
we assume displacement V is - Z theta X and W is Y theta X, and if we use now the strain of a 
fiber along longitudinal direction based on nonlinear strain displacement relation we get this. 

Now focusing on geometric effects we have to include only the nonlinear terms, the linear 
terms contribute to equivalent nodal forces arising out of pre initial existing stresses, that is not 
we're interested in, so we compute the strain component, this G is geometric, and this is what 
we are interested in, and using the assumed displacement field we get this to be given by this. 
Now the only pre-stress that you know initial stress that exists is sigma XX naught due to axial 
load, so the question we are asking is due to this axial load we normally expect the beam to 
deform along X axis, but for some value of P it can twist about X axis, that is what the value of 
P which induces a twisting in the beam is what we are computing, in the shaft that we are 
computing, earlier we have computed the value of P which induces bending right.
Now the twisting, so that also can be done so this stress sigma XX naught acts on this 
longitudinal strain leading to this term, and now we can, where sigma XX naught is, we write 
P/A for sigma XX naught and IP is this area moment of inertia. 
Now we can use finite element method, the first order derivative is there and 2 noded element 
means theta X should be the degree of freedom use linear interpolation functions we have done 
this several times, so the geometric stiffness arising out of this interaction is given by this, okay.
So now what we have done is interaction between axial effect and planar bending, and coupling



between axial load and twisting, so with this we seem to be ready to deal with the problem of a 
3 dimensional beam element. 

Now if you recall what we did for assembling elastic stiffness matrix assuming that the beam 
cross section has a some kind of bi-directional symmetry, it’s not an symmetric cross section 
because of which there will be coupling between bending and twisting etcetera, those 
conditions we’ve not considered nor are we going to consider that here also, assuming that kind
of symmetry exists in formulating elastic stiffness matrix it was simply a matter of assembling 
the contributions from the 2 bending actions, twisting action, and axial deformation action, 
there was no new phenomena that came in because we considered a 3 dimensional element, but 
now we need to ask this question when it comes to discussing the effect of geometric stiffness 
or of characterizing the geometric stiffness is it simply a question of assembling and just instead
of dealing with a lower order matrix we deal with the higher order matrix or are there any new 
phenomena, okay.
So we can start with a very simple model we can include effects of coupling between axial 
forces with bending along the 2 axis and torsion about the longitudinal axis, so in a 3 
dimensional beam due to axial load the beam can buckle in 2 directions, see for example if 
beam cross-section is this, one value of P will induce buckling along this direction, another 
value of P will induce buckling in this direction, and similarly some value of P will induce 
buckling in twisting mode, so all these 3 coupling effects will have the coupling between axial 
load and bending here, bending here, and twisting we have included, so equipped with that. 



Now we can simply assemble the matrix including these effects, so if you name the degree of 
freedom as shown here 2 nodes and this is a nomenclature of degrees of freedom, the field 
variables are U, V, W and theta, if we do that, if you recall this we already seen and these for 
example 1 1 element will be due to axial deformation. Similarly 7 1 will be due to, see for 
example 7 and 1, 1 and 7 are axial deformation, etcetera, etcetera, so this will get filled up, and 



if you write the elastic stiffness matrix we have seen this matrix earlier, this is the elastic 
stiffness matrix, so AE/L – AE/L – AE/L AE/L are here, and similarly you can identify the other
elements for bending in XY plane, XZ plane, and also twisting about theta X. 



