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In today's lecture we will continue our discussion with plate bending elements, so far what we 
have done is we have developed various types of elements for both theory based on thin plate 
hypothesis and thick plate hypothesis and the element that we have developed where of, you 
know some of the elements were conforming, somewhere non-conforming. 
Now before I start discussing a topic for today that is stiffened plates, I would like to make few 
observations on some of the issues related to using of these elements. Now two questions I 
would like to raise, first question is how do you think elements behave when used for thin 
elements? Then how to examine convergence characteristics when non-conforming elements 
are used? Both these questions are widely discussed in the literature, so I will just give some 
broad indications on what are the issues and how some of the difficulties can be resolved, so to 



enable this discussion we will revisit the problem of Timoshenko beam so ask the question what
happens if beam depth reduces, so if you recall in the Timoshenko beam this is undeformed 
geometry, and in the deform geometry the plane section here remains plane, but it rotates by an 
angle sai, it doesn’t remain normal to the neutral axis there will be shearing strain that we need 
to, we wish to take into account. 



The expression for strain energy we’ve already derived will be of this form, now if you 
examine the integrand in this expression for the energy we see that the field variables are sai 
and W, and the order of the highest derivative is 1 therefore we can use linear interpolation 
functions for both representing sai and W, so if we consider 2 noded element with degrees of 
freedom W and sai at each node we can write sai(x) as this and W(x) as this. Now if I 
differentiate W(x) I will get W1 - W2/L, this is a constant for the element. 
Now as beam depth becomes small the sai (x) you know that the sai (x) should go to dou W/dou
X this is what we assume in thin plate theory, so in the thick plate theory as beam depth 
becomes small sai (x) we can expect that it will go to this, according to this representation 
becomes constant, but this is not admissible since the bending energy is given by this term and 
this becomes 0, if sai (x) is constant, so this problem is known as the shear locking, so this is 
undesirable, so how can we remedy this situation? So there are 2 possible remedies, one is we 



can use interpolation polynomials such that sai and DW/DX are interpolated by using the same 
order of polynomials, for example W I will use a cubic polynomial, and for sai quadratic so that
dou W/dou X and sai will have the same order of representation or there is an alternative fixed 
known as reduced integration, I will try to explain what these things mean in the following 
slides. 
So let’s consider a beam element, now I will use the non-dimensional coordinate sai = X/L and 
I will locate the origin here, so the beam lies between XI = - 1, and XI = 1, and its length is 
actually 2A, X varying from - A to + A, so this axis is X, sai and this rotation is a sai, and this is
W. 



Now the field equations are given by this and these imply that D4W/DX4 is 0, D cube sai/DX 
cube is 0. Now accordingly using sai = X/A, W can be represented as a cubic polynomial and 
sai can be represented a quadratic polynomial. Now in this representation these A1, A2, A3, A4,
B1, B2, B3 are not independent, they are connected by this equation and if we impose that 
constraint we get the constraint equations as B1 given by this, B2 given by this, and so on and 
so forth, and we introduce a parameter beta which is EI/KA GA square, now as beta goes to 0, 
beta goes to 0 as depth of the beam reduces so this is one handle that we will have to examine 
the behavior of the element as depth becomes small. Now we have only 4 independent 
constants, because of this constraint equation that is fine. 



So now consequently we can represent W in terms of this shape function N1, N2, N3, N4 and 
WE is the nodal coordinate W1, sai 1, W2, sai 2, sai itself is represented in terms of this 
quantities, interpolation function N5, N6, N7, N8 but they are all given by this there are only 
enough independent constants as mentioned here, as beta see one thing we should notice is if 
we now consider the representation for displacement field W, as beta goes to 0 this functions 
N1, N2, N3, N4 reduces to the cubic polynomial that we’ve used in analyzing Euler-Bernoulli 
beam. 



Similarly if I now take sai as dou W/dou sai I get this, and it can be verified that the functions 
that are listed here N1 to N8 satisfy these requirements, that means in the limit of, the analysis 
being applied to a slender beam we recover what we have analyzed, what we considered for 
Euler-Bernoulli beam, so that is embedded in the way we are interpolating here. 



