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In today's lecture we will start discussing topics related to the second topic listed in the title of 
the course, so we will start this module on structural stability analysis. 
So in today's class what I wish to do is to introduce certain basic notions and recall some results
from basically strength of material type approach to analyzing stability of beam columns, so 
then we will move on to finite element formulation and development of analytical results based 
on which such models are developed, so that will come in due course. 



So first let us try to develop some notion about what is stability, to do that we will consider a 
curved surface which is prismatic, that is perpendicular to the plane of the screen it is a 
constant, it doesn’t have, it doesn’t change the curvature, and we imagine that this is basically a 
valley and a mountain and things like that, so we imagine that the ball is rolling on this surface, 
so initially ball can be placed here at A or at B or at C, so there is gravity that is present, so 
which drives the motion of the ball, so what we wish to do is we will first place the ball in at 
point A, and impart a slight disturbance to it, so we will assume that there is friction in the 
between the ball and the surface so this ball will now oscillate, and because of friction it will 
come back to this position. 
Now if you now consider the ball being placed perched on this top and any slight disturbance 
that you will give, it will make the ball to roll away from this point either on this side it will end
up here, or it will start rolling on this and it will stop when the friction overcomes the energy in 
the ball, so whereas if you imagine ball is placed on this flat surface at this point C if you 
import a small perturbation to this, so the ball will roll and occupy this position, so the amount 
by which the ball rolls depends on the magnitude of the perturbations given. 
Here as long as perturbation is not very large, suppose if I give such a very large perturbation 
the ball may negotiate this curve and end up somewhere else. Now assuming that the 
perturbation that we provide is within certain range, the final position occupied by the ball is 
the same. Here also the final position is independent of the magnitude of the perturbation, even 
if you give a slightest perturbation either it will end up here or somewhere on this surface, so 
the final position here is independent of magnitude of the disturbance, here the final position is 



independent of magnitude of the disturbance as long as the disturbance is small by small, I 
mean the displacement and the velocity of this ball is small. 
Now we say that position A is stable, and position B is unstable, and position C is neutral, we 
will have to refine these statements to be able to do that we will consider more situations, 

suppose there is a valley like this which is infinitely deep so it goes up to infinity in this way a 
ball is placed here. Now any perturbation that you give no matter how large it is, the ball will 
finally end up here because of presence of friction, so we say that this position H is stable in 
small and stable in large, whereas if you now consider this imagine that this goes to infinity, 
this goes to infinity any slight perturbation no matter how big or small it is the ball will end up 
somewhere else, so it is unstable in small as well as in large. Here position D it is stable in 
small, small perturbations which keeps the ball within this valley that means the ball should not 
negotiate this curve and end up here, the ball will be stable, so D we say is stable in small and 
unstable in large, but the final position either it is here or here if it negotiates this it will 
oscillate in this well and maybe end up here or here. 
Now if you consider now this position this is unstable in small and we can say it is stable in 
large because it won’t move away infinitely away from this place, so this is you know issues 
about defining stability. Now F is unstable in small and unstable in large, because any 
perturbation here ends up far away, G is stable in small and unstable in large, F is unstable in 
small and unstable in large. 



Now we are talking about now motion of a ball in a valley, how do structural system which 
carry loads respond to perturbations, or what is the influence of perturbations on equilibrium 
states of the structures, on account of the perturbation that we give to the structure do the 
responses, due to perturbation vanish, grow, or remain constant. Now this is a type of questions 
that we are interested in addressing, now if because of small perturbations the motion of the 
system grows and so structure doesn’t return to its original state then we can think that structure
has lost its stability, and loss of stability is undesirable in structural systems, because any 
departure from equilibrium configuration for which it is designed may result in failure. 



