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We have been discussing analysis of plate bending elements, in the last class we started 
discussing about the basic formulation, so we considered a thin structural member as shown 
here where this thickness is small compared to the least lateral dimension, and that is the 
essential feature of a plate and it can carry load either in its own plane or transverse to its plane,
so structures carrying, plates carrying forces in its own plane are said to behave like a 
membrane, whereas if the structure carries loads transverse to its middle surface as shown here 
the plate would bend and this is known as bending action. 
So right now we are focusing on analysis of the bending action, if the membrane action has to 
be studied the plane stress elements that we have developed earlier can be employed. 



Now in the last class we formulated a few details so we considered a 4 noded rectangular 
element and at each node the degrees of freedom where translation W or slope along X and Y 
axis and we introduced non dimensional coordinate system XI = X/A and eta = Y/B. Now to 
derive the strain energy stored in the plate we invoked the Kirchhoff Love assumptions and 
based on that we derived this stresses, in terms of the strains so there are 3 stress components 
that enter our formulation, and the strains themselves are given in terms of curvatures as shown 
here. So the strain energy stored in the plate is obtained in terms of the curvature and the matrix
that relates stress and strain, and similarly the kinetic energy is given by this expression, and in 
the kinetic energy only the displacement component W enters our formulation in this model.



So the field variable was W in our variational formulation, and order of the highest derivative 
present in the Lagrangian was 2, and the degrees of freedom therefore at any node must be W, 
dou W/dou X, and dou W/dou Y, and the interpolation function must consist of complete 
polynomials of at least order 2, so for any choice of elements that one can think of, the first few 
terms in the trial function should be this, a constant term, linear term in X and Y and quadratic 
terms, and the higher order terms so this completes 1, 2, 3, 4, 5, 6 remaining 6 terms we have to
select depending on the theory that we employ for developing the element.



So we started discussing this thin rectangular element with 4 nodes, 3 degrees of freedom per 
node, so that the element has 12 degrees of freedom, the field variable was W and again the 
number of generalized coordinates needed based on these considerations is 12, so we use this 
polynomial, so after quadratic terms we use a complete cubic terms and two fourth order terms 
X cube Y and XY cube, we analyze this problem and in the non-dimensional coordinate system 



the node we expanded to determine the shape functions we represented the trial function in this 
form, and since the variational formulation has gradients with respect to X and Y, we evaluated 
this and at every node there are 4 nodes, at every node these 3 quantities are specified and using
that fact we were able to determine the shape functions and were able to represent the vector of 
nodal displacements W bar E in terms of these shape functions, that field variable is represented
in terms of N1, N2, N3, N4 and this vector of nodal coordinates. This N1, N2, N3, N4 NJ-th 
term has this form. 
Now we carried out some analysis of this representation, and we considered the behavior along 



edge 2, 3, the field variable theta X and theta Y, and we were able to observe that along the edge
2, 3, W and theta X depend on nodal values of W2, W3, theta X2, and theta X3, that means 
along this edge 2, 3, the variable W and theta X depends on nodal values of the field variable 
and it is a slope with respect to X, at nodes 2 and 3. Now if we have to add 1 more



 element on this side here, again a point that lies on the edge 2, 3, will be shared by these 2 
elements, and these nodes also would be shared by the 2 elements, so if the field variable is 
independent of these nodal values at nodes 1 and 4 then automatically continuity will be 
satisfied, continuity of the field variable and the appropriate derivative will be satisfied, but we 
observed that while this condition was satisfied for W and theta X we observed that theta Y 
which is another field variable along sai = 1 depends upon values of W and theta X at nodes 1, 



2, 3, and 4, as well as theta Y at nodes 2 and 3, so this means that theta Y will not be continuous
across element edges and this element is not a conforming element, and questions on 
convergence of solutions obtained using such elements you don't need to be carefully 
considered. 

