
Indian Institute of Science
Bangalore
NP-TEL

National Programme on
Technology Enhanced Learning

Copyright
1.  All  rights  reserved.  No  part  of  this  work  may  be  reproduced,  stored  or
transmitted  in  any  form or by  any  means,  electronic  or  mechanical,  including
downloading, recording,  photocopying or by using any information storage and
retrieval system without prior permission in writing from the copyright owner.
Provided that the above condition of obtaining prior permission from the copyright
owner for reproduction, storage or transmission of this work in any form or by any
means,  shall  not  apply for placing this  information in the concerned institute’s
library, departments, hostels or any other place suitable for academic purposes in
any electronic form purely on non-commercial basis.
2. Any commercial use of this content in any form is forbidden.

Course Title
Finite element method for structural dynamic

And stability analyses
Lecture – 30

FEM for stability analysis. Euler-Bernoulli beam
And general formulations

By
Prof. CS Manohar

Professor
Department of Civil Engineering

Indian Institute of Science,
Bangalore-560 012

India



We have been discussing energy methods for structural stability analysis, so in the previous 



lecture we introduced the axioms, if we consider a system with N generalized coordinates, and 
if we focus attention on statically loaded structures, there are two axioms, first axioms says a 
stationary value of the total potential energy with respect to the generalized coordinates is 
necessary and sufficient condition for the equilibrium state of the system, this part is a condition
for establishing the equilibrium. 
The axiom 2 helps us to examine the stability of that equilibrium, so a complete relative 
minimum of the total potential energy with respect to the generalized coordinates is necessary 
and sufficient for the stability of an equilibrium state of the system, so based on this we 



analyzed few problems and basically we considered simple systems to bring out the central 
ideas of the analysis, so we consider the beam column problem and in this case when P equal 
to, for small values of P, Y = 0 is the equilibrium position, and as P is increased we find that a 
neighboring equilibrium position becomes possible, and that is called, we discussed as buckling
due to bifurcation of equilibrium, so the load deflection path has this feature there are infinite 
number of buckling loads, and the lowest one obviously is of the fundamental interest, so as the
load is increased at some point when P coincides with the first critical or the first buckling load 
the zero position becomes unstable, and 2 new branches emerge. 
In another type of problem what is known as limit load buckling example for which is shown 
here, there are 2 rigid links, load is supported through springs as shown here, and it is loaded by
a force P and as the force P is increased the deflection of the system and the load increased 
together, and at some point both of them reach a critical stage when a faraway equilibrium 
position becomes possible, and this is known as limit load buckling, we start with here at P = 0, 
that this will be the deflection and as load is increased it will go, the load deflection path rises 



and at this point it snaps and reaches this position, and this is a load deflection path, and for 
certain values of P the load deflection path is multi-valued, but although it is multi-valued there 
are certain portion of this load deflection path is not physically realizable, because those 
positions are unstable. 



We also started discussing about approximate methods for stability analysis wherein we 
consider the expression for the V, that is total strain energy as shown here and we postulated the
displacement field in terms of trial functions where E is a generalized coordinate, and we 
evaluated V as a function of A and then apply the 2 axioms to get the critical load. 



Here we started with the total potential energy whereas in Galerkin's method we could as well 
start with the governing differential equation and assume the solution in this form where phi 
N(x) are need to be admissible and we substitute this into the governing equation and we get a 
residue and we demand that this residue is orthogonal to the trial functions, and we get a set of 
capital N number of equations, and this leads to the equilibrium equation as shown here. And 
for non-trivial solutions we need to do an eigenvalue analysis to determine the critical load. 



Now the question now that we should consider is how to generalize this to more a difficult class
of problem, for example if beam is multi-span or we consider a plate with a hole with complex 
geometry and a hole and things like that, or a building frame which carries lateral loads and as 
well maybe there could be vertical loads as well, how do we perform the stability analysis of 
this structure? For example if we consider this type of problems, suppose this is the loading 
pattern that is acting on the structure we would like to know if keeping the entire loading 
pattern the same we increase the magnitude of these loads, so at some point we ask the question
can the structure lose stability, okay, so that is the type of questions we wish to answer, so we 
use to tackle this problem the finite element method in the Rayleigh-Ritz and Galerkin's method
we construct a trial functions which are globally valid, and as we have seen in the discussion, as
in the discussion of vibration problems constructing trial functions which are globally valid for 
this type of built up structures is not possible, and what we do is we divide the domain of the 
structure into subdomains and within a sub domain we interpolate the field variables in terms of
the nodal values of the field variables and that is that finite element method and that provides a 
powerful alternative to tackle problems of stability analysis as well. 