Now to elaborate this let us consider the case of an axially loaded beam element as shown here, 
so in this case as P increases, the maximum P that we can apply on this structure probably 
depends upon the compressive strength, that means P depends on the yield strength of this 
material, we can go on increasing P till this material here starts yielding, whereas if the length 
of this column becomes large, this element becomes large and we go on increasing P, if we ask 
now what is the maximum P that this structure can carry, it depends on as we will see shortly it 
depends on not the yield strength of the material, but on Young’s modulus area moment of 
inertia, length, boundary conditions, and so on and so forth. Now for this type of structure, 
suppose if you double the strength of the material the highest load that the structure can carry 
may not change, okay, so suppose if you do now show a kind of a conceptual experiment, what 
we will do is we will apply P, the load P in increments, suppose you start with 0 and look at 
transverse displacement of this beam. 
Now we will start with 0, so delta is 0, now we will increment P and after that P is incremented 
will pluck this beam and allow it to move, so assume that it oscillates and assume that the beam 
has damping in it, it will undergo a free vibration and it will settle down, then delta is 0, so you 
keep on increasing P at one stage what happens the slight perturbation that you give the beam 
doesn’t return to its original position, but occupies a position which is proportional to the 
perturbation that you have given, so the load deflection diagram in this case climbs up like this 
and either it can move to the left or to the right depending on whether the beam deflects 
upwards or downwards, so at this value of load P we say that structure has lost stability, so this 
P critical this phenomena is due to geometry of deformation which produces nonlinearities 
which amplify the stresses, I mean this is the mechanism that we have to now understand, so 



those columns which behave like this are called short columns, and those columns which 
behaves like this are called long columns, and this type of behavior is known as bucking. This 
is something that you would have studied in your strength of materials now let us see how we 
can develop this idea further. 

Now we will do another thought experiment, imagine there is a structure consisting of 2 
members, both are rigid, it is hinged here and it is supported on a roller with a spring here, and 
when P is not applied the deflection of this point or this distance is delta naught, so we will now
draw the load deflection diagram, so as you go on increasing load P this distance from this point
to this point goes on reducing, so we will be tracing this path. For some value of P what 
happens is the structure snaps and it may start after this point, that is this point, it will 
immediate next position that it occupies this, so this happens for example in umbrella in a 
windy day the sign of the curvature of the umbrella can suddenly change, this is what is known 
as snap through buckling, so the loading increases, and at this point there is a dramatic increase 
in the deflection and further increase in load this fellow will start deflecting in this direction. 
Now if you start unloading that means from this value of the load you are going reducing the 
load, the unloading path will not trace this path, the unloading path will be different so that 
means suppose when we are moving in this direction, at this point suppose the structure has 
come here so that is this point, so upon unloading when this point is reached it won't revert back
to this in this manner, it will start unloading in a different way and at some other point it will 
again snapback, so in this kind of problems the difference between this problem and this 
problem is that when the structure loses stability there will be a equilibrium position in the 
neighborhood of the original position, whereas here the new equilibrium position that this 



structure occupies upon loss of stability will be far from the original configuration, so for 
example if we are now dealing with a shell roof structure which is a shell, shell roof structure 
suppose it is carrying sulfide, wind load, etcetera, how do we know that, how close is the shell 
roof close to a snap throw? Obviously we cannot deal with snap through in roof structures so 
how do we know that, what is the margin of, so to say the safety again such occurrence of such 
a phenomena, so this is a type of question that we would be interested. 

The other type of questions about stability is stability of motions, for example if you consider a 
single degree freedom system which has say non-linear terms, cubic nonlinear stiffness, 
suppose it is driven harmonically every certain initial conditions, now based on certain logic I 
propose that as T tends to infinity, one of the steady-state solutions will be of this form, X is 
amplitude and because of non-linearity I want to examine whether a solution of the form 3, 
omega T - theta is possible, I call this solution as X star of T, now I want to know whether this 
motion can be realized? In the sense motion can be realized if a slight perturbation given to that 
you know goes to 0 as time passes, right if there any slight perturbation that we give to X star of
T results in a growth of response in an unbounded manner then that particular steady state 
solution cannot be realized, so what we do is we change X(t) to X star(t) + delta(t) and 
assuming that X star (t) satisfy this equation we will be able to get the so called variational 
equation for delta(t) which will be of this form. What drives delta(t) is the solution X star 
square(t) which appears now as a parameter in the problem, so the forcing function multiplies 
the state, so X star(t) can be viewed as forcing function for the system that governs delta, this X
star(t) is in fact a solution to this problem, but that is not very you know that doesn’t make any 
difference here as far as interpreting X star square(t) as a load for this system, so this type of 
systems are known as parametrically excited systems.