But still this element is known to give acceptable results, so in view of that we will complete 
the formulation, so the kinetic energy is given by W dot E transpose, ME, W dot E, and 



elements of ME are elements of this integral, so in the non-dimensional coordinate system we 
obtain this, and since N consists of polynomials product of N transpose N will lead to 
polynomials, so this elements of mass matrix can be evaluated exactly, so that has indeed been 
done and we get the mass matrix a partitioned as shown here and this M11, M21, M21, M22 are
themselves matrices, although the subscript may mean that it is 1, 1 element of M, it is not so, 
M11 is a matrix, it is 6 x 6 symmetric matrix with elements as shown here, and similarly M21 
and M22 are also available, so if you put now M11, M21 transpose, M21 and M22 we construct
the complete mass matrix, so this mass matrix is consistent, mass matrix it is symmetric. 





Similarly the strain energy can also be evaluated, this is the formula for the strain energy and 
this is the element stiffness matrix, so here the strain displacement matrix B, and the D matrix 
which relates stresses and strain appear here, so we need to evaluate the elements of this and 
that can be done by considering B is actually given by the action of these operators on N and 
we can show that this is actually this, in terms of N (sai, eta) and consequently KE can be 
evaluated in this form, where this K11, 1 2, 1 3, 1 4, etcetera all these are again matrices, so 
there are 3 x 3 matrices, so the entire matrix is 12 x 12, so these matrices have been evaluated, 





here we see 2 parameters alpha and beta, this alpha and beta are ratios A/B and B/A, so we get 
this stiffness matrix as shown here. This alpha is A/B, and beta B/A in these matrices, so first 

we have evaluated the elements of this first column like 1 1, 1 2, 1 3, 1 4, so 1 1, 1 2, 1 3, 1 4, 
and for evaluating the remaining elements we manipulate this 1 1, 2 1, 3 1, 4 1, matrices 
through these matrices I1, I2, I3, and these details can be worked, I leave it as an exercise for 
you to carry out these evaluations.
One stiffness matrix is determined, it is determined exactly in this case, the stresses in terms of 
nodal displacements can be used evaluated by multiplying the strain matrix with the D matrix, 
strain vector with the D matrix and we get this. 



Now we need to evaluate the equivalent nodal forces, so again we use this virtual work 
statement and based on that we get the equivalent nodal forces to be given by integral N 
transpose FZ DA, where N is again we have already seen this matrix, and if for example if this 



forcing is a constant, a constant load then the nodal equivalent nodal forces using this 
formulation is obtained passionate.
Next if you want to compute bending moments, this is how bending moments are related to the 
stresses and we can evaluate this, we have these expression for sigma XX, sigma YY and sigma
XY, and if we carry out this integration we get this stress resultants that are of interest in terms 
of nodal coordinates and strain matrix B and constitutive matrix of constitutive law D, I is a 
matrix that has been defined here in one of these places.



Now the element that we have developed as a pointed out is not confirming, that is the normal 
slope is not continuous across the edge, now how to overcome this limitation? So how can we 
do it? There are various approaches in the literature, so we can introduce additional and nodal 
degree of freedom or introduce additional nodes or ensure that normal slope varies linearly 
along the edges, if normal slope varies linearly along the edges then automatically it depends on
2 nodes along the edge and therefore the continuity will be guaranteed, so we will see how that 
happens, so first we will consider a confirming rectangular element, the idea is basically to use 



products of beam shape functions in the 2 directions, so in the n matrix that we refer to earlier 
the NJ (sai, eta) is taken to be in this form, there are two functions of scalar variables sai and 
eta, and these are the function that has been used in the cubic polynomial used in formulating 
the beam element, now it is in the non-dimensional coordinate system, so what we do is we 
consider this same degrees of freedom as we used earlier that means we will assume 3 degrees 
of freedom per node translation along Z rotation slopes along X and Y at the 4 nodes, suppose if
you proceed with this and use these shape functions, so these shape functions I have shown 



what are these F and G functions you can see here, these are the 4 functions, this is the a cubic 
polynomial that we’ve used in formulating beam element. 



