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We have been discussing approximate methods for vibration analysis as a build-up to 
developing the finite element method, so in today's lecture we will be talking about what is 
known as Rayleigh's Ritz method and method of weighted residuals. Before we get into the 





details we will quickly recall what we have been doing exact solutions to partial differential 
equations with inhomogeneous coefficients is in general not possible even for linear systems, so
approximate solutions are invariably needed, right now we are discussing approximate solution 
strategies for finding natural frequencies and mode shapes, and we will now move to forced 
response characteristics as well and this discussion is a prelude to the development of finite 
element method. 



So we introduced during the previous lectures a quantity known as the Rayleigh's quotient and 
for a discrete multi-degree freedom system we showed that Rayleigh’s quotient U, U is a N 
cross 1 vector, where N is a degree of freedom, is given by U transpose KU divided by U 
transpose MU, this quantity is known as Rayleigh's quotient. This has units of radian per second
a whole square and if this vector U coincides with the nth eigenvector of the system then 
Rayleigh's quotient becomes exactly equal to the nth natural frequency of the system, or the nth 
eigenvalue which is square of the nth natural frequency, we can also show that the Rayleigh's 
quotient is bounded between the first eigenvalue and the last eigenvalue, moreover we have 
also shown that if the vector U is in the neighborhood of the true eigenvector Phi N, that is Phi 
N + epsilon Y then we can show that the Rayleigh's quotient will be in the neighborhood of the 
natural frequency with an error which is order epsilon square. 

So we can also show that as you vary U, R(u) reaches stationary values in the neighborhood of 
true eigenvectors of the system and it reaches its minimum value when U coincide with the first
eigenvector this is known as the Rayleigh’s principle, the main application of Rayleigh’s 
principle is to estimate with simple approximations to the mode shape, the first mode shape, the
first natural frequency that is the main application of Rayleigh's quotient. 

Now this is for discrete multi-degree freedom systems for a continuous system like actually 
vibrating bar or Euler Bernoulli beam we have shown that Rayleigh’s quotient is now a function
of the trial function Phi(x) defined over 0 to L and for a actually vibrating rod it is given by this 
and for Euler Bernoulli beam it is given by this, for distributed parameter systems the 
Rayleigh's quotient provides a bound as shown here, there is no upper bound because for 



distributed parameter system the highest natural frequency tends to infinity, therefore we can 
place a bound on Rayleigh’s quotient as well. 

So again if as we vary Phi(x) whenever Phi(x) coincides with the true eigen function of the 
system then Rayleigh’s quotient corresponds to the true eigenvalue of the system which is 
square of the natural frequency, and again this function reaches a stationary value whenever 
Phi(x) is in the neighbor, Phi(x) reaches is in the neighborhood of the true eigen function, okay 
and it takes a minimum value when Phi(x) is equal to the first eigen function. 

Now some illustrative examples, suppose we consider a three degree freedom system with K as 
shown here, M as shown here, and let's assume that the kind of problem that we wish to solve is
as follows for this system shown here the first eigenvector is obtained as shown here 1.13, 1.63,
and 1.78, and the first natural frequency as 4.15 radian per second. Now due to a design 
modification of the modification the third mass is changed by about 15% that means this mass I
increased by 15%. Now the question is how to estimate the change in the natural frequency, that
analysis but that is not what is intended here we wish to find an approximation to the change in 
the natural frequency, so for this system for the modified system the mass matrix is shown here 
so this M3 is increased by 15% that means this will go to this and K remains the same as it was 
earlier. And what we'll do now is since the first eigenvector is already given to 



us we'll use this as the trial vector so, and compute the Rayleigh’s quotient so for this value, for 
this eigenvector and with the modified mass matrix the Rayleigh’s quotient turns out to be 
16.10 from which I get the modified natural frequency as this. 

Now so therefore the estimate of the change in natural frequency is about 3.3%, so a 15% 
change in mass results in about 3.3% change in natural frequency as per this formulation, for 
sake of reference we can note that if you were to do an exact analysis of the modified system 
you will get the first natural frequency as 4.0121 radian per second. So this is a one simple 



situation where Rayleigh’s quotient can serve with some useful purpose. Now an example for a 
distributed parameter system so here I am considering a simply supported beam which carries a 
point mass M, and also it is mounted on a spring K, if this K is 0, and M is 0 we know the exact
solution to the natural frequencies of the system, this is amenable for exact solution that is well 
known. Now the objective is to find characterize the first natural frequency of the system using 
Rayleigh’s quotient, so we write the expression for the potential energy and the kinetic energy, 
this is the strain energy stored in the beam, and this energy stored in this spring, this is at X = B 
therefore this is 1/2 K V square B,T and kinetic energy will be, the kinetic energy stored in the 
beam which is this plus the kinetic energy stored in this point mass which is 1/2 MV dot square 
at A,T X = A now if the system undergoes normal mode oscillations it is understood that the 
form of the oscillation is as shown here that means all points on this structure vibrate 
harmonically at the same frequency, so the form of the solution will be Phi(x) into cos Omega T
– alpha. So now I substitute that and compute the kinetic energy so we can get the kinetic 
energy as a term inside the brace and cos square Omega T – alpha, and similarly for, this is the 
potential energy, this is kinetic energy which is given here. 