Now in this type of system what we would like to know is as time becomes large whether delta 
T goes to 0 or not, I don’t want to know details of how solution delta T behaves, I simply want 
to answer this question whether delta T goes to 0 or not, if it goes to 0 then we say that this 
solution is stable, if it doesn’t go to 0, suppose it becomes constant then the question will be an 
unresolved, if it blows off then this state is you know unstable, so we can therefore say that we 

consider steady state response of systems which could be state of rest or periodic motion or 
even random motion, on this we impose an external disturbance we call it as perturbation, 
because we applied this perturbation the structures will again start you know its position will 
change, we say that this state of steady state is stable if response to perturbation dies and 
original state is restored, if origin state is not restored there are 2 possibilities, the motion grows
without limit, then we say that this state, this state that we are talking about is unstable, but if 
motion neither grows nor decays then the state is stable or unstable this question remains 
unresolved, and we have to go back and see for example in this context if we end up with a 
situation where delta(t) as T tends to infinity neither grows to infinity nor decays to 0, in that 
case we will not be able to answer the question whether the system is stable or not, so the idea 
here is you see there is an approximation here when I substitute this into this I am assuming 
delta(t) to be small, then terms like alpha, delta, cube, and 3 delta square, the 3 alpha X square 
delta and other one is delta square term there have been ignored here based on the assumption 
the delta is small, so maybe you may have to include and do something else, so these are 
questions which are widely discussed in literature on stability, and there is a great deal of 
diversity of definitions, so as we go along hopefully we will get familiar with some of these 
issues. 



Now what we will do now is we will start with an archetypal problem that can be understood by
you know students who have done a course in strength of materials, so consider a so-called 
beam column, a beam column carries an in-plane load as well as a transverse load Q(x) and in-
plane load P. Now in absence of P we know how this structure behaves, now the question that 
we are asking is what is the influence of P on the transverse behavior of this structure, not the 



axial deformation, axial deformation is understood due to P, but there will be an interaction 
between effect due to P and Q that leads to newer issues and this is what we need to understand,
suppose we start set up that as a problem. 
Now we will consider to understand the issues some simple situations suppose the beam is 
carrying load Q(x) it is simply supported to keep the discussion simple, so the governing 
equilibrium equation will be EIY double dot is = M(x). Now the beam now carries additional 
load P, so on the deflected profile so when I take bending moment at any point P, in addition to 
the bending moment due to Q(x) there will be a bending moment due to P into this deflection, 
so that I call as PY, now there is something very interesting the way we write this term I will 
come to that as we go along. 
Next we will consider a statically indeterminate structure carrying load Q(x) and here we write 
the equation EI D4Y/DX4 is equal to applied load Q(x), suppose this beam now carries an axial
load, so there will be EI D square Y/DX square + P, D square Y/DX square = Q(x), so you need
to understand the nature of these equations, now if we quickly solve these equations, the first 
equation situation A, solution will be like AX + B + particular integral which involves the 
bending moment and hence Q(x). In the second case suppose if I call square root P/EI as 
lambda now I will get A cos lambda X + B sin lambda X + particular integral, in this case the 
complementary function will be AX cube + BX square + CX + D because there is fourth order 
derivative plus a particular integral which depends on Q(x). In the last case we will have A cos 
lambda X + B sin lambda X + CX + D + a particular integral, so what you need to focus on is 
the change in the nature of this complimentary function for these 4 different situations. The



nature of complementary function changes dramatically due to presence of axial load P, 
trigonometric terms involving P appear in our solution, therefore Y(x) become nonlinear 
function of P, the particular integral continues to be linear function of Q(x), the particular 
integral is not influenced by P it will be influenced by P, but here you can see here the 
dependence between Y and P in the complementary function is through lambda, lambda is 
square root P/EI, the particular integral will be a linear function of Q(x) it may be function of 
axial load P, but still it will be a linear function of Q(x). 
Now in this case again there are trigonometric terms, so trigonometric terms means non-
linearity okay in P. Now C and D where we write fourth order equations are more generally 
applicable, these are applicable for this also so we can start with applied load and write the 
equation, this helps us to write the boundary conditions like fixed end, free end, and things like 
that, they are suitable for statically indeterminate structures, now this type of structure are 
known as beam columns which carry lateral loads and at the same time carry axial compressive 
loads. 