Now if we now substitute this the field variable is now represented in terms of nodal values as 
shown here, okay, now let us put this in the details of FJ can be inserted here, and we can 
evaluate now the second order derivative dou square w/dou XI dou eta, this provides the twist 
that we observe in the plate, and if we evaluate this which is straight forward since these are 
polynomial so we can quickly do that, and if we evaluate the value of this gradient at the nodes 
it turns out to be 0, so the nodal value of dou square W/dou sai it is 0 for all the nodes, so the 
problem would be as the element becomes smaller the plate will tend towards a 0 twist 
condition, and we will not have a desired behavior incorporated into the element development, 
so this is a limitation, so how do we overcome that? What we do is, we will treat this quantity 



dou square W/dou X dou Y as additional nodal degree of freedom, so in addition to W theta X 
theta Y I will use this call it at W, X, Y, as another nodal degree of freedom, so then this element
will now have 16 degrees of freedom, 4 nodes, 4 degree of freedom per element and then what 
we will do is if you carefully see here it has to be seen carefully, there is F term and G term, if 
you look at values of F at the nodes, the gradient of F at the nodes it is 0, but this is not true for 
G function, G is not 0 at nodes, so we introduce for WXY an interpolation in terms of GJ, XI 
and GJ eta function, so W now consists of as before the same format, but this now has 16 
elements, and this is 16 x 1, and the 16 elements are made up of, this is a transpose, so 4 of this 
evaluated at J = 1, 2, 3, 4. 
Now if you write in summation form, this is what it's meant by the representation as shown 
here. Now if you compute the second-order gradient dou square W/dou sai dou eta, dou XI dou 
eta we get this function, and if you now evaluate this at the nodes it turns out that this will be 



given by this function, and this function is not 0 at the nodal coordinates, so therefore this is not
0. So the limitation that we observed here that this is 0 at all the nodes is over come here. 



Now we can ask the question can the element perform rigid body motion without deformation, 
these are about some of the requirements that we initiated in one of the previous lectures when 
we talked about convergence and those issues. So now if we consider W1 and W3 to be 1, and 
W2 and W4 to be – 1, and theta X2 is theta X3, theta X1 is theta X4 as shown here which is 
minus of that, and this similarly theta Y has this relation, we are giving a rigid body rotation to 
the object, these deformations ensures that we are giving a rigid body rotation. Now if you put 
these values into the assumed representation here it turns out that WXYJ will be given by this 
and this W (sai, eta) will be sai eta, which is what we expect for such type of motion, so this 
representation is fine. 

Now we can go ahead and evaluate the mass matrix, stiffness matrix, equivalent nodal forces, 
you know these are polynomial so it can be evaluated exactly, or you can use an appropriate 
quadrature rule, so I am not going to provide the details of this, this element is known as CR 
element, the disadvantage is that in the analysis of built-up structure using this element is 
difficult because of that additional node dou square w, dou X, dou Y represent at nodes, most of
the other elements would not have that element and there will be problem in dealing with that, 
so one approximation that has been done in the literature is to represent this dou square W, dou 
X, dou Y, in terms of theta X and theta Y, by kind of a numerical differencing scheme, and that 
overcomes this difficulty, that mean we can eliminate the WXY degree of freedom but such an 
element again turns out to be non-conform, so there will be another penalty that we have to pay.