Then the procedure for deriving structural matrices is straightforward, we have the energy 
expressions and field variables are represented in terms of the nodal values and interpolation 
functions, so we can do the evaluation of structural matrices and we get the structural matrix, 
mass matrix as given here, it has 2 parts and they are listed separately and it is given here. 
Similarly the stiffness matrix is given by, it can be shown that it will be given by this. Now in 
this case as beta becomes small it can be verified that the mass matrix and stiffness matrix 
converge to the mass and stiffness matrices that we’ve already derived for Euler-Bernoulli 
beam, so here there is no problem, here the thick beam element remains applicable as a beam 
becomes thinner and no special precautions need to be taken to use this element. But on the 



other hand suppose if we start with the argument that sai and W are the field variables, and the 
highest order of the derivative that is present in the integrand of the variational formulation is 1,
therefore I am at liberty to use linear interpolation for both W and sai, that is fine, so we can 
start with that, so W is interpolated like this and sai is interpolated like this, and where N1, N2 
are linear functions as shown here. 
Now the element, and nodal degrees of freedom will be W1 sai 1, W2 sai 2, and they can be 
assembled in terms of this N matrix and the nodal values as shown here. Now we can compute 
dou sai/dou X, and dou W/dou X which are needed in the evaluation of the strain energy, and 



we see that the strain energy due to bending and shear can be evaluated, we get for the bending 
this is the expression, that is EI dou sai/dou X whole square will be this, and this is a constant 
and we’re shearing function shearing, energy due to shearing will be given by this, so this 
integral can be evaluated with one term Gauss quadrature, and this to evaluate exactly I need a 
2-point Gauss quadrature, because this will be a fourth order in XI, so but if we do this then as I
already been pointed out we will face the problem of shear locking, okay, because in this 
representation as the beam depth becomes small the representation doesn’t automatically 
converge to the Euler-Bernoulli beam limit, so there will be a problem if we do this, what is 



proposed is, we replace the linear shear strain variation by a constant in the sense of minimizing
the mean square error across the depth, so following this the integrand equation for US, 
integrand in equation for US becomes constant and hence can be evaluated using a 1 point 
Gauss quadrature, moment we do this then the locking problem will be eliminated, and this 
method of overcoming the problem of locking is called method of reduced integration. 
So this amounts to, by doing this integration we are virtually ensuring that DW/DX and dou sai 
are of the same order, okay, so then by using a reduced quadrature as mentioned here we are 
achieving basically that, that is why the shear locking problem gets eliminated. Now this is as 



far as Timoshenko beam is concerned, now let us return to the 4 noded thick rectangular plate 
element, we saw that energy expression is given by this and we have found out the element 
stiffness matrix in terms of flexure and shear and by using this formula. Now the problem of 
shear locking is possible here to, again this can be overcome by using reduced integration, see if
we examine the details of this integrand shear, these integrals can be evaluated exactly using 2 x
2 Gauss quadrature, this provides acceptable result for thick plates there is no problem here, but
however for thin plates the locking problem occurs if we do this, so what is suggested is we 



evaluate the flexure component by using 2 x 2 Gauss quadrature, but for evaluating the shear 
part we use a 1 x 1 Gauss quadrature, so this indirectly ensures that the locking problem is 
eliminated.

So this is one question that we post about behavior of deep beam and plate elements as the 
thickness becomes small. Now I wish to make few comments on issues related to convergence, 
in the using any finite element formulation we can ask several questions after we formulate the 
element of the program, at the stage of completing the formulation of the element and when we 
are ready to use it we can have several questions, has the element been formulated correctly? 