This is the story as far as elastic shiftiness is concerned, the similar story repeats now for the 
geometric stiffness matrix, so there is again axial effects, bending about 2 planes and a twisting 
effect these effects are included, so this seems to start with a reasonable model to work with, 
but one should understand that this is not enough, even for a simple model the initial state of 



stress in the beam actually could include presence of longitudinal force, torque along 
longitudinal axis, and two bending moments, so when we are talking about initial stress, why 
think of only axial loads there will be initial stress is 3 dimensional, 3 dimensional beam 
element has several stress resultants and the shed of stress is 3 dimensional, so there will be a 
longitudinal force and two bending moments, and twist along the longitudinal axis, these four 
stress resultants will be present, so in the initial state of stress all four will be there, so the 
question arises how they will interact? Why only axial load should interact with bending? Why 
not bending interact with torque or torque interacts with another, you know planar deformation 
and so on and so forth, so a general formulation within the framework of Euler-Bernoulli theory
need to include interaction of torque and bending moment in addition to axial force, and spatial 
variation of torque and bending moments within an element, okay, so it is reasonable to assume 
axial deformation is constant over an element, but bending moment and twisting moment need 
not be constant, so because in a pre-stress when you draw your bending moment shear force 
and axial thrust and the torque diagrams, they need not be constant, they can vary within an 
element, so of course other complications are asymmetry cross sections this we are not 
considering anisotropy and such things, so we will restrict to the sections which are 
bisymmetric and try to include these effects. 



The fact that such effect should be present again I want to emphasize it should not come as a 
surprise, because if you see the structure of the expression for U in which the work done by the 
initial stress on the deformation is characterized there is quite a wide range of coupling terms 
present here, so for a 3 dimensional beam element moment based on Euler-Bernoulli beam 
hypothesis we formulate the expression for U, V, W, we can fill up all these terms, right you 
assume certain deformation field in Euler-Bernoulli beam formulation, you fill it up here, so 
you will see which interaction is present and things like that, so if we do that which I am not 



going to get into all the details we will get a more populated geometric stiffness matrix, this for 
example has been derived or discussed in this book by McGuire, Gallagher and Zieman, I have 
taken the information from this book it is a given here, okay, so again let me emphasize when 
we come to 3 dimensional beam elements when we formulate geometric stiffness matrix there 
are newer phenomena which we need to be concerned about because of complicated couplings 
that can exist between bending, twisting, and axial you know deformation. 



Now we have in our study on dynamics, we have studied plane stress element, plate bending 
elements, triangular element, quadrilateral element, isoparametric formulation, etcetera, 
etcetera, solid elements so on and so forth, all those elements now we can revisit and derive the 
geometric stiffness matrix, so we have to consider for a given problem the appropriate form of 
strain displacement relations which need to be nonlinear now, and identify all the coupling 
terms and I derive the K sigma matrix that can be done. 
Now what I will do is I will not do all the calculations for all the elements that we have done 
that exercise is something that can be done, but however I would like to consider this problem 
of geometric stiffness matrix for a thin plate bending element, following a Kirchhoff-Love 
hypothesis, so this plate has the initial stresses which are planar that is the membrane forces 
NY, NXY, NX. 
Now the membrane forces are results of the stresses sigma XX, sigma YY, and Sigma XY, 
which we typically carry out using plane stress analysis, and the stress resultants NX, NY and 
NXY are obtained by integrating these stresses across the depth as shown here. 
Now we'll assume that in a plate problem there is a prevailing membrane stresses initially and 
that structured bends, so when the straining takes place and that is due to bending the initial 
stress that exists, that is the membrane initial stress that exists will not change, that is the 
assumption that we are making, so the idea is to examine the work done by constant membrane 



forces on the displacements associated with transverse deflections, so membrane strains 
associated with small rotations you know these are given by this, okay, this is extract from the 
appropriate strain displacement relations, I am retaining only the relevant nonlinear terms, the 
linear terms lead to equivalent nodal forces associated with the initial stress that I am not 
discussing. 

Now we can assume that NX, NY, NXY are independent of W that means as W, the transferred 
displacement occurs these NX, NY, NXY do not change, now the work done therefore is given 
by this, so now for epsilon XX, epsilon YY, and epsilon XY I use this nonlinear strain 
displacement relation terms from that, and I get this equation, okay. Now again here W is the 
field variable and using the matrix of shape function N and the nodal coordinates UE I will 
derive this, okay this leads to the G matrix that we have seen earlier, and W is written as G into 



UE, now I compute K, the elements of K sigma matrix using this, this relation we’ve already 
derived and now the integration is over the area, I am not giving all the details just giving you 
the main you know milestones in the derivation. 
Now in an isoparametric formulation what we do, we need to you know introduce the 
coordinate XI and eta, and this evaluation of this integral has to be based on this transformation 
and that leads to this Jacobian and a different matrix on a GI which is now relates dou W/dou 
XI and dou W/dou eta to the nodal coordinates, this is the GI matrix. Now the K sigma is given 
by this where the integration is done or DXI and XI and eta which run from - 1 to + 1. 