So as you will see shortly this leads to equilibrium equation of this form where J is the stability 
matrix and P(j) is the geometric stiffness matrix, and K - PJ is a total stiffness matrix, and we 
can either solve the response of the structure by allowing for effect of geometric stiffness or 
find out the critical conditions where the structure loses stability, we can do a static analysis, or 
we can do a dynamic analysis, so we will see some of this as we go along. 



So let’s start with, as we did when we discuss vibration problems Euler-Bernoulli beam 
problems and then we will generalize to more complicated elements, so the total potential 
energy for Euler-Bernoulli beam we have derived it is in this form, so we considered a Euler-
Bernoulli beam element carrying an axial load P, it has two nodes and it has 2 degrees of 
freedom, two displacement and rotation at each degree of freedom, and we assume that field 
variable displacement field in this form where UI are the nodal values and phi(x) are the trial 
functions, so as we have seen in the context of vibration problems we you know the cubic 



polynomials are appropriate to handle this problem and these are the polynomials that we have 
used in the dealing with vibration problems, so see it is very clear there are 2 nodes and there 
are 2 degrees of freedom, because the functional here, the highest derivative is 2, therefore the 
nodal degrees of freedom are V and DV/DX, there are 2 nodes so we need a polynomial with 4 
coefficient that would mean we need to is a cubic polynomial. 
So we substitute now that into the expression for the total potential energy, and we get now the 
strain energy or total potential energy in terms of the nodal coordinates, so these are once we 



substitute for this, these being polynomials they can easily be evaluated and for equilibrium we 
have dou U/dou UJ = 0 and with that we get this equation, and we define KIJ as EI phi double 
prime, phi J double prime X, DX, and JIJ as this. For equilibrium this must be equal to 0 for I= 
to 1, 2, 3, 4, and this I can arrange in a matrix form and this K is the elastic stiffness matrix, that
we have seen earlier and this is a new thing J is the stability matrix, and P is the axial load, JIJ if
you notice is independent of elastic constants and loads on the system, so that is why it called, 
that is why the name geometric stiffness. So we can evaluate those integrals and I get the 



elastic stiffness matrix this we have seen earlier, and this is a new matrix that we have derived. 
Now to examine the critical condition we construct the Hessian, and this is the Hessian is a 
matrix of these elements which is KJK – PJK, and this is a hessian matrix, for equilibrium I 
need this equation to be satisfied and for a critical state the determinant of the Hessian must be 



0, so we can make few observations K is the elastic stiffness matrix which has been derived 
earlier, KG = PJ is the geometric stiffness matrix, it is called as a consistent geometric stiffness 
matrix, since the shape functions which have been used in evaluating K have also been used in 
evaluating this matrix, the same shape functions have been used, J is called the stability matrix. 
Now KT which is K - PJ is called a total stiffness matrix, so it modifies the elastic stiffness 
matrix by contribution from the geometric stiffness term. Now KG which is P into J is 
independent of EI of the beam and depends upon only the length of the beam and hence the 
name geometric stiffness, now we can also see the structure of U, so if we write this and expand
we can see that U using KIJ notations KIJ and JIJ this can be written as 1/2 U transpose K - PJ 
into U. 



Now based on this we can consider a few examples so that we get an idea on how to use this, so
we’ll start with the propped cantilever it has one degree of freedom, namely U4(t) U1, U2, and 
U3 are 0, so this is one of the simplest problem that we can think of, so for equilibrium I have 
1, 2, 3, as 0 and U4 is to be determined, and this is again 0, 0, 0, U4 and I get the equilibrium 



equation to be given by this, that would mean U4 = 0 is the equilibrium state, is this stable? 
Now you differentiate this with respect to U4 and demand that that derivative is greater than 0, 
so for that to happen P critical, P should be less than some number and the critical value is 
30EI/L square, exact Euler buckling load for this case is, around 20.1997EI/ L square and the 
buckling mode shape according to this theory is given by phi 4(x) which is shown here, so this 
is a very simple application of the idea of elastic stiffness and geometric stiffness matrix. 