Now this beam action you must understand that it is quite often present in many application, for
example if we have a single wave portal frame carrying these loads, if you perform the analysis 
this member will be subjected to axial load and the bending moment, this member will be 
subjected to axial loads, shear, and bending-moment, so each member behaves like a beam 
column, so it is not that beam columns are rare things, they are the often the rule than the 
exception in frame structure. 



Now we will come to the equation governing this and will solve the equation, but right now we 
will try to you know assuming that you are familiar with some of this, we will try to interpret 
these solutions. Now the solution Y(x) for this type of situation is function of X, applied load Q 
and as well as the axial load P applied transverse load Q and axial load P, now if you double Q 
okay Y(x) doubles, but if you double P, Y(x) does not double, so that means the principle of 
superposition is valid with respect to Q in some sense but it is invalid with respect to P, so the 
effect of including axial loads or considering problems of beam column the first casualty is the 
principle of superposition which is bread and butter for linear analysis, so that has to be 
sacrificed. 
Now the other thing that we should notice is when we write this equilibrium equation EIY 
double prime + PY = M(x), when I am writing M(x) or when I am computing bending moment, 
drawing the bending moment diagram I would not consider how the beam deforms, that means 
the bending moment is established with respect to the undeformed geometry of this structure, 
but whereas when it comes to computing the contribution to bending moment by the axial load 
we are considering the deformed configuration and we are writing P into Y with respect to the 
deform configuration, so there is a contradiction in the way we write these 2 terms, but this 
leads to dramatic effects as you will see, so a generic form of the response will be, the response 
will be a product of 3 terms, transverse load parameter which will be linear in this, suppose 
Q(x) is Q naught this can be Q naught. Then Y(x) computed based on undeform geometry, that 
means in absence of P whatever response we got that. Then there is an amplification factor 
calculated based on deform geometry, so this will be the structure of the solution and we are 



interested in the behavior of this amplification factor, if this becomes very large then we will be 
worried in designs. 

Now I mentioned about a principle of superposition, so if you consider a beam carrying say 
transverse load W1 and W2 and axial load P, if we assume that principle of superposition is 
applicable I can first apply load W1 and W2 and then consider the effect of axial load P, but if 
you sum up the response due to this and this, we would not get the beam column action, so the 
principle of superposition is not applicable in this form, it breaks down, but what remains 
applicable is a modified version of principle of superposition which is as follows, so we have 



W1 and W2, we first apply W1 and retain these load P, then we apply W2 and retaining load P, 
now if this Y is a solution here and Y1 is a solution here, Y2 is a solution here we can show that
Y = Y1+ Y, slightly later in this lecture we will come to that stage, so a new version of principle
of superposition emerges that needs to be taken into account. 



Now to fix the ideas what we will do is we will analyze one of the simple structure like this, 
and see what is the consequence, suppose I have a simply supported beam, hinge here and a 
roller here, span is L and at a distance C I am applying a load Q, and this structure carries axial 
load P, so we can find out the reactions based on un-deformed geometry, this are the reactions, 
so now for the part of the beam lying in AD, the equilibrium equation is given by this EIY1 
double prime – QCX/L that is QC X into L that is the bending moment, - P into Y1, so this 
leads to this equation Y1 double prime + lambda square Y1 is equal to the applied load. 
Similarly for the second part we can write the equation and I get Y2 double prime lambda 
square Y2 is equal to this, lambda square as before is square root P/EI. 



Now I can solve these equations so for the part X lying between 0 to L – C, I have this equation 
and for X between L - C2L I have this equation, the first part the solution is A cos lambda X + 
B sin lambda X, and particular integral is this, this is valid over this region. Second part C cos 
lambda X + D sin lambda X + this valid over the region L - C2L. Now at the end A Y1(0) is 0, 
therefore Y1(x) I get this, A becomes 0, at Y2 X = L, Y2L is 0 that leads to this, so we eliminate
C in terms of D, and I get solution in this form, so 2 constants we have eliminated, 2 are still 
remaining and they can be established by demanding continuity at this point, so continuity 
conditions are this is Y1 and this is Y2, there is a constant B, and there is a constant D floating 
around. 