Now the maximum value of V(t) is reached when this cos square Omega T - alpha takes its 
maximum value and that is 1 because cosine function is, cosine function lies between plus 
minus 1. so cos square Omega T - alpha would lie between 0 and 1, so similarly T(t) the 
maximum value will be taken when this sin square Omega T - alpha is 1, so the maximum 



potential energy is given by this, maximum kinetic energy is given by this, and since the system
is conservative these two quantities must be equal to each other and we, this leads to the 
definition of the Rayleigh's quotient as shown here.

Now to proceed further we have to make a choice on Phi(x), this is the definition of Rayleigh’s 
quotient for the problem, now we have to make the Rayleigh’s quotient, what we can do is as I 



pointed out already if this mass is not there and if the spring is not there, we know that sin N 



Phi(x) by L, for N= 1, 2, 3, 4, etcetera are the set of exact eigen functions. Now for this case we
can as well take the trial function to be sin Phi X by L, or I can take a polynomial like X into L 
– X, or I can apply UDL on this beam and find out the deflected profile and use that as the trial 



function, so there are many options that we can follow. Now the choice of this Phi(x) 
determines how good this Rayleigh’s quotient is as an approximation to the first natural 
frequency, no matter which choice you make this inequality will be honored that means 
Raleigh's quotient will be always greater than or equal to the square of the first natural 
frequency. 



So now suppose if you take Phi(x) to be sin Phi X by L, now you get the natural frequency to 
be given by this you can carry out this integration, they are very simple you will get this. Now 
clearly when K = 0 and M = 0 the natural you know the frequency should revert back to the 
exact solution because the mode shape is exact in that situation, so that indeed happens we get 
for K = 0 and M = 0, the square of the natural frequency as this, which leads to the estimate of 
first natural frequency to be this, this is in fact Phi square 1 by L square by M, which is the 
exact solution. 



Now on the other hand if you now take the trial function to be X into L – X, so it satisfies the 
geometric boundary condition at X = 0, and at X = L, but if you compute the second derivative 
Phi double prime of X, you will see that this trial function doesn't satisfy the natural boundary 
condition, that is the bending moment that the supports is not 0 according to this trial function, 
but this doesn't matter in this application of the method because to compute Rayleigh's quotient 
and the highest derivative of Phi that I need is Phi double prime, so there is no problem here as 
far as application is concerned so if I do that this integration is straightforward and I get the 
Rayleigh’s quotient in this case to be this, and if in this case if K = 0 and M = 0, if you compute
you will get this as 10.95 into this quantity which, you know it is higher than 9.87 into the same
quantity that we got when we use the exact solution. 



Now for a K not equal to 0 and M not equal to zero, to gain an understanding how this method 
works, we can assign some numerical values, so I have taken span to be three meters, X 
modulus to be 210 gigapascals or density A and B and beam cross section being rectangular 
with this width and depth, and mass or point mass is half of the beam mass, and stiffness of the 
spring is this, and if I now use 2 trial function Phi(x) = sin Phi X by L, and Phi(x) is X into L – 
X, for the case when M = 0 and K = 0, we get the exact solution is possible that also I have 
tabulated, and this trial function now as I’ve already said coincides with the exact solution 
therefore we should expect the exact solution which is as it should be. For X into L –X, I get 
364.63 as an estimate for 328.51, so this is still a bound, nothing wrong but this is like as you 
can see this may not be an acceptable approximation. 

Now for non-zero values of M and K this solution turns out to be 270.31 and this gives an 
answer 297.42. Now we don't know the exact solution, so now the question now arises if you 
are using Rayleigh’s quotient how do you improve the result? Suppose if you had started with 
this you have got 297.42, and by some logic suppose you move to this shape function you get a 
much better answer, right but this is fortuitous, you use happen to know the exact mode shape 
therefore you are able to get this a much lesser value for Rayleigh’s quotient than a simple 
function like this. But how do we systematically lower the Rayleigh’s quotient, right so that 
takes us into the next question that is how to lower the value of Rayleigh's quotient, this leads to
the method known as Rayleigh Ritz method. 



Now the main objective of Rayleigh Ritz method is to lower the value of Rayleigh's quotient, so
let's start with the Rayleigh quotient for the beam, I am using the beam as an example an 
inhomogeneous beam with flexural rigidity varying with in space, and mass per unit length 
varying in space, what we do is we expand the trial function in a set of linearly independent 
functions sin(x), okay this sin(x) are taken to be known functions, whereas these ANs are 
unknowns, so this sin are a set of known linearly independent function which satisfy all the 
boundary conditions. Let us start with this and let us revise this, revisit this question as we go 
along but for moment we'll assume that it satisfy all the boundary condition. 