Now if membrane forces are taken to vary in space within an element, that can be incorporated 
here in evaluating, but then while choosing order of integration you should have an idea what is
the order of variation of this NX, NY and NXY, typically we can assume linear or quadratic 
variation and then decide upon the order of integration, K sigma do not depend on elastic 
properties of the plate, see if you see here there is no poisons ratio and Young’s modulus here, 
but of course the pre-stress, the initial stress that exists will be function of E and sigma, E and 
nu, but this elements of this itself are not directly dependent on elastic constants, therefore this 
formulation can therefore be used if material is anisotropic also, because this doesn't depend on 
material being isotropic. 



Now we can generalize this formulation to thick plates as an illustration we can consider 3-
dimensional Timoshenko beam, right so the game is now to write the correct expression for U 
sigma, right so in Timoshenko beam theory you have a postulation for the displacement field, 
right based on which you can compute the strains and using the general expression for U sigma 
and retaining the appropriate terms you can always derive the appropriate functional, now I 
have just listed out the functional here for 3-dimensional Timoshenko beam in terms of N bar 
the axial force MX bar, MY bar, and MZ bar which are the stress resultants in the initial state 
that prevails in the 3 dimensional beam element, and this is a work done by deformation of the 
beam, on this initially prevailing stress field, so this we can use now a suitable interpolation 
scheme and evaluate the K sigma matrix, so this again if you see look at the functional the 
highest derivative is 1, and the field variables are V, W and theta Z, so you can assume linear 
interpolation functions for these 3, run through the whole formulation you will get K sigma, so 
all these are following setting up this expression for U sigma, all other steps are we are already 
familiar with, it's only a matter of doing them correctly that will take you to the final answer.
There is a reference that you may find useful, this is a handbook of mechanical stability in 
engineering and this discussion on 3 dimensional beam is available in volume 2, stability of 
elastically deformable mechanical systems. 



Now we will now move on to discussing a few conceptual issues associated with stability of 
structures, and I want to now discuss what are known as imperfection sensitive structures, what 
are they? To be able to do that we will not get into elastic systems but this idea can be explained
by considering a rigid link, rigid bar which is loaded by supported through springs as shown 
here, there are 3 arrangements, in the first arrangement the bar is hinged here and supported on 
a rotary spring, in all the arrangement the bar is hinged at A, and in the second arrangement the 
bar is supported at the point B through this spring, whereas in third case the bar is supported 
through an inclined spring along an inclined axis as shown here. 
Now I will call this as configuration 1, 2, and 3, now we can perform a thought experiment 
now, the thought experiment is such that let us consider we are selecting K1, K2, K3 for these 
three problems in such a way that the critical load for all these 3 systems is identical, they are 
all equal, so PCR1 = PCR2 = PCR3, so this K1, K2, K3 are adjusted in such a way that all these
3 structures should lose their stability at same value of P. 