So Y1(L-C) must be equal to Y2(L-C) that deflection should match, and Y1 prime of L - C must
be equal to Y2 prime of L – C, so if we impose those conditions and simplify we will be able to 
determine this constant B and D, and I will get Y1(x) to be given by this, and Y2(x) to be given 
by this, to understand what this specifically mean we will consider a special case the



 point of application of the load is at L/2 and we are interested in response at L/2, so Y1(x) is 
this, therefore at X = L/2 I get this, and I need to manipulate a bit and if I do this I will get 
Y1(x) to be given by Q/2P lambda, tan lambda L/2 -lambda L/2, now what I do is this 
parameter lambda L/2 I will call it as U, so lambda itself is square root P/EI, so lambda is a 
nonlinear function of P, and U is this, so now I also call Y(L/2) is delta, so I get delta as Q/2P 
lambda into tan U – U, so as far as the transverse load is concerned there is a linear parameter, 
but the axial load parameter is nonlinear at P, I mean this function is nonlinear in that parameter
P, so when P = 0, we know that the deflection is QL cube/48EI, so what I will do is I will 



rearrange these terms, I will multiply and divide by that delta naught I call that as delta naught 
and rearrange these terms, and after I do this I get the mid-span deflection as delta naught, that 
is response with P = 0 into a amplification factor we call it as chi(U), and this chi(U) is 3 tan U 
– U/U cube, this is known as a stability function. 
Now how does it behave suppose we take a look at what happens to this function as U goes to 
0, U goes to 0 means the P going to 0, as P goes to 0 delta should go to delta naught, so chi(U) 
should go to 1, as U goes to 0, so that we can verify by expanding tan U in the Taylor's 
expansion and rearranging the term we can show that chi(U) to 1 as U goes to 0, so which is as 
it should be. 



Now on the other hand what happens to this function as U goes to phi/2, we know tan phi/2 
there is a problem, so as chi(U) goes to infinity, I mean as U goes to phi/2, chi(U) goes to 
infinity that means the condition U = phi/2 is a critical condition, so if we evaluate for value of 
P we will reach this condition U = phi/2 I will get this value P critical as phi square EI/L square,
so this is a well-known Euler’s buckling load, we will arrive at this by other arguments later but
this present argument leads to the same solution. So if now P is close to this value then the 
amplification factors will be very large, so that is where you know designers need to be 
concerned about. 
Now let us consider behavior of other parameters like slope and bending moment, suppose Y(x)
is given by this, and DY/DX we can compute, and again if I evaluated load at mid-span and 
response at mid-span, we expect the mid-span slope to be 0 and that happens to be 0 you can 
verify that. 



On the other hand if you look at the slope at the supports if you manipulate these expressions 
we can show that the slope is given by this, and again following the same argument that we did 
for mid span deflection, first we will find out what should be the slope at with P = 0 I know 
this, I call it as theta naught and I will scale this value by theta naught and rearrange the terms, 
and I will get the slope at X = 0 given by theta naught into epsilon U, where epsilon U is this 
function 2 into 1 - cos U/U square cos U, this is the stability function associated with slope. 
Again you can show that as U goes to 0, this goes to 1 and so on and so forth so that can be 
done. 



Now how about bending moment? So we differentiate Y once again, and again apply the load at
mid-span and response at mid-span, so if we arrange these terms we know the maximum 
bending moment at mid-span is QL/4 when there is no load P, and how does this bending 
moment get modified, it get modified by a function tan U/U, I call it as XI(U).



So now in summary we have mid span deflection equal to, the mid-span deflection in terms of 
axial load into an amplification factor, slope at the left support, slope in the absence of axial 
load into a magnification factor, bending moment, maximum bending moment, bending 
moment in absence of axial load into this amplification factor, how these factors look like? As a
function of U, if you plot U on X axis and this stability functions on Y axis the 3 function chi, 



epsilon, and XI are shown here, they show similar trend and at phi/2 they go to infinity and 
these lines are asymptotic to that, and these points go to 1 as U becomes 0, so these are the 
stability functions, these functions are tabulated, it is for example the book by Timoshenko on 
elastic stability has an appendix where these functions are tabulated. 