Now ANs are a set of unknown constant which need to be determined, now the strategy is now 
as follows now by introducing a series representation like this in my definition of Rayleigh’s 
quotient I have introduced a set of undetermined parameters so I have a handle now to lower 
the Rayleigh’s quotient, so the strategy that we will take is we’ll minimize Rayleigh's quotient 



with respect to this unknown coefficients, so select A N such that this Rayleigh's quotient is 
minimized, so that leads to, suppose after I represent Phi(x) in terms of these N parameters, 
now this R now is a function of N parameters, is no longer a functional it's a set of N 
parameters, let us call it as capital Omega square and this is written like this. 

Now the condition for optimality is Dou R by Dou AI must be equal to 0, for I = 1, 2, 3 and N, 
so this simple calculation can be done as follows, we can call this denominator as A, and 
numerator as B, so I am asked to find out Dou R by Dou AI, A is a function of A1, A2, A3, B is 
a function of A1, A2, A3 therefore I use the rule of differentiation, so I get 1 by B square where 
B is the denominator, into B into Dou A by Dou AI - A into Dou B by Dou AI, that must be 
equal to 0. Now since I am equating this to 0, this B square is inconsequential so I can forget 
that so I get the condition for optimality to be this. 

Now if I divide in this case the both sides by B, I get A by B, A by B is nothing but Omega 
square, so this will be therefore Dou A by Dou AI into Omega square Dou B by Dou AI = 0, so 
that is what we are doing here, now if I want Dou A by Dou AI, I have to differentiate this with 
respect to AI, AI is one of the terms here so you differentiate this become 2 into this summation 
into sin I double prime of X, so that is what is written here. And this 2 is because of this 2, 
similarly I get the differentiation with respect to the denominator this is equal to 0, now I divide
by B and I get omega square, and this I have to do for I = 1, 2, 3 and N, so it leads to capital N 
number of equations.



 So we denote now, K IN as EI sin N double prime, sin I double prime DX, and M IN as a term 
here, as M(x) sin N, sin IX DX. Now the consequently this equation can be written as N = 1, K 
IN AN - Omega square, N = 1, M IN AN = 0, for I running from 1 to N, so this is a set of 
capital N number of equations in the unknowns A1, A2, A3, A capital N, so this can be put in 
the matrix form, I get KA = Omega square MA, so this K is a N cross N, capital N cross N 
square matrix, M is the square matrix of the same size and if you see here the expression for K 
IN and M IN, K IN is same as KNI and M IN is same as M NI that would mean K and M are 
symmetric, N by N matrices, so this A is N cross 1 column. 



So this KA = Omega squared MA represents an algebraic eigenvalue problem, K we call it as 
generalized stiffness matrix, M as generalized mass matrix, K is symmetric, M is symmetric. 
Now actually to get a representation like this we should since Phi is a function of X, we should 
really be writing this as N = 1 to infinity. Now since we are terminating this expansion at 
lowercase N equal to capital N, this would mean AK = 0, for all K greater than N, so to achieve 
this we need to supply external forces to the system which increases the stiffness of the system, 
consequently the natural frequencies get overestimated. 

Now we can achieve some computational simplicities if we select sin(x) to be orthogonal with 
respect to M(x) as shown here this is chronicle delta function, then what happens is this 
generalized mass matrix will be an identity matrix, so in which case as an eigenvalue problem 
will be the standard eigenvalue problem K = Omega squared A. Now once you find the 
eigenvalues you will get associated eigenvectors, and using those eigenvectors we can also 
construct the approximation to the eigen functions which is Phi K(x) A KNs summation or A 
KN sin(x), so this method, the basic aspiration was to lower the Rayleigh’s quotient, but as a 
by-product we actually what we have done is we ended up with discretizing the system as a N 
degree of freedom system, and from that we are able to get approximations to not only the first 
natural frequency but up to the capital N number of natural frequency and associated mode 
shapes, so this is a byproduct of the method, so this is a way of, this can also be viewed as way 
of discretizing a continuous system as a multi degree freedom system, discrete multi-degree 
freedom system. 