And has the computer codes have been developed correctly? How do we know that an element 
available in readily available software is correctly formulated and coded? Suppose even if we 
are not the people who have developed the element, we may be using production version finite 
element software's and we may like to use a particular element in a given model, how do we 
know that either we are using that element correctly as intended or whether the element itself 
has been formulated correctly and coded correctly. 
Now other question we can ask is when non-conforming elements are used how do we verify if 
the converges should be achieved by refining the mesh? So these questions can be answered by

 considering what is known as a patch test, the story is it goes something like this, what we do 
is we assemble a patch of elements under study, the assembling of this patch of element should 
be such that at least 1 node must be within the patch, and the node should be shared by 2 or 
more elements, and 1 or more inter-elemental boundaries must exist. Now we load this patch at 
the boundary nodes so as to create a state of constant stress, so this state of constant stress can 
be with respect to one of the stress components, for example in a 2-dimensional problem it can 
be, state of constant stress in sigma XX, or sigma YY, or sigma XY. Now we support the patch 
just adequate enough to prevent rigid body motions, now we analyze the problem using the 
element develop and we compute the stresses, if the computed stresses within the entire element
agrees with the exactly known value of constant stress and perhaps 0 stress for other element, I 
mean some of the components then the patch test is passed by the element. An example for that 



is suppose you are using plane stress quadrilateral element so we make a patch, this is a node 
here and we create 4 quadrilateral plane stress elements and we load this edge by a constant 
surface traction, so this surface traction is a constant, and for this constant surface traction we 
evaluate the equivalent nodal forces using the correct formulation, and these are the forces, and 
this also they another force that we have applied, and this is the support conditions, you can 
verify that under this state of loading and the way it is supported, this patch would be having 
constant value of stress sigma XX = F, where F is the magnitude of this constant value, and 
sigma XY and sigma YY must be equal to 0, so we can analyze suppose you have developed 
these elements you can analyze and find out whether these conditions are met or not. 



So the example that I mentioned, I consider the case of sigma XX being constant, for a plane 
stress element we need to repeat the test for other loading configurations corresponding to 
constant states of sigma YY and sigma XY before we can pass the test, pass the element for 
further use, if the element passes the patch test it is ensured that a finite element model which 
uses this element converges to the correct solution as the mesh is refined repeatedly, if an 
element fails to pass the patch test I mean we should be very careful in using those elements, it 
is assumed that the element being tested is stable, so what is the meaning of a stable element? A
stable element does not exhibit 0 energy modes when it is adequately supported so as to avoid 
rigid body motions, one can study stability of the element by considering the Eigenvalues of the
stiffness matrix, there is another numerical way to do that, so what we do is we assemble a 



patch as in the patch test, and apply the load as in the patch test. 
Now assuming that the element has passed the patch test, what we do is we perturb one of the 
nodal loads by a small amount, if the computed stress is changed by a large amount because of 
the small perturbation then the patch has failed the stability test, if the test is applied at the 
single element level then the element has failed the stability test that means if at the element 
level we see that a small perturbation to the loads as depicted here produces large changes in 
the stress values, again we say that particular element has failed the stability test, what is known
as weak patch test where the element approaches towards passing the patch test as a mesh of the
patches refined successively, that means for a given mesh configuration like this the element 
may not pass the patch test, but if we go and refining this as the, as you repeatedly refine the 
mesh the patch test tends towards you know success, so I mean the test is passed and then we 
say that the element passes the weak patch test. 



There are other issues like higher-order patch test, for example we have considered in the patch 
test, the states of constant stress there can be other issues, for example modeling of pure 
bending in plane elements, an element with quadratic expansion for U and V must be able to 
represent exactly a field of pure bending, so pure bending is not a state of constant stress, but it 
has a specific distribution and this can be thought of as higher-order patch test. Similarly there 
are other issues like robustness, for example a state of pure bending in plane mesh must not be 
affected by the Poisson ratio of the element, so some of this can be used to verify whether the 
element has been formulated correctly or are we using the element as intended as that, so these 
issues are discussed at a tutorial level in these textbooks, there are many research papers on this 
so this is a subject of research, if you're interested there are many research papers on this.



Now one more remark that can be made in the same context, this numerically integrated 
elements lead to the correct convergent results as the mesh is refined, if the order of integration 
chosen leads to the correct evaluation of the volume of the element, why is that so? The 
question we are asking is suppose you have evaluated stiffness matrix using Gauss quadrature, 
and we have seen that the Gauss quadrature would not integrate the elements of KE exactly 
because there will be ratios of polynomials in the integrand, so the question is if we are using 
such elements how do we know that we are going to get the correct convergent results as mesh 
is refined. 
Now the suggestion that is made here is if the order of integration chosen leads to the correct 
evaluation of the volume of the element then we are okay,, I want you to think about this and 
answer, but I will give an hint as the mesh is refined and constant strain is reached as mesh 
becomes finer within an element strain tends to become constant we get the stiffness matrix to 
be of this form, so this term becomes constant and what remains is the volume of the element, 
so the statement made here is that if this volume is corrected correctly then this required 
condition on convergence is met. 