We can now consider an single span simply supported beam discretized as a single element, so 
there are 4 nodal degrees of freedom, 2 of which will be 0, U1 and U3 will be 0, the equilibrium



equation now in the, this is K into U, and in U I have 0 is here, and this is a geometric stiffness 
matrix, now extracting the equations for U2 and U4 I get the equilibrium equation as this. Now 
the critical condition is given by determinant of Hessian matrix to be 0 and that leads to this 
condition, so this finding this condition in fact is equivalent to performing an eigenvalue 
analysis of K and KG that means I have, we need to perform this eigenvalue analysis, so we can
do that and we get the equation to be this and from this I get lambda to be PI square/30, I mean 
by substituting for lambda this number and carrying, lambda will be the eigenvalue parameter I 



get the modal matrix to be this, and the 2 eigenvalues to be this, so the smallest of these 
eigenvalues is helpful in determining the lowest critical load, and using that we arrive at the 
solution that critical load is 12EI/L square, whereas the exact one is 9.869EI/L square and this is
the mode shape, okay, so we can see how the mode shape look like, exact one is a sign half 



sine wave, and the blue one is the approximate using these 2 cubic polynomial, so this is a 
model for, a simple model for critical condition establish simple model for establishing critical 
condition for a single spam.





How to improve upon the results? So in the first example suppose if we introduce an additional 
node, okay, so now what happens we have 2 elements and the procedure for assembling 
matrices and transforming into global coordinates etcetera is quite similar to what we have done
in dealing with vibration problem so that story need not be repeated now, so we have 2 elements
and the boundary conditions will be U1 and U2 are 0 here, and U5 is 0, so degrees of freedom 
are 3, 4, and 6, so for the first element I formulate the elastic stiffness and geometric stiffness 
matrix, for second element I form this, and now using the fact that 3, 4, 6 are the 



degrees of freedom we can assemble them either you can form the A matrices for the 2 elements
and assemble them through matrix operations, or if you are working with pen and paper you 
can assemble them by you know observations, so we get the 3 x 3 structure, reduced structure 
elastic stiffness matter and reduced structure geometric stiffness matrix, for equilibrium it is KU
= PJU and a critical condition is this, so this is the equilibrium equation and again by 
introducing lambda is PL square/30EI, now I get a 3 x 3 eigenvalue problem, 



eigenvalue problem associated with a 3 x 3 matrix and the minimum eigenvalue if you calculate
will turn out to be 0.1726 from which I get P critical as this, exact we have seen to be this, and 
now we have improved on the earlier solution, note that in this case I have taken element length
to be L whereas in the first example the span of the beam was taken as L, therefore we need to 
do a slight adjustment in comparing the results. 



Similarly for a simply supported beam if we now improve upon accuracy we have now degrees 
of freedom will be U2, U3, U4, and U6, so 2, 3, 4, 6 are the degrees of freedom so once we 



assemble the structure stiffness matrix, elastic stiffness matrix, and geometric stiffness matrix 
we get these 2 matrices and hence the Eigenvalue problem to be solved is now 4 x 4 because 
there are 4 degrees of freedom and lambda which is now this parameter P/3I, if I solve this 
problem I get these are the 4 eigenvalues and similarly by using the smallest of these 
eigenvalues the P critical using this method turns out to be 9.438EI/L square, L is 2L here and 
this compares much better with the exact solution because we have increased the degree of 
freedom.



Now how do we tackle problems such as this? For example there is an axial load P here and an 
axial load 3P here, these are externally applied, so what we do is first we analyze the structure 
for finding the membrane forces which are the axial thrust here, so by simple logic we can see 
that the reaction at this end will be 4P, and the axial thrust diagram will be this, so again I will 
divide this beam into 2 elements and while forming the geometric stiffness for element 1, I will 
use for 4P as axial force, whereas when I form the geometric stiffness for the second element, P



 will be the axial load, so that is the only difference so for a first element the geometric stiffness
is 4P/30L, for second one it is P/30L, all other details remain the same as far as elastic stiffness 
matrix is concerned, so we get the eigenvalue problem like this and lambda is again obtained as 
this, and P critical in this case turns out to be this. 