Now we'll examine this solution bit more carefully, suppose if I retain only one term, so I get a 
single degree freedom approximation so from that model I can get only an estimate to the first 
natural frequency. On the other hand if I now retain two terms I will get a two degree freedom 
approximation therefore I will get approximation to the first natural frequency and a new 
information that I will get is an approximation to the second natural frequency, similarly a 3d, 
three term expansion will lead to estimate of first and second natural frequency and also the 
third natural frequency, so on and so forth so a capital N degree of freedom system will give 
approximation to the first N natural frequency. Now we can show that if omega N are the true 
but unknown natural frequencies, these omegas that is this omega that I'm showing here I have 
this bounding property, that means these eigenvalue converge from the above, so I will show it 
a numerical example what it means is as the degree of freedom increases the natural frequency 
approach the true natural frequency from above, how do I show that, maybe we can work 
through this example once again, suppose the same problem a beam with a point mass and a



 spring and the numerical data as well as we had used in a previous example, so what I will do 
is now I will take the trial function to be a linear combination of sin N Phi X by L, okay now 
just again let us quickly recall when K = 0 and M = 0, sin N Phi X by L is the exact nth mode 
shape for the system, nth eigen function of the system, so with K and M not 0 this is no longer 
the exact solution but we can use that as a trial function, so that is what we are doing. 



Now we will get now the eigenvalue problem as shown here where K IJ we can work through 
the steps and show that K IJ is given by this, M IJ is given by this, and delta IJ again is a 
chronicle delta that we can get. Now the fact that for the first two terms here we are getting 
chronicle delta is not surprising because sin(x) is the exact mode shape for the beam problem, 
so sin(x) is orthogonal to AI(x) that is sin N double Prime into sin K double prime, EI(x) 
integral 0 to L, DX is chronicle delta function so that is known, so that is why we are getting a 
chronicle deltas here, but of course K IJ and M IJ are not diagonal because of these terms 
involving the discrete spring and the point mass. 

Now if we now take only one term I get 270.309 as approximation, if I now take two terms, I 
get now for the first natural frequency an estimate of 266.024 and an estimate for second 
natural frequency as well, so three terms I get a slightly different answer, for first natural 
frequency and a new information on third natural frequency so on and so forth if you continue I
will listed here for first 5 modes, so for a 5 degree of freedom system these 5 numbers are 
respectively the estimates of the first 5 natural frequency. Now if you look at this column, you 
can see that it is converging from the top, similarly this is converging from the top so this 
happens for all the eigenvalue, so this is one of the properties of Rayleigh Ritz method provided
you use linearly independent trial functions, these are very useful property. 



Now we have been talking now till now about finding approximations to the natural frequencies
and mode shapes, but we could as well ask the question now, how to get an approximation to 
the force response itself, so how do we approach that? So there is a class of methods known as 
method of weighted residuals, so for sake purpose of illustration I will consider again a beam 
problem, beam with inhomogeneous flexural rigidity mass per unit length and damping 
properties driven by a distributed loading F(x,t), now let us assume that initial conditions are 
initial displacement is this, initial velocity is this, and appropriate boundary conditions 
involving geometric and natural boundary conditions have been specified, it could be simply 
supported cantilever fixed, fixed so on and so forth. 

Now in this class of methods the starting point is we assume the solution to be represented as a 
series, N = 1 to capital N, AN(t) Phi N(x), this AN(t) are the unknown functions of time to be 
determined we do not know that, these are called generalized coordinates, this Phi N(x) are the 
known trial functions. Now what conditions these should satisfy, we will see as we go along, so 
what I do now? I substitute this assumed form of the solution into the governing field equation 
and if I substitute here I will get, this is the field equation and this is assumed solution, now I 



have substituted here, what happens is this equation won't be exactly satisfied we don't expect 
that this equation will be exactly satisfied and we will be left with an error, if indeed this is an 
exact solution this error will be 0 for all X and T, but that is not going to, I mean that's not the 
situation that we are discussing, so there will be a error or this is also known as the residue. 

For the exact solution this error is 0 for all times and for all X and 0 to L, for an approximate 
solution as I said this is not so, now what is the strategy now? We have to still select AN(t) 
which are not known, the strategy that we follow is we select these unknown functions such 
that a specified measure of the total error is minimized in some sense, we can't expect D(x,t) to 
be 0 for all X, suppose you fix a time T and if we can find AN so that E(x,t) = 0 for all X then 
there's the exact solution, but that is not what we are doing, we want to minimize a measure of 
this error, a measure of total error, but this measure itself has no unique interpretation, there is 
no unique sense of minimization because there is no unique sense of criterion of total, you 
know error and how to minimize it, depending upon the sense of minimization we have 
different methods, method known as method of least squares, 



what we do is, this is the residue which is given as shown here, and we define what is known as
total meansquare error, which is epsilon of T, which is integral 0 to L, E square of x,t DX we 
are squaring because we don't want positive and negative errors to cancel, so we could have 
taken the integral of error or 0 to L, but if for certain parts of the beam error is positive and for 
certain other parts of the beam it is negative we get a false impression the total error is 0, so we 
square that and find the total error. 