Now all these checks have been on static behavior of the system, so how about problems of 
dynamics? So there are few checks on mass matrix I will return to this sometime later in the 
course, but I will just indicate a few points here this is something to do with Eigenvalue 
analysis, the question we can ask is are rigid body modes predicted correctly, if I know that a 
structure is supported in a way that suppose it admits 2 rigid body modes the Eigenvalue 
analysis should reveal that.
Next the question of ability to characterize closely spaced modes and repeated Eigenvalues we 
have seen that in structural displaying symmetry in stiffness and mass characteristics, special 
symmetry the Eigenvalues can repeat, for example in a circular plate we saw in the previous 
lecture which is fixed all around, there are 2 mode shapes for a given Eigenvalue, so how these 
things are handled, and if the natural frequencies are closely spaced will my Eigenvalue solver 
be able to handle that correctly. Next are all the Eigenvalues in a given range extracted, that 
means within a frequency range we should not miss any Eigenvalues, so that is also another 
question, and then again if you’ve used model reduction or substructuring there will be further 
questions on choice of masters and slaves and so on and so forth, so the questions on dynamics 
require further consideration maybe we'll return to some of these issues later provided the time 
permits. 



Now in the previous lecture we considered 4 noded rectangular quadratic thick plate element, I 
leave it as an exercise for you to repeat that exercise for the quadrilateral element, the strain 
energy expressions are given here and this is the geometry of the quadrilateral element, and we 
use the isoparametric representation as shown here, and this element is mapped to this master 
element, and we use this interpolation functions NI(sai, eta) is this, and X and Y are represented



using the same interpolation functions and the displacement field theta X, theta Y, are 
represented in this form, so the exercise is to develop the mass and stiffness matrices for this 
element. 



Another exercise you take a 8 noded curved quadrilateral thick plate bending element and this 
is the expression for strain energy, and using these representations there are 8 trial functions and
the trial functions have been defined here for 1, 2, 3, 4 this is the trial function, and for 5,7 and 
6, 8 these are given here, and we again use isoparametric formulation where the coordinates 



X and Y and the field variable W, theta X, and theta Y are interpolated using nodal values using 
the same set of interpolation functions. Now the problem is to develop the mass and stiffness 
matrices for this element, so this is suggested as an exercise, if you complete these two 
exercises you would have learnt a great deal about formulation of the structural matrices for 
plate elements. 



Now we will now consider, next class of problems associated with plate bending here we are 
considering plate structures which are stiffened by beam elements like this, so these are 
typically observed in bridge decks, building floors, ship hulls, aircraft, structures so on and so 
forth, now the beam central axis that is a line passing through this point C here is eccentrically 
placed with respect to the middle surface of the plate which it aims to stiffen, now obviously the
membrane and bending action of the plate and the flexural action of the beam all of them get 
coupled, and correct formulation should be able to handle these details with care, so how do we 
do this? So the coordinate systems here we assume that the coordinate origin passes through the
mid surface of the plate element and the centroidal axis of the beam is at a eccentricity E, and I 
consider this to be the X-axis, this is Y axis, and this is Z axis, and the degrees of freedom that 
we are considering is U and theta X, V and theta Y, and W, okay, so a first cut model for 



this problem we can begin by ignoring membrane displacements of the plate, so we will 
consider only the flexural action and of the plate and the beam. 
So now the strain energy stored in the beam is given by this expression, we are assuming a deep
beam element so we are including rotary moment of inertia as well, so this is the equation. The 
strain energy is due to axial deformation, bending, twisting, bending about Y, bending in the 
two directions, what we are going to do is we are going to ignore this bending contribution for 
the time being, this can be you know, this bending in this direction can be taken to be ignored. 
Now based on the geometry of this configuration we can see that UC is given by E into theta Y, 
which is E dou W/dou X, and VC is - eta X and WC is W, the beam displacements actually 
need to be compatible with the plate displacements along the attachment line. The expression 
for kinetic energy I will use these representations, so this is the expression for kinetic energy, 
and UC, VC, WC are given in terms of W, theta X, through these equations and if I substitute, 