Now we will now consider another element, this is thick rectangular plate bending element we 
have been considering behavior of thin elements, now it turns out that for this element we can 
develop a conforming rectangular element as we will see shortly, so here what is a consequence
of plate being thick, so we have assumed in the earlier theory that plane sections initially 
normal to the middle plane remain plane, and also normal to the middle plane, but now what we
will do is we will assume that the plane sections initially normal to the middle plane remain 
plane, consequently epsilon XZ will be independent of Z, and epsilon YZ will be independent 
of Z, but not necessarily normal to the middle plane, if you insist that this should be also said, 
this is also satisfied and these 2 quantities identically become equal to 0, so now we are 
permitting a certain rotation, a constant rotation across the thickness, it will have still the same 
length therefore epsilon ZZ continues to be 0, so W is again function of X and Y, now what we 
will do is, we will consider theta X and theta Y to be the rotations about X and Y axis of the 
lines which are normal to the middle surface before deformation, and based on that we can 
evaluate U and V as Z into theta Y – Z into theta X, so now U and V also will now come into 



picture, I have U as Z theta Y, and V as - Z theta X, so strains epsilon XX is dou U/dou X it is 
given by Z dou theta Y/dou X, epsilon YY dou V/dou Y which is – Z dou theta X/dou Y. Shear 
strain dou U/dou Y, dou V/dou X this is given by this, so now if you consider the test, will 
partition the strains into 2 components epsilon XX, epsilon YY, and epsilon XY is one part, and 
the shearing strains as another part. 
Now this as before is given by - Z into khi, but now this khi is given in terms of theta Y theta X,
it’s not curvature immediately it cannot be interpreted as curvature, so this is dou theta X, dou 
theta Y, dou Y. Now the shearing strains are given by this, so dou W/dou X stays dou U/dou Z 



is theta Y, and dou V/dou Z is – theta X, we call this vector of shearing strain as gamma, and 
now we have sigma which will increase sigma XX, YY, and XY, and tau which include 
shearing stresses, sigma is related to epsilon XX, epsilon YY, and shearing strain with D being 
this. Now shearing stresses are related to shearing strains with this being the D matrix, so we 
will now call it as DS, and this as D. Now this factor K accounts for the variation of shear 
stresses and strains through the thickness, this we’ve already seen when we talked about D 
beams in one of the earlier lectures, so equipped with this now the expression for strain energy 



has contributions from sigma XX, sigma YY, and sigma XY, and contributions from shearing 
stresses, so I write that separately. This epsilon transpose D epsilon, this is tau transpose 
gamma, and carrying out the integration across the thickness I get the first term as this, and the 
second term as this. 
Now similarly kinetic energy has now contribution from UV and W, U dot, V dot and W dot 
and this is expressed in terms of W theta X and theta Y dot as shown here, so khi is the vector 
of these quantities, and gamma is the vector of these quantities. Now let’s examine the 
Lagrangian which is T – V, what are the field variables? We will have W and theta X and theta 
Y, highest derivative of the field variable is 1, see we are having dou W/dou X and dou theta 
Y/dou theta X, and dou theta X/dou X, right, so the degrees of freedom are W, theta X, theta Y 
at the nodes, and since the highest derivative of the field variable is 1, these are the degrees of 



freedom, and we can represent now the field variables in terms of, W has 4 quantities we will 
write like this W1, W2, W3, W4, similarly theta X1, theta X2, theta X3, theta X4 so on and so 
forth, so we have now representation for W, theta X, theta Y and we are now going to use the 
interpolation function that we have encountered while dealing with rectangular plane stress 
elements, there also we had 4 nodal degrees of freedom, and the field variable was required to 
be interpolated in terms of 4 nodal values and we are encountering similar situation therefore 
we can use the same trial functions. 
So we already seen that element maintains inter element continuity of a field variable and the 
required derivative, so this W, theta X, and theta Y maintain inter-element continuity, therefore 
this is going to be a conforming element, this is named as HTK element, named after Hughes, 
Taylor and Kanoknukulcha. 



So we can now represent therefore the vector of field variable W, theta X, and theta Y, in terms 
of the nodal degrees of freedom which is 12 x 1, and this is 3 x 12 matrix of shape functions, 
these are the nodal degrees of freedom W1, theta X1, theta Y1 at node 1 and so on and so forth. 
So expression for kinetic energy now can be evaluated as shown here, this mass matrix we can 





evaluate in terms of 2 different components and I have, this can be evaluated exactly, so we can 
evaluate this, the 2 components of this matrix exactly, and thus what we do and we get the mass
matrix. 