Now we select N(t) so that this epsilon of T is minimized with respect to A N for N = 1 to N, so 
leads to a set of capital N number of equations for the generalized coordinates AN(t), so if you 
do that so you will get 2E Dou E by Dou XT DX = 0 that 2 is irrelevant because on the right 
hand side is 0, so this is for 1 to M, so this can be written as in general WN x,t  E (x,t) DX = 0, 
where WN x,t is this function, okay, for N equal to this. Now if you write all these equations 
you can show that the resulting equation will be of the form MA double dot + CA dot + KA = 
P(t). This P(t) will be of course integral of F(x,t) multiplied by this quantity and integrated 0 to 
L and that need not have unit of force, this function need not have units of force so the 
interpretation of these matrices also needs to be carefully done, and they need not have the 
traditional units and they may or may not be symmetric, okay, so that also we have to bear in 
mind. 



Now let us see if I can find the expression for that the weight, so what I am supposed to find is 
Dou E by Dou AN, right so Dou by Dou N of the residue you can see that it is given by EI Phi 
N double prime of X, entire thing differentiated twice, this is the weight function in this 
method, that is a WN, so the criterion for minimization of the error is given by this for N = 1, 2 
N and this is independent of time, so W is although I wrote it as x,t it is actually W(x) only, so 
this is M IJ is given by this, C IJ is given by this, PJ is given by this, and K IJ is this, so you can
see here M IJ is not same as M JI, and K IJ is of course symmetric because of the way these 
terms appear here, but it is not true for C IJ and P(t) is may not have units of force, okay so 
these are some issues that you may have to bear in mind when you are solving and interpreting 
this solution. 



In another strategy what is known as method of collocation, what we do is we again look at this
residue which is as E (x,t) which is this, we select this AN(t) such that this error is 0 for a given 
T, this error is 0 at N chosen points along the beam that means I select X1, X2, XN and demand
that at all these capital N number of points error is exactly equal to 0, so that requirement leads 
to capital N number of equations for the generalized coordinates and that is the governing 
equation. 

Now we can see that this is equivalent to taking the weight function to be a direct delta 
function, so this is same as direct delta of X - XN E(x,t) DX = 0, that means the statement that 
E (x,t) is 0 for XN = N, XN N = 1 to N is equivalent to this. Now that is we can write this 
criteria as integral 0 to L, WN(x,t) it's actually WN(x) because there is no time here this time 
can be deleted from this E(x,t) DX = 0, where WN is this. Now this leads to again a set of 
ordinary differential equations which are coupled and you can verify that these matrices will be 
un-symmetric and non-diagonal and this will be the equation. 

Now the problem with this method is although the error is exactly 0 here we don't have an idea 
how small or large the error is at an X which doesn't coincide with any of these X, so this you 
know we don't get any idea on that so I have to be careful in using the collocation method. 



So the details of the matrices are obtained here, so this is the criterion for finding the 
generalized coordinates and M IJ turns out to be M XI Phi J XI and which is obviously not 
equal to M JI and similarly C IJ is obtained as this, and K IJ is obtained as this, this is again not 
symmetric, PJ(t) is F(xj,t) so this is how we get this equation. A modified version of this is what



is known as subdomain collocation method, it is somewhat similar to collocation method but 
the criteria is that we again divide the beam into capital N number of segments, but instead of 
demanding  at all these points the error is 0 we demand that over each of these segments, the 
average error is 0, that is the total error over this segment is 0, total error over this segment is 0,
so I write this as integral XN - 1 to XN, E(x,t) DX = 0 for n from 1, 2 to capital N, where X 
naught is 0, XN is capital L. Now this can be rewritten as integral 0 to L, WN(x,t) it is WN(x), 
E(x,t) DX = 0, where WN is a box function written in terms of few side step function, so for 
this method subdomain collocation method, the weight function is a box function, okay, so this 
is a modified version of collocation method. 



There is another method known as Galerkin's method, this is going to be used often in our 
course, here the idea is the weight function is selected to be the trial function itself, so we are 
expanding V as in terms of Phi N(x) and a weight function we take it as Phi N(x) itself, so this 
leads to that means the error is orthogonal to the trial functions, so this leads to capital N 
number of equations and we will see now what is the form of this equation, but from this 
statement we can see that we are going to get a set of N ordinary differential equations. So how 
what exactly happens here? Again let us start with the residue term, so the Galerkin's statement 



is this and you can see here if you implement this and M IJ will be M(x) Phi(x) Phi G (x) DX 
and this is M JI, CIJ is C(x) Phi (x) Phi J(x) this is C JI, and K IJ is actually this, we can see 
what happens to, this is the fourth derivative present here and there is no derivative on this, we 
will see what happens to this term, but in any case this is the K IJ. Now PJ(t) is the forcing 
function, now what happens to K IJ, so now this if you integrate by parts you do it twice so 



upon each integration one of these derivative passes on to the weight function, so after you 
integrate by parts twice you get the integral 0 to L we will have Phi I of double prime of X, Phi 
J double prime of X, now if we take all trial functions to satisfy all the boundary conditions 
then these quantities inside the brace, these two terms will be 0, because this encapsulate or the 
class of admissible geometric and natural boundary conditions and this will be 0, and we get K 
IJ to be given by this, and K IJ in this case is symmetric. 