you make these substitutions I get for UC dot for example I will write E dou W dot/ dou X so 
that is what is here, and similarly other terms are represented and I get the expression for kinetic
energy in this form.
Similarly strain energy is given by these 3 terms, again for UC, WC, and theta X, UC and WC I
will use these terms, and using that I will get the expression for strain energy in terms of W and 



theta X to be this, so kinetic energy is also obtained in terms of W and theta X, so these are the 
expressions for kinetic energy and strain energy, as I already said along the attachment line the 
beam and plate must deform in a compatible management. Now if we recall along the edges 



many of the plate bending elements of cubic variation for W, so if you recall if we consider this 
4 noded beam element, thin plate element we had this expression for strain energy, and we saw 



that the field variable in this expression for strain energy is W and the highest derivative present
in the Lagrangian is 2, and therefore degrees of freedom are W, dou W/dou X and dou W/dou Y
and there are 4 nodes and number of generalized coordinates were 12, because we needed 3 
degrees of freedom at every node and we use this representation. Now suppose if you consider 
this representation along one of the edges you see here that if I put X = A, I get this cubic 
polynomial in Y, so that is what I am saying here along the edges many of the plate bending 
elements of cubic variation for W. 



So now I will use this representation for W, W1, NW1 sai, theta Y1, and W2 sai etcetera, 
etcetera as shown here, where NW1 is N1, NW2 is – AN2 and other details are as here, and N1,
N2, N3, N4 are the Hermite polynomials that we have used, so using this I will write W as NW 
into WE, so where NW is this and WE is given by this, for twisting theta X the second term I 



use linear interpolation functions that we have seen NX1 sai, theta X1 + NX2 sai theta X2 and 
these are linear interpolation function, for theta X I get this, so I have this representation for W, 
and this representation for theta, and I can combine the 2, and write the expression for kinetic 



energy, W is this, and theta X is this and substitute and we can carry out the necessary 
integrations, and we can show that the mass matrix will have first integral can be shown to be, 
will lead to this form, and the second integral will lead to this form. So we have these 



expressions for the 3 terms in the expression for kinetic energy, and we now define UE as 
element nodal degrees of freedom W1, theta X1, theta Y1, W2, theta X2, theta Y2. 
Now we can write the expression for kinetic energy and assemble these matrices we can show 
that this ME can be given by these 4 matrices, and these 4 matrices are as shown here, this M11
is here, and M12 is here, and M22 will be this. 



Now how about strain energy? We have this expression for strain energy and again we will use 
the representation for W and theta X and we evaluate these 2 terms separately, first we consider 
the first integral and this leads to a mass matrix of this kind, and the stiffness matrix of this 
kind, and second one leads to stiffness matrix of this kind, again we can assemble in terms of 



nodal degrees of freedom the element stiffness matrix in terms of these 4 matrices K11, K12, K 
12 transpose, and K22, and the details of this are given here. In this formulation we have not 



included the effect of membrane action of the shell element on possible behavior of this beam. 
Now if we want to include that first we need to develop a element for the plate itself where we 
combine the flexural and membrane actions, so that type of elements are known as facet 



elements, this combines the action of the membrane action and bending action, so the element 
configuration will be as shown here for a 4 noded element, so the nodes are 1, 2, 3, 4, and at 



every node I will have, for membrane action I will have 2 degrees of freedom, and for flexural 
action I will have 3 degrees of freedom, so therefore W will be this, and S is subscript for shell 
and this will be this, so this will be a 20 degrees of freedom model, there are 4 nodes, at each 
node there are 5 degrees of freedom, the 5 degrees of freedom are U1, V1, W1, theta X1, theta 
Y1 at node 1, so we need to now assemble these matrices and write the correct expression for 
energies and derive the matrices, this is straightforward because we already done the problem it 
is now matter of just bookkeeping and assembling the matrices correctly. 