Now design 1, 2 and 3 in such a way that PC1 = PC2 = PC3, that is select the spring constant 
K1, K2, and K3 such that these 3 critical loads are equal, we can verify that for the first system 
the critical load is given by K1/L, second one it is K2L, third one it is K3L cos square alpha, 
where alpha is this angle, so you should notice that the units of K1 will be different from those 
of K2 and K3, so what we are doing is we are selecting now K1, K2, K3 such that K1/L = K2L 
and that is equal to K3L cos square alpha. 
Now let’s assume that this is a thought experiment, we are fabricating these 3 systems carefully 
and performing this analysis, load deflection analysis, no matter what care we take in 
fabrication, and no matter what care we take in applying this load in an ideal manner, it will 
always be observed that PC1 will be greater than PC2 and that will be greater than PC3, 
although as per the design all 3 loads must be equal. Not only that if you were to repeat this 
experiment several number of time, the scatter that you get in this third case will be more than 
the scatter in the second result and that scatter will be more than the scatter in the first result, so 
this apparent you know looks like a paradox, so what we are doing is if you were to fabricate 
the 3 models and perform experiments it would be observed that PC1 will be greater than PC2, 
and that will be greater than PC3, no matter how carefully the 3 models are fabricated, and no 
matter how diligently the experiments are performed, why it happens? It also would be 
observed that the scattering the experimentally determined value of critical loads would be such
that the scatter in the third system will be more than the scattered in the second system and that 
will be more than scatter in the first system. 
Why this happens is a question that we wish to now answer, in fact this analogy is not a very 
theoretical one, we can show that a beam structure behaves like this, a plate structure behaves 



like this, a shell structure behaves like this, so that would mean if you select a beam plate and a 
shell structure to have a same critical load if you perform an experiment or the observed critical
load will be, you know, for a beam will be greater than that of a plate and for a plate it will be 
greater than the official, why it happens is the question that we are trying to answer. 

Now let's analyze this problem, so let us assume an ideal situation where every load is I applied 
perfectly, the structure is supported perfectly, and theta is a degree of freedom if you assume 
that this neighboring equilibrium state exists then V is given by half 1/2 theta square - PL 1 - 
cos theta. Now equilibrium dou V/dou theta must be equal to 0, and that gives the load 
deflection diagram which is P = K theta/ L sine theta, I am not assuming theta to be small, for 
stability for every value of a pair of P and theta here if this K - PL cos theta is greater than 0 
that point would be stable on the load deflection diagram on the rho it is unstable, now this is an
ideal situation, we will introduce a notional imperfection in the system, let’s assume that there 
is some kind of free play in the support here and the spring will come into action only after 
theta crosses an angle epsilon which is small, so the V in this case will be 1/2 K theta - epsilon 
whole square and this. 
Again for equilibrium I get this equation, and for stability I get this equation, the stability 
condition is independent of epsilon but the load deflection diagram depends on epsilon. Now if 



I plot this, this is how it will look like, suppose epsilon = 0, this Y axis I have the load and on X
axis I have theta, so as a load increases the load deflection path rises along this curve, and once 
the P critical value is reached the theta = 0 solution becomes unstable, the red lines are unstable,
and black lines are stable, where in the stable branch bifurcation to do other branches like a 
bowl as shown here, okay. 
Now in presence of an imperfection, suppose epsilon is Pi/50, a small imperfections, the load 
deflection path has a rising part you know climbs up like this and it goes along this, and there is
another branch where initially it will be unstable but afterwards it is again stable, okay so that 
would mean at this value of theta this is a stable branch. 



Now we can make some observation that the load displacement curve for imperfect system rises
along a stable path without encountering any instability, right, it won't encounter any instability,
then the deflection goes more rapidly as the load approaches the critical value corresponding to 
a perfect system, see if a linear analysis is done if you recall our answer will be like this, right, 
this is the loading path, this is the horizontal, where nonlinear analysis takes it to a more 
realistic formulation. 
As you come in the imperfect system, as you come closer even perfect system as you come 
close to the critical load of elastic system, sorry linear system the rate of change of load is rapid,
I mean rate of change of deformation is rapid with the increase in load, that is how the kind of 
remnant of instability is manifested here. This is an example of a symmetric stable bifurcation, 
beam elements display this type of behavior, later on depending on the time available we may 
discuss problem of an elastica and we will be able to show that something similar is observed in
a beam. 