So in this method I am getting again equation of the form MA double dot + CA dot + K = P(t) 
but the advantage is M C K are symmetric, and there are further advantages I will come to that 
as we go along it is something to do with the demands on differentiability of the trial functions. 



Now how do we get initial conditions, we have got now the governing equation for the 
generalized coordinates, we need to find A(0) and A dot (0) so how do we get that? So this is a 
assumed solution V(x,t) is AN(t) Phi N(x) therefore at T = 0, I get this displacement at T = 0, 
the velocity is given by this, so the unknowns are AN dot (0) AN(0), so this in collocation 
method again we can demand that the error is 0 for N points and I get these equations for I = 1 
to N, and you can solve this equation to get the required initial conditions. Similarly this is the 
equation for the initial displacement, initial velocity, in the least squares and Galerkin methods 
A(0) is given by the inverse of this matrix into the integral or the initial condition as shown 
here, okay, so this again requires some effort to evaluate the initial conditions. 



So let me summarize what we have talked now, there is a least-squares method, Collocation 
method, Galerkin's method, Subdomain Colocation and Petrov-Galerkin, there is one more 
thing known as Petrov-Galerkin, I didn't talk about it, here it is similar to Galerkin technique 
except that the weight functions are taken to be another set of sin(x), the sin(x) is different from
Phi N(x), that technique is known as Petrov-Galerkin. So in all these approaches you can see 
here one of the common term that is present in all these expressions is E(x,t), what 
distinguishes one method from the other is what multiplies this residual term in the integrand, 
for least squares it is this, for Collocation it is this, for Galerkin it is Phi N(x), for subdomain 
collocation it is this box function, for Petrov-Galerkin it is sin(x), so all these methods 



nevertheless can be put as a weight function into a residue = 0, for N = 1, 2, N, so this class of 
methods is known as method of weighted residues. 

Now to implement these methods there are certain choices that we have to make, first set of N 
trial functions then a set of N weight functions we have to make, choose. Now issues, when you
are selecting trial function or the weight function order to which the functions need to be 
differentiable and how well they satisfy the boundary conditions, and also how many terms 
need to be included, so we'll revisit these questions but bear in mind these questions need to be 
addressed, so the general format is we have the field equation and we assume this solution and 



after applying the method of weighted residual in any one of this form I get this set of 
equations, of course the meaning of MCK and P would be different depending on which 
method you have used, so what does method of weighted residuals achieves? A partial 
differential equation governing the behavior of a continuous system has been replaced by an 
equivalent set of ordinary differential equations which are initial value problems with a view to 
obtain an approximate solution, so that's what we are doing. So this is a way of discretizing an 
infinite dimensional system by a finite dimensional system, so in fact finite element method 
also achieves this but in a somewhat different way as we will see shortly. 



Now the trial functions there is a scheme of classifying trial functions depending on the extent 
to which they satisfy the boundary conditions, see this is a field equation for example for a 
vibration problem this is a field equation and we have boundary conditions, one on geometric 
quantities, another one that is the force quantities the bending moment and shear force, call it as
set one and set two. So in normal mode oscillation this is a solution that we assume and this 
eigenvalue problem that we get. Now we say that a trial function is admissible if geometric 
boundary conditions are satisfied we need not have to satisfy the natural boundary condition 
nor the field equation, my field equation I mean this, by comparison functions we mean those 
trial functions which satisfy both geometric and natural boundary conditions but the field 
equation is not satisfied. On the other hand an eigen function is an exact solution to the problem
therefore it satisfies the geometric boundary conditions, natural boundary conditions as well as 
the field equation, so as you see here the least that we should expect from a trial function that it 
should be admissible, okay, so we will see what is the implication of this as we go along it is 
also tied up with the requirements on differentiability of the trial functions, so if a function is 
admissible the requirements is much less whereas if it is comparison function where you need 
to satisfy conditions on bending moment and shear force the requirements on differentiability 
increases and the class of functions that we can select shrinks, so ideally we would like to deal 
with admissible functions so that we have a huge class of selection, functions to select from, as 
we go in this direction that choice of trial functions you know narrows.



Now let me just go back to the methods one by one and see what type of requirements each 
method imposes. In the Rayleigh's quotient method I need to evaluate only the second 
derivative of the trial function so they must be admissible, okay, and possess nonzero 
derivatives at least up to the second order, okay. 



In Rayleigh-Ritz method again the trial function needs to be at least admissible and possess 
nonzero derivatives up to the second order, because if you see the implementation of Rayleigh's
method I need to compute this K IJ and M IJ they don't require functions beyond second 
derivative, so trial functions need not have you know we are happy to use trial functions which 
have the only second order derivatives exist, okay, so this is requirement, whereas in least 
squares and collocation trial functions need to be comparison functions, okay you can verify 
that you need derivatives up to the fourth order. In Galerkin, the trial functions need to be 
comparison functions, so we will see some of this. 