Now what we are doing here is if we see when I increase p the two loads are increased in same 
proportion, for example if this load was Q and this was P then what I will do is I will increase P 
by alpha P, and Q also by alpha Q that means as I increase the load all the loads increase by the 
same factor there could be transverse loads and other loads as well, so I will find out the value 
of alpha at which critical condition is reached and that value of alpha is known as load factor, so
in problems of elastic stability analysis we aim to find the load factor, by that what we mean is 
for a given structural configuration carrying certain specially distributed load keeping the 
loading pattern the same I will increase the entire loading pattern by a constant amount that is 
alpha, so the question we ask is how far alpha should be increased before the structure reaches a
critical state, so this example is illustrative of that procedure that we will follow. 



Now this is axial thrust diagram of the structure when it is on the verge of buckling, so this is 
the critical loading condition as far as axial loads are concerned. So some more examples 



suppose we have N casted beams I take 2 elements and introduce a node at the mid-span and 
here again we can perform the analysis and I get 40EI/2L square as against 39.4784 so these are
some simple examples that you can, you know run through and to convince yourself that these 
steps are correct. 

Now one more example suppose there is a cantilever beam which is mounted on a spring and a 
load P is applied, so we discretize there are 2 elements now, the first element is a beam and the 
second element is a spring, and the first element is discretized using single element with 2 
nodes, and U1 and U2 are 0 and I have basically degrees of freedom 3 and 4, 3 is also the 
degree of freedom shared by K, so I construct the elastic stiffness matrix and geometric 



stiffness matrix and when we assemble I use a notation alpha as KL cube/EI and I get this 
equation, so clearly the critical condition, critical loads will be function of K, so that parametric
study has been done when alpha equal to 0 it becomes a cantilever beam, and when alpha tends 
to infinity it becomes a propped cantilever, so for K = 0, and K equal to infinity we know the 
exact solutions, so here when alpha = 0 this is the exact solution, and when alpha tends to 
infinity this exact solution. So now as alpha is varied for alpha = 0, I get this factor as 2.486 that
has to be compared with 2.4674 and as this number is increased this model converges to 29.993
this factor whereas it should really converge to 20.1997, but this difference is basically due to 
the simplicity of this model, this can be improved by introducing more number of elements and 
discretizing the structure with finer detail, okay. 



Let us make some remarks now based on what we have seen if you recall when we found 
natural frequencies we found solve this eigenvalue problem, this was associated with the 
structure elastic stiffness matrix and the mass matrix whereas to determine buckling loads we 
are again doing an eigenvalue analysis, and one of the matrix is the same that is elastic stiffness 
matrix, there is a new matrix KG which is a geometric stiffness matrix, the eigenvalue here 
were the natural frequencies, whereas here they correspond to the load factors or the critical 
loading conditions there will be N such situation in the nth degree of freedom model and 
lambda N eigenvalues provide that. 
Now one important difference that we have to notice between these 2 problems is P critical is a 
function of the applied load the same structure can have different P critical for different applied 
loads, see for example we considered this problem because there is a load 3P the same propped



 cantilever will have a different natural frequency then when suppose this 3P was not there, only
P was there you will get another load factor. In this aspect the buckling load is different 



from natural frequency of a structure, whereas natural frequency of the structure unless you 
include geometric stiffness effects also into that is not dependent on applied loads, so load 
factor is a constant factor by which a given loading pattern needs to be increased so that the 
structure would be on the verge of bucking. If axial stresses are tensile the stiffness of the 
structure increases, this effect is called stress stiffening, so in a more general problem this will 
automatically get accounted for based on the sign of the axial thrust, so that automatically will 
be included in the analysis. 



So a small exercise would be to improve upon the result that we obtain for this cantilever beam 
supported on the spring by introducing one more element, and you can redo this exercise for 
different values of K and see whether we get improved solutions. Now after this point we can 