Now let us consider the second configuration where the bar is supported on a spring as shown 
here, again the potential is given by 1/2 KL sine theta whole square - PL 1 - cos theta, for 
equilibrium this is a condition this is in fact is a load deflection diagram, there are two 
equilibrium path sine theta = 0 and this equal to 0, now for stability this condition must be 
satisfied, okay, this is straightforward derivation. 
Now again let us assume that there is a free play and the spring remains, let the spring remain 
unstrained till theta crosses epsilon, then V is given by this and the condition for equilibrium is 
this, this is a load deflection path, and this is a condition for stability, so we can write a small 
program, plot this and at every value of P comma theta you substitute it into this and see 
whether the point is stable or not, that is what I have done. 



Now if you plot this something interesting happens, for perfect system the load deflection theta 
= 0 is the stable equilibrium path it raises like this, and then it bifurcates into 2 unstable paths 
this is unstable path, okay. Now in presence of imperfection, how does that system behave? The
load deflection diagram, and the load deflection path increases but after it reaches a value it 
encounters a point of instability, so beyond this point it cannot carry further load because that 
state becomes unstable, okay, so the load carrying capacity is now inhibited by presence of 
imperfection, whereas here that is not so, it continues to carry the load but the rate of change of 
deformation changes as you come close to the critical point, whereas here it simply ceases to be
stable, and if there is greater amount of imperfection instead of pi/50, if it is pi/20 this is the 
critical load now, load carrying capacity is this, it reduces, okay, so the observation here is that 



the load displacement curve for imperfect system is not always stable, instead it rises along a 
stable branch and exhibits a limit point beyond which the path drops and becomes unstable, 
greater the imperfection, lesser is the ability of this structure to carry the load, this is an 
example of a symmetric unstable bifurcation, so the bifurcation is symmetric, the two paths that
emerge after bifurcation are symmetric with respect to this line, and a stable path becomes 2 
unstable path, so it is symmetric unstable bifurcation, plate structure display this type of 
behavior. 



Now let's come to the asymmetric structure, suppose this is the bar which is supported on spring
like this at some time, at some snapshot it would have deform like this, and we have to set up 
the expression for the total potential, so we have to find out the amount of stretch in the spring 
and the work done by gravity, so I mean the moment through this distance, so if initial length is 
OB is S, and OB bar is S bar, the energy stored in the spring is 1/2 K S bar - S whole square, 



and this is - PL cos theta. Now they are using geometry, I can find an expression for S and S bar
in terms of this theta, theta is a degree of freedom so if you carry out a simple calculation we 
will find out S and S bar, and if I substitute into this, this is the expression for V, again 
equilibrium is dou V/dou theta = 0, and this is a load deflection path now more involved, and 
for stability I have to differentiate this further and see the sign of the term. 



If you perform this calculation for a, when there is no imperfection the load deflection path 
rises along a stable path and it bifurcates with one stable path and another unstable path, so the 
unstable path is of greater interest to us because that is what we are worried about. 
Now in presence of imperfections what happens is, the load increases and the load displacement
path increases, and again encounters a limit point afterwards it becomes unstable, there is of 
course the stable path along with the load can go on increasing but that is not what governs our 
design, this branch governs a design, so here again the stable equilibrium path is asymmetric 



with respect to the un-deflected configuration state with respect to which the bifurcation takes 
place, okay, and that is actually the structure itself is un-symmetric so you can expect 
something like that to happen. 
The stable load displacement curve for imperfect system is not always rising and stable, instead 
it rises along a stable branch and exhibits a limit point beyond which the path drops and 
becomes unstable. Greater the imperfection again lesser is the ability of the structure to carry 
the load, this is an example of an asymmetric unstable bifurcation. Shells and some frame 
structure display this type of behavior.



So in summary we have now 3 situations where presence of imperfection lowers the load 
carrying capacity of these 2 type of structures, so we call them as imperfection sensitive 
structures, so the maximum load carrying capacity for these 2 systems can be shown as a 
function of epsilon and it drops off like this, greater the imperfection lesser is the ability to 
carry the load and here again there are ones unstable branch and a stable branch we can plot this
and you can actually compute these graphs exactly, although I have shown it as schematic here. 
So this clarifies the meaning of word imperfection sensitive structure. 