So we will write the kinetic energy in terms of membrane action and bending action, the 
membrane action is given by this and this is U1 V1, U2 V2, U3 V3, U4 V4, and I get this mass 
matrix for membrane action where each of these sub matrices is a 2 x 2 matrix, this we have 
derived earlier so we need not have to get into the details once again. For the bending action 
again the nodal degrees of freedom are 12 which are W1, theta X1, theta Y1 and similarly the 
other, so the mass matrix for bending action again is given by this and each of these matrices 
sub matrices is 3 x 3, so now if I write the expression for T I need to appropriately assemble 
these matrices. 



So now if I define the nodal coordinates for the shell element subscript S is for shell, I will have
20 nodal degrees of freedom and I need a 20 x 20 mass matrix and in terms of the element mass
matrix, shell element mass matrix this is given in terms of this nodal, you know kinetic energies
in terms of US dot transpose MS US as shown here, and this MS itself it can be assembled in 
this form where each of these matrix is a 5 x 5 matrix consisting of 2 sub matrices 2 x 2 
membrane matrix and a 3 x 3 bending matrix, so this assembled mass matrix now is the mass 
matrix for the so called facet shell element. 



Similar arguments can be used for stiffness, we have strain energy contribution from membrane
action and bending action again the nodal degrees of freedom for US is same as what we use, 
what was mentioned for kinetic energy, and KS is the shell element stiffness matrix and this 
again is written in this form, all these matrices are symmetric. 



Now so we have now derived the mass and stiffness matrix for the facet shell element, now 
we'll return to the problem of, now the stiffened plate, so we will now try to construct a refined 
model where we include the membrane displacements of the plate in the analysis, the 
expression for energies will remain the same, but the details of displacement will be different, 
see earlier we use UC as E theta Y, now we are including the membrane displacement the 2 
quantities shown in the red are the new terms, so consequently now the form of the Lagrangian 
will change now, so we need to now include these new terms. 





So this is the expression for kinetic energy, this is the expression for strain energy, and these are
the displacement fields in terms of W, dou W/dou X theta X and theta Y, so now if we consider 
the expression for kinetic energy you have to substitute this into this expression and rearrange 
the terms I will get the expression for kinetic energy to be given by this. There are 5 integrals 
now because of the cross terms and other things these new terms will be present. Similarly 
strain energy will have 5 contributing terms, 4 contributing terms as shown here, and now the 
field variables are U, V, W, W theta X, and so we have U, V, W, theta X, these are the field 
variables. 



So now we represent them in terms of interpolation functions and nodal values, first the 
membrane action U is U1 U2, these are the interpolation function so for bending action I have 
these degrees of freedom and I get the mass matrix for bending given by this, this is for the 



beam element, the B is for beam element, and this is the elements for M11, M12, and M22 
which appear in this matrix. 



So basically we are considering this Lagrangian made up of this and using this interpolation 
functions and constructing the solution. Stiffness matrix again given in this form U transpose 
KB, UB and this is assembled in a form K11, K12 and K22, each one is a 5 x 5 matrix as shown



here, K11, K12, K22, so all these details need to be worked out and I leave that as an exercise, 
this is K22.



Now so far in the course we have focused on vibration problems, and we started by discussing 
simple axially vibrating bar, then flexural given plane and 3-dimensional beam element, and 
with that we constructed planer frames, grids, 3D frames, and we have considered several 
aspects of vibration analysis including time integration methods and substructuring and model 
reduction, and then we moved on to study of 2 dimensional elements, plane stress and plane 
strain elements, and plate bending elements, and we have seen today the facet shell element, 
and the stiffened plate element. 
Now in the next part of module of this course we will take up a new topic that is related to 
stability of structures, later on after completing the discussion on stability we will return to 
problems of vibration analysis again, and we will consider problems of finite element model 
updating and some issues about nonlinear vibrations, and some questions on combining 
numerical experimental models in problems of you know finite element model updating as well
as structural testing using hybrid simulation, so we will return to those topics after we address 
few issues related to stability of the structure. 
Now in the subject of stability of structures we basically consider certain states of the system 
which could be state of rest, or state of periodic motion, or it could be as well state of random 



motion. The idea here is we ask the question whether this, what happens to these states if we 
perturb these states by a small perturbation. Now such perturbations can occur in engineering 
practice because of various reasons so suppose these perturbations occur because of this 
perturbation the response of the structure would change, now we say that these states are stable 
if the response to perturbation dies and the original state is restored, if not if original state is not
restored, then if the motion grows without limits then we say that the state is unstable, the issue 
remains unresolved if motion neither grows nor decays, we need to consider further you know 
approaches to analyze this type of problems.