take a traditional route, and for example compute geometric stiffness matrix for a 3D beam, so 
3D beam has bending along 2 planes twisting as we have seen earlier, that we can derive a 
geometric stiffness for that, then we can move on to a plate and other elements, but instead of 
taking each of these problems one by one we can, since given that we already have experience 
in formulating this element, we can take a look at the general formulation as applied for a 3-
dimensional solid and then we can specialize it to specific structures of interest, so with that in 
mind we will first start with the preliminaries, as you have seen it is important to include 
nonlinear strain displacement relations in our formulations for stability analysis, so to be able to
do that in a systematic manner we will quickly review the notion of Green-Lagrange strain 
tensor. 
So we'll consider a Cartesian coordinate system X1, X2, X3 in which there is an object which is
supported and loaded by surface tractions and body forces in certain manner, and our interest is 
this is the structural configuration before deformation, and this is the structural configuration 
after deformation, we are focusing our attention on a line element PQ which is in the un-
deformed configuration and it will occupy a position P*, Q* in the deformed configuration, so 
this length is DS and this length is DS*, so we want to examine properties of these two line 
elements which will help us to define the strain, so we will consider P, coordinates is X1, X2, 
X3, Q which is X1 + DX1, X2 + DX2 and X3 + DX3, similarly P* and Q* have these 
coordinates. PQ length is DS, P* Q* is DS*, now the displacement field is clearly given by X1 
star is X1 + U1, X2* is X2 + U2, and X3* is X3 + U3, so these relations define the 
displacements U1, U2, and U3, so this is a standard definition of displacement field. 



Now components of DS are DX1, DX2, DX3, components of DS* is DX1*, DX2*, DX3*, 
similarly components of PP* this is a displacement field, P moves to P* and that is U1, U2, U3, 
so if you now find a length square of the length DX square this is given by DX1 square + DX2 
square + DX3 square, similarly the length DS* square is given by this. Now you find the 
difference I get this equation, now each point in the deformed configuration is a function of the 
initial coordinates so I have XI* as XI star(x1, x2, x3), so we are selecting X1, X2, X3 as a 
coordinate system, so the coordinate system is with respect to the un-deformed geometry and 
that is what we are doing, so we can differentiate this with respect to, we can find the DX1*, 
DX2*, DX3* using this relation and I get DX* as J into DX. 



And if I now write equation for X1* which is X1 + U1 X2* is X2 + U2 so on and so forth using
that if I evaluate elements of J, I get them to be in terms of displacement, gradients of 
displacement field to be this. So now we will look at the change in this quantity DA* square - 
DS square, so I can write in this form DS* square – DS/2 I can put it in this form, so what I 
have to do is, I have for DX* in this expression should be written in terms of U1, U2, U3 using 
this relation, so it involves quite a bit of an algebra at the end of which I will be able to write 
this quantity DA* square - DS square/2 in terms of quantity is known as epsilon IJ and DXI 
DXJ, and if I divide by DS I get epsilon IJ in the summoned we have DXI /DS, DXJ/DS and 
this is nothing but the direction cosines of the line segments, so I call them as NI, NJ, so this 
epsilon IJ, and NJ, what are epsilon IJ? That has to be synthesized by actually performing these 



calculations and it turns out that these epsilons are given by these relations, so you immediately 
recognize that the quantity is shown in the black are the equations represent the linear strain 
displacement relations, whereas the quantities that are shown in the red are the contributions 
due to nonlinear effects and this is a complete set of nonlinear strain displacement relation, so 



we call this quantity epsilon IJ as strain components, and the quantity DS* square - DS square/2
DS square is lambda PQ is called the strain of the line segment PQ, and that is given by epsilon 
IJ and NI NJ, so this quantity epsilon IJ that is a matrix, epsilon IJ is called the Green-Lagrange 
strain tensor at P, it is a tensor therefore the rules of coordinate transformation epsilon prime in 
the transform coordinate system is C epsilon C transpose. 
Now if DS = D* the magnification factor lambda PQ is 0 and all epsilon IJ’s will be 0, so 
notation we can write this in this form where repeated index imply summations and indices run 
from 1 to 3. 



Now if you now take, you let us focus on this expression lambda PQ, NJ, now if I take N1 to be
1, and N2 to be 0, and N3 to be 0, on the right hand side I will be left with only one term which 
is epsilon 1 1, so what it means is if you are taking a line segment which is parallel to X axis 
here, and epsilon 1 1 represents the magnification of that line element due to deformation, that 
is the definition of strain that we are interested in. Similarly 0 1 0 if you take it is epsilon 2 2, 



that means say a line segment along Y axis will get amplified by epsilon 2 2, similarly the line 
segment along Z axis gets amplified by this.