Now these three examples that we considered actually together illustrate the possibility of 
diverse type of behavior which could be displayed by different structures, if a structure defers 
the function, the function U changes, and U as a function of generalized coordinates is different 
for, different types of structures, so these 3 examples display the dramatic changes that can 
happen in the behavior of the structure due to the dependence of U on the generalized 
coordinates. The function U of theta encapsulates different types of structures, U theta can be 
expanded in Taylor’s series about the equilibrium point and different bifurcation patterns can be
discerned by examining the signs of various terms, this approach forms the basis of Koiter’s 
theory for stability analysis, I am not going to get into the details the book by Thompson and 
Hunt has a good description of this, and monograph by Koiter’s work itself is available that can 
also be referred too.
Then here the nonlinear analysis helps us to examine the likely importance of geometric 
imperfections in a given context, so it is an interaction between non-linearity and the geometric 
imperfections that you know explains the paradox that I mentioned, it is because that 
imperfection, no structure can be fabricated with you know in an ideal manner the 
imperfections are insensitive, inevitable, performance of a beam structure is relatively 
insensitive to that imperfection, whereas these 2 structures due to presence of imperfection the 
load carrying capacity is lowered and the amount by which the load carrying capacity gets 
lowered depends on the actual you know, actually one can work out that detail as indicated 
here, so the paradoxical statement observation that we started with, and the explanation lies in 
examining the interaction between imperfections and large deformations of the structure. 



Now we will now consider a few more, you know situations where questions on stability of 
structure you know throws out some surprises, so we'll start with the discussion on beam on 
elastic foundation. So let’s consider a simply supported, axially loaded beam on Winkler's 
foundation, the basic assumptions in Winkler foundation is the reactions are proportional to the 
deflection at any cross-section, and the spring works both in tension and compression, and 
actually the foundation behaved like a series of spring without mutual interaction, that is a basic
assumption of Winkler’s foundation. So the expression for U in this case has these 2 terms 
which you already encountered, this is a new term 1/2 KY square DX and this is a work done 
by external loads which we need to include to completely formulate the problem. Suppose if 
you assume P(x) to be 0, we get this field equation, and these are admissible boundary 
condition you can put it in the Hamilton's principle and derive this, and derive the appropriate 
boundary conditions. 



Now as I said let's consider a simply supported beam on elastic foundation, okay, which carries 
axial load, so the governing equation will be of this form. Now these are the boundary 
conditions at X = 0, displacement and bending moment are 0, and X = L, displacement and 
bending moment are 0, so for purpose of discussion we'll assume that the solution can be 
expanded in sine terms, and I substitute into this equation and I get this characteristic equation, 
and the P critical that means the value of P for which a nonzero solution is possible is given by 
this, okay, this follows the way we analyze the Euler buckling load for a simply supported 
beam, if we got this P critical, if K is 0 we got this result earlier, okay M square Pi square/L 
square into EI. Now you should notice now the dependence of P critical on M, and M is 
appearing in the denominator here, so this creates some surprises that would mean if M = 1 
need not lead to the lowest critical load, okay it depends on values of K and EI, so what that 
means? 



Suppose if I now want to find out the value of M at which P critical is a smallest, so I will 
express P critical as a function of M, and suppose if I now use the criteria D/DM P critical M = 
0, then I get an equation from this I get the relation between M and all these parameters, if M 
satisfies this equation that is the value of M for which P critical will be the lowest, so if I 
substitute that optimal value of M into the P critical value I get this as 2 into square root KEI, 
this value is independent of M. 
Now that means it is possible that to P2 is less than P1, suppose P1 is the load at which we get a
1/2 sine wave, and P2 is the load at which we get a full sine wave, it is not necessary that the 
ordering should be such that P2 is greater than P1, P2 can be less than P1, so this can be the 
critical load depending on a problem that you think of, so that is plotted here, if I plot P critical 



versus L/R whole square on a log-log scale what we see is for different values of M, 1, 2, 3, 4, 
we see that all these curves you know don't fall below this value of 2 into square root KEI, that 
is this value that we derived, and if you are L/R ratio somewhere here then the lowest critical 
value corresponds to M = 1, but on the other hand if L/R ratio is somewhere here you see that 
the black curve M = 2 will be the lowest critical value, the next one will be M = 2 and 3 seem to
have the same value, okay, so this is something that we don't know you know it's special to 
beams on elastic foundation. 