So in the next few lectures we will consider questions related to this and we will begin by 
considering some familiar problems like problems of beam column, suppose if you consider a 
simply supported beam carrying transverse load Q(x) and also axial loads P, in absence of axial 
loads P we have studied how the structure vibrates, how it displaces so on and so forth. Now the
question we wish to consider is what would be the influence of simultaneous presence of 
transverse load and actual loads like P like this, we will be showing that there exist certain 
critical values of P for which slightest transverse load will produce huge responses in the 
system, so the equilibrium state in the neighborhood of P being close to the value of those 
critical values is unstable, in the sense a small perturbation will produce large responses. 



There are two types of issues here, the new equilibrium position that the structure takes could 
be in the neighborhood of the original equilibrium position or we can have certain types of 
problems as schematically shown here, this is a problem where there are 2 rigid links hinged at 
these places and loaded as shown here, as the load P increases this point starts moving 
downwards and for a certain critical value of P, after the structure displaces and reaches this 
point it will snap. So from this the equilibrium position in the neighborhood of this somewhere 
here is unstable because a small perturbation pushes the response to a faraway equilibrium 
position, so this phenomena is known as snap through. 
Now in a structure that is loaded by external loads it is always a question that we should 
consider, what would happen if there is a slight perturbations in the external loads, if the 
structure is in the neighborhood of being you know on the verge of losing its stability any slight
perturbations we will create traumatic increase in the response and that virtually means in an 
engineering system the structure would fail, that is highly undesirable, so we would like to 
know how close we are to a critical state and in a good design we wish to be sufficiently far 
away from those states that is what we do in design of metal structures, so the question that we 
will be addressing is not so much on the phenomenological aspects of stability analysis, but 
more specifically how to analyze problems of stability within finite element method, 
specifically we will be considering what is the role of imperfections in the structure, what is the 
role of interactions between imperfections and nonlinearities, and if there are dynamic 
excitations for example if this P and Q that I have shown here are depicted to be static loads 
here, but they can as well be functions of time. Suppose Q is a static loader but P is a dynamic 
load. Now we can show that for certain types of loads, for example if P is something like P 
naught + epsilon cos omega T, if it is a harmonic load then the structure can get into resonance 



even when this driving frequency capital Omega need not coincide with any of the natural 
frequencies of the system, so these are not the traditional resonances but these are special types 
of resonance or parametric resonances, there are many systems in engineering practice where 
we get problems of this kind, and problems of this kind are characterized by structural matrices 
which vary in time, so for these time varying structural matrices the questions on parametric 
excitations and stability of the structure also needs to be considered.
So in the lectures to follow what we will do is we will first look at certain conceptual issues 
related to study of beam columns, and we will be showing that the problem of determining 
critical loads can be tackled using again in Eigenvalue problem will derive the elastic stiffness 
matrix, and we will also derive a new matrix associated with the structure known as geometric 
stiffness matrix, so that an Eigenvalue analysis are associated with those matrices will be able 
to help us to determine the critical axial loads. Then we will consider built up structures like 
continuous beams and frames and so on and so forth, which are laterally which carry you know 
axial loads or lateral loads and so on and so forth. The question we will ask is for a given 
loading configuration if the entire loading configuration is increased in its magnitude by 
keeping the relative values of loads at different places the same, at want value of the increasing 
the parameter that increases the load will the structure lose stability, so that type of questions 
we will consider and we will begin by addressing that type of problems for simple structures 
like single span beams and then generalize it to built-up structures. So with this we will close 
the present lecture.
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