Now we would also like to evaluate the final direction of the line segment, so direction cosine 
of PQ is N1, N2, N3 which is given by this, and direction cosine of P*, Q* is N1*, N2*, N3* so
now we wish to evaluate N1*, N2*, N3* in terms of strains and displacements so again we use 
this relation XI* star is this, and if I differentiate with respect to S* I get this and this is nothing 
but NI*. Now lambda PQ is given by this and from this I can manipulate and obtained DS/DS* 
to be given by this, so DXI*/DS therefore is obtained in this form, by writing for displacements 



we can write the 3 equation DX1*/DS, DX2*/DS etcetera in this form, and consequently by 
rearranging these terms I get the direction cosines of the line segments in the deformed 
configuration to be given by the direction cosines in the un-deformed configuration through this
matrix. This is important in the definition of shearing strain, so to define shearing strain what 



we do, we consider a point P and erect 2 line segments at an angle theta and after deformation P
will move to P*, A will move to A*, and B will move to B*, and the subtended angle will be 
theta*, so some notations PA is DS1, PB is DS2, P* A* is DS1*, P* B* is DS2*, so direction 
cosines of PA is N1, N2, N3, PB is M1, M2, M3 and the star quantities are for P*, B* and P* 
A*, theta is angle BAP, and theta * is angle B* A* P*.



Now cos theta using this I can write it as N1 M1 + N2 M2 + N3 M3, and cos theta * is given by
this, so now using the relation between the direction cosines of the line segment in the 
deformed configuration with those in the un-deformed configuration which we derived a while 
before for line, the 2 line segments I write this and if we now evaluate a cos theta* in terms of 
use and N1, N2, N3, it can be shown that this factor, there will be these factors so that if we 
absorb and take it to the cos theta * on the left hand side I get this quantity to be cos theta + 2 
epsilon IJ, NI, MJ. 



Now I define this quantity gamma AB as the shearing strain, so why that is sharing strain? For 
example if theta = 90 degrees that means the two line segments are at 90 degrees, one of the 
line segment is aligned with X-axis, other one is Y axis, if you compute gamma AB it turns out 
to be 2 epsilon 1 2, which is in the engineering, this is gamma 1 2, or gamma XY if you use 
XYZ notation, so similarly if you take a line segment along X axis and a line segment along Z 
axis, gamma AB turns out to be 2 epsilon 1 3. Now if theta is small we can approximate theta* 
as pi/2 and cos theta* as pi/2 – theta* and in which case gamma AB turns out to be pi/2 – theta*
which is the definition of the shearing strain for small deformation. So the traditional definition 
of strain is recovered, so based on this we accept that gamma AB given by this quantity is a 
measure of shear strain, so this is some basics of Green-Lagrange strain tensor. 



Now a few observations, all displacements are measured with respect to the stationary reference
coordinate system which is the original coordinate system for the structure in its un-deformed 
configuration, this is true no matter how large the rotation of the structure are. Now the Green-
Lagrange strain components are equal to 0 for all rigid body motions, the rigid body motions 
can be small or large. The stationary coordinates are also called material coordinates. This 
approach to solving nonlinear problems is called total Lagrangian approach. So there are 



alternative notations in tensorial notation with repeated indices, all these relations can be 
compactly written in this form where repeated indices implies summation and comma implies 
differentiation, and in terms of XYZ coordinates we can write this expression instead of X1, 
X2, X3, I will write XYZ and I get this. 



Now with this brief introduction to nonlinear strain displacement relations, we will now return 
to the problem of a general formulation of stability in non-linear solid. So let us consider 3D 
solid, let an initial stress sigma naught exist in the body, okay, now assume that the body, as the 
body strains the stress sigma naught remains constant, the work done as strain epsilon occurs is 
given by epsilon transpose into sigma naught, the sigma naught is a multi-axial state of stress, 
in the beam problem if you recall what this assumption means? So when we analyze beam we 
found out the state of axial stress under this load P, and P/A was the sigma naught, sigma XX of
P/A all other stress components were 0, so as a body strained this load did work on the 
deformation, that is what we were using in computing total potential. 
Now in a 3-dimensional solid the generalization of that is there exist a multi-axial state of stress
in the body and this remains constant as a body strain, thus here the axial load in the beam 
problem was not changing as a structure deformed, that was held constant, so the same 
assumption if you make it means sigma naught is constant as the body strains, so the work done
is given by this. Now stress components there are 6 stress components, initial stress 
components, 3 normal stresses and 3 shear stresses and the strain components are 6. So now we 
compute the work done, this is epsilon transpose into sigma naught by including the nonlinear 
strain displacement relations, okay, suppose if you do that I will have to put all this now into 
this equation sigma XX naught will get multiplied by epsilon XX which is entirely all this term 
not just the first term, all these terms, so it is the interaction between sigma XX naught and 
these terms that create the issues that are related to buckling or loss of stability, similarly I get 
other terms. 