Now the strain energy is 1/2 WE transpose KE, WE, now KE itself we decompose into a 
flexural component and a shear component, this is the component due to flexure and this is 
component due to shearing, so we partition now the B matrix as shown here where BFJ here is 
given by this matrix, and similarly the BS for the shear, B matrix for the shear is given by this. 
Now there are 2 components for strains, so this will be having 2 rows, whereas this has 3 rows, 



now we know the interpolation functions therefore we can evaluate all these gradients that 
appear in the B matrix, and we will be able to evaluate BFJ and BSJ matrices, so dou NJ/dou X 
corresponds to dou NJ/dou XI, and if we carry out the required differentiation we will be able to
evaluate this without any problem. Similarly for the shear B matrix for the shear component is 
given by this and we get this matrix, so you can use 2 x 2 Gauss quadrature it leads to exact 
solution or you can evaluate this exactly as well, so if we do that again by introducing 2 



parameters, alpha is A/B and beta is B/A we can get the K matrix in terms of various 
components K11, K21, K34, K41, F means flexure, superscript F stands for flexure and by 
carrying out the required integration these elements of these matrices can be deduced and the 
details of K11F, K21F, and K31F and KF41 are given here, then the remaining matrices K22, 



K32, K42, etcetera are obtained in terms of this first column by doing these operations, and we 
will complete the K matrix. 



So similarly we can carry out the exercise for the shear part, we get again KS as this matrix and 
this again has these components as named here and this is symmetric matrix, so the components
of this first matrices in the first column are given here, and the remaining elements are 
computed using these operations where I1, I2, I3 have been defined earlier. 



Now how about equivalent nodal forces, so again we use this formulation FE is N transpose 
into the applied loads, we are applying loads only in the transverse direction, so this is the 
formula for that, and if FZ is constant the equivalent nodal forces are obtained as shown here.
Now again bending moment and shear forces can be computed as stress resultants we have 
evaluated all the required stresses, so by integrating across the thickness suitably we get the 
bending moment to string moment and the shear forces, so this completes the formulation of a 
thick rectangular element which is conforming and it allows for shear deformation, okay, so this
is known as Mindlin plate theory. 



Now how about triangular elements? Now we will consider this triangular element 1, 2, 3, and 
if I now define X axis along one of the edges, and Y axis along orthogonal to this in the plane of
the plate, and Z axis is outside the plane of this plate. Now this has 3 degrees of freedom per 
node, therefore it has 9 degrees of freedom, so the field variable must now be represented in 
terms of these 9 degrees of freedom element. 



So now a complete cubic polynomial will have 10 terms, so if we now take 9 terms there will 
be a problem, so I can take 1, X, and Y, that is 3, X square, XY, Y square that will be 6 now, 
from this column we have to select 3 more terms, so the idea here is we will retain X cube, Y 
cube, and use a common generalized coordinates associated with some of these 2, okay, so we 
are retaining the complete cubic term but these are not associated with independent generalized 
coordinates, okay, so we can develop this element and we can show that this will not be a 
conforming element, again there will be problem in satisfying the continuity along of slopes 
normal to the surfaces on the edges, so this will again be a non-conforming element. 