Now we can make some remarks on the behavior of these functions, this chi, epsilon, and XI as 
already mentioned are known as stability functions, as U goes to 0 that is as axial load go to 0 
this stability function goes to 1, so this means that as P tends to 0 there would be no 
modification to the response which is as it should be, as U goes to 0 and P going to P critical 
these I think as U goes to phi/2, P goes to P critical, and these functions tend to infinity that 
means this function go to infinity as U goes to phi/2. Now the responses are not linear functions
of P here, because U is a non-linear function of U obviously responses are non-linear function 
of U, the main feature of linear analysis thus break down. 
Now this I already mentioned when I write this term PY this force is written based on deform 
geometric, whereas in writing M(x) this force is independent of deformed geometry, the 
response is obtained as Y(x) as Y naught (x, P= 0) and a modification factor which is function 
of X and applied load, so it is a nonlinear function of P it is not well behaved for all P and at 
some P the magnification factor goes to infinity. Now I mentioned that there is a new form of 
principle of superposition we can verify that by writing the relevant equations, suppose I 



consider a situation A where the beam carries axial load P and loads W1, transverse load W1 
and W2, in situation B in addition to P there is W1, and in situations C in addition to P there is 
W2, so system equation governing A is EIY double prime + PY + the bending moment due to 
this, system B there is only one contribution, system C there is again only one contribution here
due to Q2, here due to Q1.



Now if I add this B and C I get EIY1 double prime + Y2 double prime + PY1 + Y2 equal to the 
sum of this, now if I call Y as Y1 + Y2 I see that this Y satisfy this equation, therefore if I 
combine these 2 problems I get solution to this problem, so this would mean that if we use this 
modified version of principle of superposition knowing the solution to this problem I can 
synthesize solution for this problem, so I can still use principle of superposition but I have to 
take care to interpret in this form as displayed here. So now equipped with that insight we can 
now consider a few other problems, for example instead of a concentrated load if beam is 
carrying a distributed load Q(x), so what I will do I will consider a constant response due to an 
incremental concentrated load Q(c) into DC and I know already this solution and I call it as 
DYX, for X lying in this region and for X in L – C2L this is this, this is what we have derived 
already. 
Now the solution to this problem is obtained by integrating over the relevant regions, and I am 
keeping track of the correct form of a principle of superposition, so if I now consider special 



case where Q(x) is Q naught, that is a beam carrying UDL and an axial load P, I know that mid 
span deflection is 5Q naught L to the power of 4/384EI, now in presence of axial load this is the
amplification factor, similarly the maximum slope at the support is given by this and this 
function which is shown in the red is the amplification factor, maximum bending moment I 
know it is Q naught L square/8 and this is amplification factor, we can verify for these 3 
functions that as U goes to 0, they go to 1, and as U goes to phi/2 they all become unbounded, 
okay, so in a problem where there is a transverse axial load if there were to be an axial load 
transverse load Q(x), if there were to be an axial load P, and if this P happens to be in the 
neighborhood of the critical load then this frame is going to, the response of this frame due to 
Q(x), that response will be substantially amplified, and this is undesirable therefore our interest 
in this subject. 



Now we will consider some derivatives of the problem that we have solved, for example I have 
a beam column with the end moment, so this M is nothing but this couple shown here, how do 
we solve this problem? Now I will synthesize the solution to this problem by considering this 
problem, I have the solution to this problem there is a load at a distance C, now what I will do is
I will take limit of C going to 0 and at the same time Q into C goes to M, so in that case the 
solution in situation B will go to solution to the problem in A, so that can be quickly done, so 



you consider the second situation I have Y(x) to be this, and now if I put C = 0, sin lambda C 
will go to lambda C, and the limit of this function as C goes to 0, and QC going to M becomes 
this, okay, so this is a deflection. Now how do you get slope? By differentiating this I get slope, 
so therefore at X = 0, this is the maximum slope. 
Similarly at X = L, theta A and theta B are found out, we know that for P = A, theta A and theta



 B are given by this, therefore now the new amplification factor and slopes are given by these 
functions, we denote these functions as phi(u) and sai(u). Now how about a system carrying 2 



couples? Now I can use the principle of superposition, first I will solve the problem with MA 
and then solve the problem with, this is MB and then with MA and solve the problem, so when 

I do this I get the superposition principle leads to this solution, so if I now consider theta A, that
is differentiate this and put X = 0 the solution will be in this form, where sai(u) and phi(u) are 
the stability functions given here. Now I can assemble this in a matrix form and the response 
theta A and theta B are related to the applied forces MA and MB through this matrix therefore 
this is a stiffness matrix, so this stiffness matrix is given by this and this is a modified 
flexibility, sorry it is not stiffness it is the flexibility matrix, it is a modified flexibility matrix, 
the inverse of this is the stiffness matrix, so that is the stiffness matrix which takes into account 
the presence of axial loads. 