Now there is yet another approach which is slightly different from what we have been 
discussing that is known as Assumed mode method that employ Lagrange’s equation, this is 
slightly different, so again let us consider for purpose of illustration the free vibration problem 
of an inhomogeneous beam so we have the field equation and appropriate boundary conditions 
and initial conditions, so we have seen that solution of this differential equation is equivalent to 
minimizing this functional, okay, this we have seen this Hamilton’s principle, so the idea of this 
Assumed Mode Method is to approach the problem of minimizing the action integral at the 
stage of developing the approximation, that means I won't develop this partial differential 
equation but I will develop an approximate method based on the minimization of action integral
itself, so what does that mean? That means the approximate solution can be developed either by
addressing the field equation or by optimizing the action integral so either we can adopt this or 



this, so for purpose of illustration suppose if I take a beam line simply supported beam, the 
approximate solution is let us take it to be N = 1 to N(t) sin(x), where N(t) is set of unknown 
generalized coordinates and Phi N(x)  are known trial function taken to satisfy all the boundary 
conditions, say for example Phi N(x) is sin N PI X by 1, now this is the expression for kinetic 
energy, this is the expression for potential energy. 



So now I will form the Lagrange, Lagrangian for this, this is this, in terms of these generalized 
coordinates and their derivatives, and on this I will apply the Lagrange equation N number of 
times, okay, if I do this this is simple calculation we can get the mass and the stiffness, elements

of mass and stiffness coefficients and we can get the equation MA double dot + KA = 0 with 
certain initial conditions. This K IJ that is K NK EI Phi and double prime, Phi K double prime 
which is symmetric in this case, similarly if you look at M NK it is symmetric, so this is similar
to what we got in Galerkin's method. 



So we can see here in this case M and K are N by N matrices and these are the generalized 
coordinates with N degrees of freedom, both M and K are symmetric actually we can show that 
M is positive definite and K is positive semi-definite, one of the limitations of all the 
approaches including this one is that these generalized coordinates you know this vector of 
generalized coordinate does not have direct physical meaning, okay, they need to be substituted 
into a series expansion and evaluate that series then only it emerges as a quantity in which we 
can assign a physical meaning like displacement or velocity things like that. Now clearly this M
and K depend on choice of these trial functions. So again in this approach also a partial 
differential equation governing the behavior of a continuous system has been replaced by an 
equivalent set of ODEs with a view to obtain an approximate solution. 



Now in discussion of variational approaches to solution of partial differential equations, there is
set of terminology that we should become now familiar, I will introduce them now. We talk 
about what is known as strong form, a weighted residual form and a weak form of the 
governing equations, so what they are? Now the discussion on these forms of equation is 
basically in the context of finding approximate solution in this form V(x) is N = 1, AN Phi(x), it
is in this context that we talk about these different forms, in the strong form we use a field 
equation itself that means we write the governing partial differential equation and want to 
develop the approximate solution starting from this, okay so this field equation plus appropriate
geometric and natural boundary conditions is used to develop approximations based on strong 
form. 

In the weighted residual form what we do is, operationally what we do F(x) is taken to this side 
and we multiply by a weight function and demand that this integral is 0, so this is like virtual 
displacement instructional mechanics problems, okay, so I will come to that in due course, so 
the idea is we can select a set of N weight functions and obtain governing equations for the 
unknowns AN(t), AN in this case I am considering a static problem, it is ANs only, so the trial 
function Phi N(x) here you know if you are using this method you see in this method you would
need V differentiated 4 times, that means you need D4 Phi N by DX 4, okay, whereas W(x) 
there is no such requirement, it can be, it should be integral but there is no requirements on its 
derivatives. 



Now in weak form what we do is, we carry out integration by parts of this weighted residual 
statement and see if I can pass on some demands on differentiability of these trial functions to 
the weight function, what does that mean? Suppose let us do that integration by parts I get, you 
do integration by parts twice and I get here if you carefully see, one of the term is W double 
prime X, EI(x), V double prime, this PV prime, W prime, KVW - F(x) into W(x) DX = 0 plus 
these boundary terms. Now we know that EI V double prime, prime is nothing but the shear 
force I can call it as F2, so it is W(L) this is W is here and this is shear force W(0) bending 
moment at the support into W1 prime of L and this, plus this, this equation is known as the 
weak form of the governing equation. 