Now how do we proceed here? There is one approach to develop a conforming triangular 
element, so what we do is suppose if we consider a triangular element 1, 2, 3 what we do is we 
identify an internal node, internal point and form 3 triangles, 1, 2 and 3, now we will consider 
now these 3 triangles separately, that means one element will be like this, other element will be 
like this, and yet another element will be like this, so this will be 1, 2, O, O, 2, 3, 1, 3, O, now 
we will formulate, each one we will formulate separately, so there will be 9 degrees of freedom 
here, 9 here, and 9 here, so this totally there will be 27 degrees of freedom. Now we have to 
now, whereas for the element 1, 2, 3, there will be 9 degrees of freedom, so we have to get now 
18 relations which will eliminate this 27 degree of freedom a model reduces to 9 degree of 



freedom, so what we do is obviously there will be requirements on compatibility of deformation
at these 3 point nodes so that will give rise to some equations. The additional equations needed, 
what we will do is we will identify an intermediate point see as shown here, so this and this, 
this and this, and this and this, so what we will do is we will compute the normal slope at these 
points, for each of the elements and demand that this is equal to this, this is equal to this, and 
this is equal to this, if we do that we will get a conforming triangular element.
Now the way we select the trial functions in analyzing this we will ensure that the variation of 
the normal slope along the edges is linear, so we will be able to implement the required 
relations, so these 2 elements we will consider in the next class, and following that we will 
consider problems of stiffened plates, these are typically for example observed in say bridge 
decks where shell will be, a plate will be stiffened by girders, similarly these are commonly 
encountered in aircraft structures, automotive structures and so on and so forth, so there is a 
combination of beam and plate element, so there will be a plate element and a beam element, so
we will have to see how we can develop a model for a stiffened plate element. 
So what we will do in the following classes, we will first complete this formulation of this 
triangular elements and then we will consider few numerical examples and then come to the 
cases of stiffened plates, we will consider few numerical examples to illustrate the ideas that we



have developed so far, there is a monograph by Arthur W Liessa, it is a NASA special 
publication, it is on vibration of plates, and this monograph has several examples of free 
vibration, results of free vibration analysis for various configurations of plates, circular, 
rectangular, triangular, quadrilateral, polygonal, etcetera, etcetera, so it is a catalog of solutions, 
many of the solutions are exact, and some others are based on weighted residual 
approximations, so what I will do is I will pick few of these examples from this monograph and
apply the finite element modeling tools on them and see how we are able to produce the 
answers reported in this monograph. 
So let’s quickly recall, this is the strain energy as per the classical plate theory, we were writing 
it in a different form but when expanded it will have this form, this is the kinetic energy, so the 
governing equation is of the form D del 4W + M double dot W dot = 0, so to find out free 
vibration characteristics we assume that all points on the structure vibrate harmonically at the 
same frequency, and we substitute this equation into the governing equation and we get this 
equation D del 4W - omega square MW = 0, and if we introduce the parameter K to the power 
of 4 as omega square M/D we get this equation and this equation itself can be rewritten in this 
form. Now there are few other details here, this is a governing equation and these are the stress 



resultants in terms of the displacement field, this is the bending MX, MY, MXY, twisting 
moment transverse shearing forces and edge reactions, these are results from classical plate 
theory I will not be getting into the details of these equations, but I am stating them for sake of 
completeness. 
Now let us return to the problem that is free vibration problem, so we have assumed this 
solution harmonic solution and we’ve got this equation, and this equation in fact constitutes an 



Eigenvalue problem where now the operator here is a partial differential operator, and for a 
rectangular domain with all edges simply supported the boundary conditions will be W and MX
will be 0 at X = 0, and X = A, and W and MY will be 0 at Y = 0, and Y = B. Now this dotted 
line is a convention used to represent simply supported edge conditions. Now as I said this is an
Eigenvalue problem we need to find W = 0 is a trivial solution we satisfy this equation, but we 
are interested in non-trivial values of W, and we ask the question for which value of K such 
solutions exist, and K as you have seen is related to the frequency of harmonic excitation, so 
what we do is, this problem is amenable for an exact solution and the mode shapes are given in 
terms of sinusoidal functions, and this is the exact expression for natural frequencies. 
Now the natural frequency will carry 2 indices when you are considering 2 dimensional 
problems, this doesn’t come up in finite element solutions but in analytical solutions this feature
would be present. 