Now suppose this axial load is applied with an eccentricity E, what happens to this problem? So
this can be thought of as this problem where MA and MB are equal to PE which is M naught, so
we can use the same solutions and we will be able to you know simplify the problem because 
M1 = M2, and we will get mid-span deflection to be given by this, slope at X = 0 given by this, 
and the maximum bending moment is given by M naught into secant U, okay, so U if you recall
lambda L/2, where lambda itself is square root P/EI, so maximum bending moment is 



this. Now if I compute the maximum stress, bending stress P/A contribution due to axial load 
and this is a contribution due to the moment, so this becomes P/A 1 + EC/R square secant to 
this, so this is a well-known secant formula that is used in design of axial members especially in
metal structures, so axial stress in presence of eccentrically applied axial loads so this is a 
formula for the axial stress in presence of eccentrically applied axial loads. If P is close to 
critical load then slightest eccentricity, here there is no lateral load but if this load there is a 
slightest eccentricity then the response will be amplified by this factor, and such eccentricities 
are inevitable in you know built up structures, so we need to be ensure that we need to 
determine what should be this critical load with care. Now this magnification factor can be in 
fact be approximated by 1 - 1/B/P critical by expanding this trigonometric term, and this gives 
reasonable accuracy for you know acceptable ranges of P close to P critical in which we are 
interested. 



How about statically indeterminate structures? Now we can, supposed to illustrate that we can 
consider a propped cantilever and end B is now clamped, now I apply load P here and this is 
some transverse load Q(x) on that and what I will do is I will consider 2 problems, one in which
this fixed end is, in both the cases the fixed end is replaced by a hinge, in one case I analyze this
problem under axial loads and this transverse loads as shown here, and then I will analyze this 
problem with a bending moment here, because there will be reaction which is the bending 
moment which I would not know, this bending moment is selected in such a way that the 
rotation that we get in this case is nullified so that we know that rotation here is 0, so by 
analyzing this problem will not be getting rotation as 0, so therefore the correction that we 
apply to this is through finding out this bending moment which nullifies that rotation, so this is 
the idea, now how does it work? First rotation at B in case 1, so at B the rotation we’ve analyze 



this problem so we have this expression for rotation and this, it is Q naught LQ/24EI which is 
the rotation in absence of axial load, and this is the magnification factor and this we have called
it a chi(u). 
Now rotation at B in case 2 here again we have solved this problem, and we have obtained this 
as M naught L/3I into this, we call it as sai(u), so M naught must be such that the sum of this 
must be equal to 0, so that gives me an equation for M naught which is this, so this M naught 
we find out as Q naught LQ/8 into ratio of chi(u) sai(u) using this M naught I can now, I have 
the solutions I can superpose and obtain the solution to this built up case. 
Now the way we will proceed further now is that we will complete the discussion on 
indeterminate structures following the strength of material logic that we have developed, then 
what we will do is we will consider treat the systems as dynamical systems, and investigate 
what are known as fixed points and there stability this discussion will conduct with some 
simple mechanical systems which are analogues of larger structural system in which we are 
interested and gain an understanding of this problem, this will also help us to understand the 
relationship between imperfection and nonlinear deformation, that is large deformation, so once
we get that we will be able to you know we will get a complete picture of the range of behavior,



then we will introduce certain axiomatic notions about stability based on energy concepts, those
axioms would help us to formulate the problem of stability analysis through optimization 
arguments, and we will be able to develop weighted residual and finite element formulations for
that, so we will show that the question of elastic stability of engineering systems can be handled
through an Eigen value analysis, and as a prelude to that during the course of this discussion we
will consider Eigenvalue problems associated with system governed by differential equations, 
so then we will be able to translate that formulation to suitable logic for when we bring in you 
know discretization and matrix algebra, so these things we will cover in the lectures to follow, 
and at this juncture we will close this lecture
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