Now as an exercise what we could do is we can consider an Euler-Bernoulli beam element 
resting on a Winkler's foundation, and you can develop the elastic and geometric stiffness 
matrices for the element. Now using the element that's developed determine the critical load for
a simply supported beam and illustrate the results shown in the figure on the previous slide, that
means what I want is you consider a single span simply supported beam on elastic foundation, 
formulate the elastic stiffness and geometric stiffness matrices assemble them by choosing for 
you know desired number of elements and try to see whether you get this type of behavior, 
whether the finite element model captures this, and how good is the finite element model, 
because these are exact results, I’ll leave that as an exercise. 



Now we can consider certain other problem, for example buckling of a ring, suppose I have a 
ring with the radius R, so AB is a deformed geometry of the ring, O is the center, so OM will be
R, and OM1 is the deformed configuration, so MN is a section of length, DS in the un-
deformed configuration so MN, and in the deformed configuration it becomes M1, N1, now DS
is nothing but RD theta and therefore I get D theta/DS is 1/R. Now upon deformation the 
section MN becomes M1, N1, now let rho be the radius of the deformed configuration, so by 
following this argument 1/rho will be D theta + delta D theta divide by DS + delta DS, so 
DW/DS consequently the angle between tangent to a center at M1 and the perpendicular to the



 radius MO, that is slope basically, if DW/DS is angle at M, and at N I will have DW/DS + the 
gradient into that D square W/DS square into DS, so therefore based on that I get delta D theta 
as this. 
So similarly if you consider length M1, N1, it is delta DS which is given by this and we can 
show that this is you can work through this and you can get this equation, so you can thus get 
the expression for 1/rho which is the radius of curvature in the deformed configuration, 
assuming these terms here and simplifying and retaining only first order terms after doing as 
expansion, I will skip this discussion you can verify that it is correct, we get this equation, okay.



Now if the beam ring is now loaded by a uniform force field as shown here, can it assume a 
neighboring equilibrium state, for example the I’ve shown in this elliptical curve, this is the ring
in the un-deformed configuration, Q is the load which is axisymmetric constant external 
compressive load, so how you leaving deform.
Now can you find out critical value of Q at which a neighboring equilibrium becomes possible, 
so we can consider the equilibrium equation and write the expression for bending moment we 
can do that and I get the governing equation to be given by this, the QR is the hoop force you 
can do a simple calculation and get this equation, this will be the governing equation. And if I 
now 



assume W of theta is A cos K theta + B sine K theta + this particular integral. Now the DW/D 
theta will be - AK sine K theta + BK cos K theta. 



Now the boundary conditions that we use is for the shape that we are looking for, this shape 
DW/D theta is 0 at theta = 0 and pi/2, by simple symmetric argument, if I do that this B 
becomes 0 and the second condition leads to this characteristic equation and based on that I get 
the value of QC to be 3EI/R cube, okay so this is a simple illustration of how we can compute 
critical load for a ring. 
Now this is an exact solution, so what we can do now is we can consider a ring and assume 
Euler-Bernoulli beam elements, I can approximate the circle by straight beam elements maybe 
use maybe 12 or 18 number of elements, and compute formula we have now the geometric 
stiffness matrix and elastic stiffness matrix, so you need to transform them correctly assemble 
them and if you carry out the analysis for critical condition you will get an approximation and 
the exercise is to analyze the approximate solution, this is how this exact solution so that is left 
as an exercise. 
So with this we will conclude this lecture, in the next lecture we will consider some questions 
about arch buckling and then move on with other topics in stability analysis.
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