Now for sake of numerical illustration we will consider a 50 mm thick steel plate which is 4 
meter by 2.5 meter and the exact natural frequency is computed as per this formula is given 
here, and these frequencies are in Hertz, and these are the depiction of mode shapes, the dotted 
line indicates lines along which the mode shapes will be 0, so here there will be no 0 in the 1,1 
mode, in 2,1 mode there will be 0 in this way, 1,2 mode like this so on and so forth, these are 
obtained from this exact expression for the Eigen function. 



Now suppose if we use now a 4 x 4 mesh, rectangular 4 noded plate element and analyze the 
problem we get the frequencies to be this, first frequency has got obtained as 29.09 Hertz 
whereas its exact value is 27.43 hertz, in this analysis we have used thick plates whereas these 
results are for thin plate that also need to be borne in mind, these are the contours of mode 
shapes you can see here that there are no zeros here whereas this is the nodal line, this is a nodal
line, and there are these nodal lines and these match with the patterns that the exact solutions 
depict. 



Now if we refine the mesh now instead of 4 x 4 mesh if we take 16 x 16 mesh, then the first 
frequency becomes 27.4392 and this is approaching the exact natural frequency, and the second,
third are, these are the other frequencies, and the mode shapes these are the exact natural 
frequencies 27.4392 and what we have got through finite element analysis is shown in the 
caption here, so 27.5132 needs to be compared with 27.4392 and so on and so forth, 51 with 50,
87 with 86 and so on so forth, so as we see as we refine the mesh we are approaching the exact 
solutions. 



Now for other, this is all round simply supported boundary condition for example if you have 
again rectangular plates with 2 opposite edges which are simply supported then it is possible to 
develop solutions for this, so what we do is we consider the partial differential equation and we 
expand this solution, in X direction we use the exact Eigen functions, and in Y direction we use 
this and using a Galerkin type of projections we get equations for YN(y) so we get the 



governing equation for YN is this, and this is, and again it is an Eigen value problem, it is a 
fourth order ordinary differential operator, and there will be 4 boundary conditions specified on 
Y at +-B/2. So if conditions at Y = +- B/2 are identical that for example if these 2 edges both 
are free or both are fixed or both are simply supported etcetera, then the solution can be 
simplified by taking advantage of symmetry.



Now I will not get into the analytical solution, so this is results for one such plate I have shown 
the cross section of the mode shape here, and this is the nodal lines and this is the 0, this again 
the nodal line here, and there are 2 nodal lines as shown here. Now there is one example 



considered by Liessa, he has considered a rectangular plate with 2 edges opposite, 2 opposing 
edges simply supported and the other edges, one edge is simply supported and the other edge is 
free, so for this case according to the data given in this book the first natural frequency is 
14.2585 hertz, now we have analyzed this problem, okay, we analyze this problem and the 





number we get for 14.2585 for the given you know measuring configuration is 13.47 hertz, so 
again we expect that I mean this result has to be examined by refining the mesh, and this also is 
based on an approximate solution, so one can only derive an order of magnitude type of 
comparisons here. 
Now if the other edges, suppose none of the edges are simply supported, see the case that I 
mentioned just now is that 2 opposing edges are simply supported, but if that condition is not 
there so then we can use Rayleigh-Ritz or Galerkin technique by using beam Eigen functions in 
the 2 directions, and we can derive analytical solution which are again will be approximate so 
that can be done, okay. There are details of such results available in the monograph by Liessa. 

Now circular plates are also other class of problems which are extensively studied in the 
monograph by Liessa and for that the strain here is the expression in the cylindrical polar 
coordinates and governing equations and stress resultants are reproduced in this view graph, 
this is for sake of completeness. 



Now again here if we assume for free vibration analysis all points on the structure vibrate 
harmonically the Eigen value problem will be again mathematically will be of this form, but 
this del square operator will be now quite different. Now if we expand the solution in terms of 
sin and cosine terms in theta we can get this set of equations for these amplitudes in R, which 
are depicted here, and similar equation for, this is equation for WN, and this equation for WN 
star can also be obtained.