Now I will split this work done into a component U1 and U sigma, the U1 component is on the 
linear part of the strain displacement relations, and the other part we call it as U sigma is the 
contribution that is crucial for the analysis of stability of the structure, now this U1 if you 



consider what it does there is an initial state of stress in a finite element analysis how will you 
take that into account, it will become simply set of equivalent nodal forces and this is what 
leads to that, so how to see that let us consider you want to be this, here I am retaining only the 
linear part of the strain displacement relations, next I will approximate UVW using finite 
element approximation so there are say S degrees of freedom N1, these Ns are the interpolation 
functions I represent like this, and by assembling UVW in a matrix N and in terms of nodal 
degrees of freedom I write in this form and the epsilon linear is given by this acting on Nu there
is a BUE, so if you now consider U1 this will be UV transpose B transpose sigma naught DV, 
so this is nothing but UE transpose, B transpose, sigma naught DV, this is nothing but now for 
sigma naught I will write D into epsilon naught, where D is a matrix of elastic constants, this is 
essentially the equivalent nodal forces due to presence of an initial stress, so this becomes a 
load vector that has to be handled. 



Now how about the remaining terms that is U sigma terms, so all the terms that are present here



are gradients dou U/dou X, dou V by you know dou W/dou X etcetera, etcetera, so I declare 



this gradients of UVW with respect to XYZ, the 9 coordinates at delta, so this delta is related to 
UVW through this matrix, okay, so this I call it as capital XI UVW, where capital XI is this a 
matrix, this is similar to the matrix that we formulate when we write the elastic you know 



stiffness or in this case the effect of initial stress on linear part of strain displacement relation, 
so now I have U sigma to be this, and I am now making the substitution delta is capital XI into 
U, and again UVW I will interpolate in terms of set of interpolation functions, and nodal 
coordinates and delta consequently becomes capital XI into N into UV, this matrix capital XI 
into N I call it as capital G, so this is G into UE, this is exactly similar to B into UE, whereas B 
was this matrix of these operators, delta I have here capital XI to be this, so consequently or this
complicated expression can be put neatly in this form, U sigma is 1/2 delta transpose into this 
matrix of initial stresses delta DV, S is a stress matrix due to initial stresses, so U sigma is this. 
Now for delta I will now make this substitution G into UV and I will get U sigma as you UE 
transpose K sigma UE, and K sigma is this matrix, this G transpose into this stress matrix into 
GDV, this is the geometric stiffness matrix in this general form, so when you have to apply this 
theory to specific structural elements you have to simply identify this G matrix, so for example 
if you are dealing with Euler-Bernoulli beam or Timoshenko beam etcetera you will know 
assume displacement form from which you will be able to derive the strain displacement 
relations and you will have to evaluate K sigma with that, so let us consider a simple example 



of a axially deforming bar, suppose I have axially deforming bar in XZ plane so U and W are 
the displacement fields, so this is the un-deformed configuration and this is a deformed 
configuration, so this point now we will have U2, W2, as the degrees of freedom, it is not 
necessary that this should deform in its own axis, along its own axis. 
Initial stresses we will assume that in this case all components will be 0 except sigma XX 
naught, now U and W I approximate using, there are 2 nodes and linear interpolation function 
will use N1 is L – X/L and N2 is X/L, so this is the representation for the field variables, there 
are 2 field variables U and W. Now G matrix in this case turns out to be this, and you can do 



this simple calculation and find out this integral of G transpose S into G ADX and it turns out 
that A is, and the GK sigma matrix is given by this, so this is the geometric stiffness associated 
with axial deformation where P is A into sigma XX naught. 
Now if AE is taken to be much greater than P we can show that this matrix reduces to this, so if 
you see textbooks this K sigma for axial deforming bar sometimes will be given in this form, 
sometimes in this form, both are valid if you accept this assumption, otherwise this is a more 
general form which we can use. 