Now in this case if you carefully see the demand on differentiability of trial function is only up 
to the second order, the original equation was fourth order, now trial function need to be 
differentiable only up to the second order, but the weight function now need to possess 
derivatives up to second order, that means the demands on differentiability on V(x) the trial 
functions has been weakened and that has been passed on to the weight function, in that sense it
is a weak form, that mean demand and continuity goes down on the trial functions, so for 



purpose of illustration let us consider the beam be simply supported at X = 0 and X = L and it 
be subjected to bending moment M1 and M2, so the weak form of this equation is this, now M1
and M2 are the applied bending moments so they will substitute now for, that is M1 and M2 
will appear there, but now the beam is simply supported therefore what I will do is, I will 
demand that this W(l) and W(0) which is a weight function must be 0 at X = 0 and X = L, so if I
do that I will get the weak form in this, okay, so that means inhomogeneous boundary 
conditions now explicitly appear in the weak form, so now we have to select Phi(x) and weight 
functions so that V(0) is 0, V(l) is 0, because that is a geometric boundary conditions because a 
simply supported beam at X = 0 and X = L, and this weight function also need to, we take that 
this weight function also need to satisfy this, these need not be 0 therefore this condition will 
also be satisfied okay, so again let me emphasize that the trial functions are here in this 
approximation need to be differentiable only up to the order 2, whereas in the weighted residual
form they need to be differentiable up to order 4, whereas there was no demand on weight 
function, but here the demand on differentiability of trial function and weight function are 
balanced okay, so this is the advantage of the method so if trial functions need to be only 
differentiable up to the second order, the pool of function from which we can select the trial 
function becomes very large as compared to those function which need to be differentiated up 
to fourth order, okay that is the main advantage of this matter. 



So now there are certain other terminologies that we should be aware of, so if we go back to the
problem of beam on elastic foundation carrying axial load, I think this is a beam carrying axial 
loads we got these two terms in the variational form, so the coefficients of weight function we 
call them as secondary variables, okay. The coefficient of W(x) is this and this is declared as a 
secondary variable, the primary variable V is written in the same form as what is appearing here
that is W(l) means V(l) this is a primary variable, okay, so in this case for example this will be 
the secondary variable, this is a primary variable, similarly at the other end the bending moment
becomes a secondary variable, the primary variable is the slope, right because this is the 
function that multiplies the gradient of the weight function, so that coefficient of weight 
function or its derivative are called secondary variable. This is the primary variable is in the 
same form as what the weight function appears but W is replaced by V, so this is the 
classification, so that means the dependent variable expressed in the same form as a weight 
function appearing in the boundary term is known as primary variable.



Now coefficients of weight functions are called secondary variable, so we'll make now a few 
remarks, the weighted residual statement, in the weighted residuals statement as I already said 
the trial functions Phi N(x) must be differentiable up to the fourth order W(x) on the other hand 
which is the weight function can be any integrable function, so equations for the undetermined 
coefficients can be obtained by choosing a set of N weight functions, so weight functions come 
from a very large pool, whereas trial functions come from very small, relatively smaller pool, in
the weak form on the other hand we distribute the requirements on differentiability evenly 
between weight function and the trial function, thus the continuity requirements on the trial 
functions is weakened and hence the name weak form. We have a larger pool of function to 
select from further trial functions in this case.



 The trial function therefore need to satisfy only the geometric boundary conditions as the 
natural boundary conditions are included in the weak form, for example I got a bending 
moment term that appeared explicitly in the weak form, right so and also we talked about 
primary and secondary variables, we will talk about this again in a later part of the course the 
number of primary and secondary variables are the same whenever we consider even ordered 
you know partial differential equations which often is what we do, they appear in pairs, for 
example translation and shear force, slope and bending moment and so on and so forth, only 
one item in each pair can be specified at the boundary, for example at the simply supported end 
we can specify displacement to be 0, we cannot say displacement and shear force to assume 
certain values that is not on.  Similarly if you talk about slope, bending moment is 0 and you 
cannot say slope is also 0, okay so only 1 item in each pair can be specified at the bond. 



Now in the methods that we have discussed so far one of the common features that we have 
seen is that the trial functions are valid over the entire domain of the structure being studied, 
that means these are globally well valid shape function, now trial functions, this is okay if you 
are talking about simple geometries like line elements that we are considering but for more 
complicated problems it is not easy to construct global trial functions, one more difficulty that 
we have is the generalized coordinates N(t) they do not have direct physical meaning, unless I 
substitute in this series and sum it up I would not know, only then I would arrive at a physically 
meaningful quantity, if I say A3(t) is at some time instant point naught 2, it doesn't specify 
much you know it is a, we cannot interpret directly in any useful way, so we would like to deal 
with not simply line elements we would like to deal with trusses like this,



 frames like this and you can imagine constructing global trial function for a trust like this 
would not be easy it will be impossible, similarly constructing a trial function for a much less, 
you know much more modest structure like this also is not easy. 

So in the next class we will see how we can address these limitations and we will start talking 
about the development of finite element method, which aims to overcome and the difficulties 
that I just mentioned, so with this we'll conclude this lecture.
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