Now solution to this pair of equations can be obtained in terms of Bessel’s functions, Bessel’s 
function of first and second kind and the modified Bessel functions of first and second kind, so 
we can construct for cylindrical polar coordinate solutions in this form, so this can be used by, 
used to determine the characteristic equation by imposing appropriate boundary conditions. 



Now let’s consider a circular plate with a no solid circular plate with no internal holes and at the
center of the circle, and in this case terms involving IN and KN are set to 0 in order to avoid 
singular behavior at R = 0, so if boundary conditions are symmetric with respect to 1 or more 
diameters of the circle then sin N theta terms can be also be removed, and we get the 
representation for the Eigen function in this form. 
Now if we consider plate clamped all around, the boundary conditions will be this and we can 
derive the characteristic equation and this problem has been solved and exact solutions are 



available, and the monograph by Liessa gives that, so what we have done is we have created 
two FE models with the mesh details as shown here, in model 1 there are 96 elements, in model
2 there are 384 elements, so this is a more refined model, and the natural frequency is, first few 
natural frequencies are listed here. Now actually this system because of its symmetry the Eigen 



values will be repeating, for example I will show the mode shapes, this is a first mode shape 
that means the plate deflects all through in this manner symmetry, in an axisymmetric manner, 
in the second mode the mode shape will be like this, and the nodal line is this, and a nodal line 
which is orthogonal to this will be another mode shape worked at the same value of the 
frequency, so that is what this means that if natural frequencies repeat. 



Similarly the next mode also appears like this and nodal lines are like this, and these 2 
frequencies also repeat, so in a refined model we get similar features and we see that the 
answers are slowly moving towards the exact solutions. 



Now another problem that is available in Liessa book is that of a circular annulus fixed at 
interior and outer edges, and inner radius of 0.8 meters and outer radius of 2 meter, this is a 
numerical example that we have considered the results are available for this case, and we have 
done an few analysis of this, and according to Liessa’s monograph the 3 frequencies, first 3 



frequencies are shown here, and according to the model that has been developed we get 200, 
204, and 214 respectively as approximation to these 3 numbers, so these are the mode shapes 
for the 3 modes, this is the first mode, second mode, third mode, and the fourth mode. 



Now I’ll leave it as an exercise, this is a parallelogram plate which is all round simply 
supported and dimensions, this angle is 30 degree, and dimensions are as shown here and exact 
natural frequencies for this are available, and they are given by this expression the suggested 
exercise is to make a finite element model for this plate and compute the natural frequencies 
and compare it with this exact solutions given in this monograph. 



Now in the next lecture we will consider triangular geometries and develop first a non-
conforming element, we will consider 3 nodes, at each node there will be 3 degrees of freedom 
and this will be 9 noded element, and we need to include 9 terms in the representation for the 
displacement, so we will develop this element by assuming a shape function of this form, 



actually if we include a complete cubic it will have 10 times, but we need only 9 terms, so what 
we do is we club this X square Y and XY square terms and associate it with only one single 
generalized coordinate, and we will develop this element in the next class. 



We will also develop another approach for and a thin conforming triangular element, where 
what we will do is for this triangle element 1, 2, 3, will introduce an internal point O, and divide
this triangle into 3 sub triangles 1, 2, and 3, and will analyze each one separately, and 



consequently there will be 27 generalized coordinates, but for this triangular element there will 
be 9 coordinates so 18 of them we need to eliminate, we will do so by seeking compatibility at 
1, 2 and 3 and also by seeking equivalence of normal slopes at points 4 for triangle 2 and 3, at 
point 5 for triangles 1 and 3, and at point 6 for 1 and 2, so we will develop these elements in the
next lecture, and see how this formulation develops. So at this stage we will close this lecture.
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