Now we will consider a general 2D beam element and this is a beam element carrying an axial 
load, and this is a 2 noded beam element with 3 degrees of freedom at each node U1 and U4 are
the actual degrees of freedom, and U2, U3, U5, U6 are the flexural degrees of freedom, 
following the procedure that we have developed it can be shown that the geometric stiffness 



matrix for this type of element can be shown to be given by this matrix, I leave this as an 
exercise, the kind of context in which this element becomes useful is depicted here, for example
if you consider a member like this it is subjected to a combined action of axial deformation as 
well as bending, and when we formulate the geometric stiffness matrix for this type of situation 
we use this matrix, the other steps involving coordinate transformation assembly etcetera 
remains similar to what we have already done in previous occasions. 



The rules for coordinate transformation and assembly all that is similar so this we have seen 
already I will flash these slides you can go back to the earlier lectures for details, so this is how



 we transform the nodal degrees of freedom in global coordinates, relate the global degrees of 
freedom with local degrees of freedom through this relation, and this is the transformation 



matrix and I write U bar as T naught transpose into U where T naught is this, etcetera, so all this
we have seen, now I can substitute that in the expression for total potential and the elastic 



stiffness matrix in the global coordinate system we’ve already derived, similarly the stability 
matrix can also be derived using this formulation. So K bar and J bar are the element stiffness 
and stability matrices in the transform coordinate system, so this we need not again get into all 
the details. 



Now the next question is how do we solve this type of problems? So now we are equipped 
ourselves with analysis of a 2D beam element, so we can discretize this frame into different 
elements as shown here, and for each element I can use the 2D beam element that we have 2 
noded beam element with 3 degrees of freedom per node for which I have the elastic stiffness 
matrix, and the geometric stiffness matrix, so first thing what we have to do is we have to 
perform a elastic stress analysis and find out the axial thrust in the structure, so the first step 
would be don’t include geometric stiffness and analyze this problem, you will find the initial 
stress, that is what we have to first determine. Once the initial stress is determined for every 
element I know the state of initial stress, then the question that we are asking is this loading 
pattern that exists will be now multiplied by a factor alpha, and as this alpha is increased the 
initial state of stress is not, I mean assumed to be constant, so the question that we are asking is 
as the structure it strains the initial stress won't change, that is the assumption, we want to find 
out the value of alpha at which the structure as a whole loses its stability, so this alpha is known
as load factor. 
So the procedure for this would be to first of course we have to assemble the K matrix and 
perform the elastic stress analysis, and find out the initial state of stress then you formulate KG 
matrix then we have the eigenvalue problem to be solved, and we evaluate this, if those values, 
actually this is alpha, so I will write this in this form this number alpha that needs to be 



increased so that this quantity becomes 0, the critical value of alpha at which structure loses its 
stability, so what we will do is we will close the lecture, this lecture at this stage, in the next 
class we will consider some details about this. 
Now following this we need to consider how this formulation can be extended to 3 dimensional



situations, now one way to assume that is when we developed a general 3D beam element 
assuming that cross section is symmetric, what we did was we analyzed each of the mode of 
deformation separately, axial deformation separately, twisting along the longitudinal axis 
differently, bending in one plane and bending in other plane these four entities were analyzed 
separately and they were all subsequently assembled, so there is no qualitatively new feature 
associated with the built-up stiffness matrix, it was only that the amount of computational effort
increased, there is no new concept that entered our formulation, but whereas when we come to 



doing the same problem for geometric stiffness analysis that is not so, it is not just that the axial
loads interact with bending the other interaction can also take place, the initial state of stress is 
multi-axial, so in the initial state of stress there are torques, there are axial stresses, there are 
two bending moments, so there are 4 forms of initial you know stress resultants in the system, 
they interact, okay, so we need to include that I mean that is fairly obvious that is not going to 
be simple by looking at these expressions, there is complex interaction between sigma XX 
naught and these slopes it is not just that the axial load interacts with bending, so depending on 
to what extent we are able to capture these interactions, there are various forms of non-linear 
analysis possible, and to be able to perform a reasonable you know stability analysis we should 
capture at least a few important interactions and we will see some of these details in the next 
lecture, and that discussion on beams will be followed up by discussion on plates, and let us see
how it goes, we will conclude this lecture at this stage.
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